Ключевым элементом системы с расширением спектра является. Расширенный диапазон ISO: действительно полезная функция или хитрый маркетинговый ход? Преимущества систем с расширенным спектром

Большинство современных цифровых камер предлагают пользователям возможность выбирать между применением штатного диапазона ISO и его расширенным режимом.

Опытные фотографы хорошо понимают, какие функции камеры реально полезны, а какие в работе практически не используются и добавлены производителем в качестве маркетингового хода. Новички же при выборе фотоаппарата могут легко запутаться во всем многообразии опций, например, что такое ISO и как правильно выбрать рабочий диапазон ISO.

Выбор между штатным и расширенным диапазоном ISO

При изменении значения ISO на цифровой фотокамере пользователь регулирует силу сигнала, меняя тем самым отношение принудительного усиления к считывающей способности световоспринимающего сенсора. Существуют определенные минимальные и максимальные значения усиления ISO - именно этот диапазон называется штатным. После уменьшения или превышения штатных показателей датчики камеры не смогут адекватно считывать данные.

До некоторого времени верхний порог значения светочувствительности считался незыблемым, однако бурное развитие аппаратной части и программного обеспечения современных фотокамер позволило замахнуться на невероятные высоты. То же самое касается и нижнего значения диапазона ISO - современная техника позволяет существенно снизить его. По сути, фотосъемка с использованием расширенного диапазона ISO напоминает постобработку фотографии в компьютере, только этот процесс происходит непосредственно в самой камере.

Как увеличенный диапазон ISO может повлиять на снимки

В камерах с большим диапазоном ISO используют датчики со стандартной светочувствительностью, такие же, как и в обычных фотоаппаратах. Расширенные диапазоны ISO, такие как, например, ISO 12800, ISO 25600, ISO 51200, ISO 102400 получаются путем использования обычных сенсоров и электронных схем, светочувствительность которых повышается с помощью программного обеспечения. Из этого следует, что расширенный диапазон ISO - это не более чем маркетинговый ход.

Заявления о том, что камера может снимать до ISO 102400, впечатляют начинающих фотографов, но это не значит, что при покупке камеры они покупают датчик с такой высокой светочувствительностью. На самом деле эти значения достигаются, благодаря программному обеспечению, и проявляются зачастую в низком качестве снимков с большим количеством цифрового шума.

Фотографии, полученные на экстремально высоких значениях ISO, будут хорошо выглядеть только при условии черно-белой съемки, что сводит на нет подобное преимущество камер с расширенным диапазоном ISO.

Внимательный пользователь обязательно заметит, что камера в расширенном диапазоне ISO делает кадры в формате JPEG, но не в RAW. Это связано с тем, что при съемке в режиме RAW формируется цифровой негатив с минимальной обработкой, так как это расширяет возможности при постобработке кадров с использованием фоторедакторов. (Стоит, правда, оговориться, что некоторые производители допускают возможность использования расширенного диапазона ISO при фотосъемке в RAW-формате.)

Определенная польза от использования увеличенного диапазона значений ISO может быть для фотографов, снимающих в формате JPEG, кто не обрабатывает в последствии изображения. Необходимо все-таки учесть, что на качество придется закрыть глаза.

СИСТЕМЫ С РАСШИРЕНИЕМ СПЕКТРА

Термин расширение спектра был использован в многочисленных военных и коммерческих системах связи. В системах с расширенным спектром каждый сигнал-переносчик сообщений требует значительно более широкой полосы радиочастот по сравнению с обычным модулированным сигналом. Более широкая полоса частот позволяет получить некоторые полезные свойства и характеристики, которые трудно достичь другими средствами.

Расширение спектра представляет собой метод формирования сигнала с расширенным спектром с помощью дополнительной ступени модуляции, обеспечивающей не только расширение спектра сигнала, но и ослабление его влияния на другие сигналы. Дополнительная модуляция никак не связана с передаваемым сообщением.

Широкополосные системы находят применение благодаря следующим потенциальным преимуществам:

Повышенной помехоустойчивости;

Возможности обеспечения кодового разделения каналов для многостанционного доступа на его основе в системах, использующих технологию CDMA;

Энергетической скрытности благодаря низкому уровню спектральной плотности;

Высокой разрешающей способности при измерениях расстояния;

Защищенности связи;

Способности противостоять воздействию преднамеренных помех;

Повышенной пропускной способности и спектральной эффективности в некоторых сотовых системах персональной связи;

Постепенному снижению качества связи при увеличении числа пользователей, одновременно занимающих один и тот же ВЧ канал;

Низкой стоимости при реализации;

Наличию современной элементной базы (интегральных микросхем).

Рисунок 6.1 – Структура системы с прямым расширением спектра

В соответствии с архитектурой и используемыми видами модуляции системы с расширенным спектром могут быть разделены на следующие основные группы.

С прямым расширением спектра на основе псевдослучайных последовательностей (ПСП), включая системы МДКРК,

С перестройкой рабочей частоты (с «прыгающей» частотой), включая системы МДКРК с медленной и быстрой перестройкой рабочей частоты,

Множественного доступа с расширенным спектром и контролем несущей (CSMA),

С перестройкой временного положения сигналов («прыгающим» временем),

С линейной частотной модуляцией сигналов (chip modulation),

Со смешанными методами расширения спектра.

Прямое расширение спектра с помощью псевдослучайных последовательностей

На рисунке 6.1 приведена концептуальная схема системы с прямым расширением спектра на основе псевдослучайных последовательностей (а - передатчик сигналов с PSK и с последующим спектра, б - передатчик с расширением спектра в полосе модулирующих частот, в - приемник). В первом модуляторе осуществляется фазовая манипуляция (PSK) сигнала промежуточной частоты двоичным цифровым сигналом передаваемого сообщения d(t) в формате без возвращения к нулю (NRZ) с частотой следования символов f b = 1/Т b .



В пределах одной соты системы подвижной радиосвязи, как правило, есть несколько абонентов, одновременно пользующихся связью, причем каждый из них использует одну и ту же несущую частоту fрч и занимает одну и ту же полосу частот Врч.

Процесс формирования сигналов с расширенным спектром в системах с многостанционным доступом происходит в два этапа: модуляция и расширение спектра (или вторичная модуляция посредством ПСП). Вторичная модуляция осуществляется с помощью идеальной операции перемножения g(t)s(t). При таком перемножении формируется амплитудно-модулированный двухполосный сигнал с подавленной несущей. Первый и второй модуляторы можно поменять местами без изменения потенциальных характеристик системы.

Сигнал g(t)s(t) с расширенным спектром преобразуется вверх до нужной радиочастоты. Хотя преобразование частоты вверх и вниз является для большинства систем практически необходимым процессом, все же этот этап не является определяющим. Поэтому в дальнейшем будем считать, что сигнал g(t)s(t) передается и принимается на промежуточной частоте, исключив из рассмотрения подсистемы преобразования частот вверх и вниз.

Таким образом, на вход приемника поступает сумма М независимых сигналов с расширенным спектром, занимающих одну и ту же полосу РЧ.

Концепция систем с расширенным спектром путем программной перестройки рабочей частоты во многом схожа с концепцией систем с прямым расширением спектра. Здесь генератор двоичной ПСП управляет синтезатором частот, с помощью которого осуществляется переход («перескок») с одной частоты на другую из множества доступных частот. Таким образом, здесь эффект расширения спектра достигается за счет псевдослучайной перестройки частоты несущей, значение которой выбирается из имеющихся частот f1,...,fN, где N может достигать значений несколько тысяч и более. Если скорость перестройки сообщений (скорость смены частот) превышает скорость передачи сообщений, то имеем систему с быстрой перестройкой частоты. Если скорость перестройки меньше скорости передачи сообщений, так что в интервале перестройки передается несколько битов, то имеем систему с медленной перестройкой частоты.

Если выбран ансамбль некоррелированных сигналов ПСП, то после операции сжатия спектра сохраняется лишь модулированный полезный сигнал. Все другие сигналы, являясь некоррелированными, сохраняют широкополосность и имеют ширину спектра, превышающую граничную полосу пропускания фильтра демодулятора. На рисунке 6.2 приведены упрощенные временные и спектральные диаграммы, качественно иллюстрирующие процессы расширения и сжатия спектра сигналов. В частности, в них отсутствует сигнал несущей.

Рисунок 6.2 - Диаграммы при расширении спектра

В системах с расширенным спектром путем перестройки рабочей частоты последняя сохраняется постоянной в течение каждого интервала перестройки, но изменяется скачком от интервала к интервалу. Частоты передачи формируются цифровым синтезатором частот, управляемым кодом («словами»), поступающим в последовательном либо параллельном виде и содержащим m двоичных символов (битов) Каждому m-битовому слову или его части соответствует одна из M = 2m частот. Хотя для осуществления перестройки частот имеется M = 2m, m = 2, 3, частот, но не все из них обязательно используются в конкретной системе. Системы с расширением спектра путем программной перестройки рабочей частоты подразделяются на системы с медленной, с быстрой и со средней скоростью перестройки.

В системах с медленной перестройкой скорость перестройки fh, меньше скорости передачи сообщений fb. Таким образом в интервале перестройки, прежде, чем осуществится переход на другую частоту, могут быть переданы два бита сообщения или более (в некоторых системах свыше 1000). В системах со средней скоростью перестройки скорость перестройки равна скорости передачи. Наибольшее распространение получили системы с быстрой и медленной перестройкой рабочей частоты.

Для синхронизации приемников при приеме сигналов с расширенным спектром может потребоваться три устройства синхронизации:

Фазовой синхронизации несущей (восстановления несущей);

Символьной синхронизации (восстановления тактовой частоты);

Временной синхронизации генераторов, формирующих кодовые или псевдослучайные последовательности.

Временная синхронизация обеспечивается в два этапа, в течение которых выполняются:

Поиск (первоначальная, грубая синхронизация);

Слежение (точная синхронизация).

На рисунке 6.3 изображены структурные схемы передающей и приемной частей системы с перестройкой частоты.

Рисунок 6.3 - Система с программной перестройкой частоты

В стандарте GSM применяется спектрально-эффективная гауссова частотная манипуляция с минимальным частотным сдвигом (GMSK). Манипуляция называется гауссовой потому, что последовательность ин­формационных битов до модулятора проходит через фильтр нижних час­тот (ФНЧ) с характеристикой Гаусса, что дает значительное уменьшение полосы частот излучаемого радиосигнала. Формирование GMSK радио­сигнала осуществляется таким образом, что на интервале одного инфор­мационного бита фаза несущей изменяется на 90°. Это наименее воз­можное изменение фазы, распознаваемое при данном типе модуляции. Непрерывное изменение фазы синусоидального сигнала дает в результате частотную модуляцию с дискретным изменением частоты. Применение фильтра Гаусса позволяет при дискретном изменении частоты получить «гладкие переходы». В стандарте GSM применяется GMSK-модуляция с величиной нормированной полосы ВТ = 0,3, где В - ширина полосы фильтра по уровню -3 дБ, Т - длительность 1 бита цифрового сообщения. Функциональная схема модулятора показана на рисунке 6.4.

Рисунок 6.4 - Функциональная схема модулятора

Основой формирователя GMSK-сигнала является квадратурный (1/Q) модулятор. Схема состоит из двух умножителей и одного сумматора. За­дача этой схемы заключается в том, чтобы обеспечить непрерывную точ­ную фазовую модуляцию. Один умножитель изменяет амплитуду синусоидального, а второй – косинусоидального колебания. Входной сигнал до умножителя разбивается на две квадратурные составляющие. Разложение происходит в двух обозначенных «sin» и «cos» блоках.

Диаграммы, иллюстрирующие формирование GMSK-сигнала, пока­заны на рисунке 4.9.

Модуляцию GMSK отличают следующие свойства, предпочтитель­ные для мобильной связи:

Постоянную по уровню огибающую, что позволяет использовать эффективные передающие устройства с усилителями мощности в режиме класса С;

Компактный спектр на выходе усилителя мощности передающего устройства, что обеспечивает низкий уровень внеполосного излу­чения;

Хорошие характеристики помехоустойчивости канала связи.

Рисунок 6.5 - Формирование GMSK-сигнала

Обработка речи. Обработка речи в стандарте GSM осуществляется с целью обеспече­ния высокого качества передаваемых сообщений и реализации дополни­тельных сервисных возможностей. Обработка речи осуществляется в рамках принятой системы преры­вистой передачи речи(Discontinuous Transmission - DTX), которая обес­печивает включение передатчика, когда пользователь начинает разговор, и отключает его в паузах и в конце разговора. DTX управляется детек­тором активности речи (Voice Activity Detector - VAD), который обес­печивает обнаружение и выделение интервалов передачи речи с шумом и шума без речи даже в тех случаях, когда уровень шума соизмерим с уровнем речи. В состав системы прерывистой передачи речи входит так­же устройство формирования комфортного шума, который включается и прослушивается в паузах речи, когда передатчик отключен. Экспери­ментально доказано, что отключение фонового шума на выходе прием­ника в паузах при отключении передатчика раздражает абонента и сни­жает разборчивость речи, поэтому применение комфортного шума в пау­зах считается необходимым.. DTX-процесс в приемнике предполагает интерполяцию фрагментов речи, потерянных из-за ошибок в канале.

Метод расширения спектра скачкообразной перестройкой частоты (FHSS – Frequency Hopping Spread Spectrum) основан на постоянной смене несущей в пределах широкого диапазона частот.

Частота несущей F1, …, FN случайным образом меняется через определенный период времени, называемый периодом отсечки (чип) , в соответствии с выбранным алгоритмом выработки псевдослучайной последовательности. На каждой частоте применяется модуляция (FSK или PSK). Передача на одной частоте ведётся в течение фиксированного интервала времени, в течение которого передаётся некоторая порция данных (Data). В начале каждого периода передачи для синхронизации приемника с передатчиком используются синхробиты, которые снижают полезную скорость передачи.

В зависимости от скорости изменения несущей различают 2 режима расширения спектра:

· медленное расширение спектра – за один период отсечки передается несколько бит;

· быстрое расширение спектра – один бит передается за несколько периодов отсечки, то есть повторяется несколько раз.

В первом случае период передачи данных меньше периода передачи чипа , во втором – больше.

Метод быстрого расширения спектра обеспечивает более надёжную передачу данных при наличии помех за счёт многократного повторения значения одного и того же бита на разных частотах, но более сложен в реализации, чем метод медленного расширения спектра.

Прямое последовательное расширение спектра

Метод прямого последовательного расширения спектра (DSSS – Direct Sequence Spread Spectrum) состоит в следующем.

Каждый «единичный» бит в передаваемых данных заменяется двоичной последовательностью из N бит, которая называется расширяющей последовательностью , а «нулевой» бит кодируется инверсным значением расширяющей последовательности. В этом случае тактовая скорость передачи увеличивается в N раз, следовательно, спектр сигнала также расширяется в N раз.

Зная выделенный для беспроводной передачи (линии связи) частотный диапазон, можно соответствующим образом выбрать скорость передачи данных и значение N , чтобы спектр сигнала заполнил весь диапазон.

Основная цель кодирования DSSS как и FHSS – повышение помехоустойчивости.

Чиповая скорость – скорость передачи результирующего кода.

Коэффициент расширения – количество битов N в расширяющей последовательности. Обычно N находится в интервале от 10 до 100. Чем больше N , тем больше спектр передаваемого сигнала.

DSSS в меньшей степени защищен от помех, чем метод быстрого расширения спектра.

Множественный доступ с кодовым разделением

Методы расширения спектра широко используются в сотовых сетях, в частности, при реализации метода доступа CDMA (Code Division Multiple Access) – множественный доступ с кодовым разделением . CDMA может использоваться совместно с FHSS, но в беспроводных сетях чаще с DSSS.

Каждый узел сети использует собственную расширяющую последовательность, которая выбирается так, чтобы принимающий узел мог выделить данные из суммарного сигнала.

Достоинство CDMA заключается в повышенной защищенности и скрытности передачи данных: не зная расширяющей последовательности, невозможно получить сигнал, а иногда и обнаружить его присутствие.

Технология WiFi. Технология WiМах. Беспроводные персональные сети. Технология Bluetooth. Технология ZigBee. Беспроводные сенсорные сети. Сравнение беспроводных технологий.

Технология WiFi

Технология беспроводных ЛВС (WLAN) определяется стеком протоколов IEEE 802.11, который описывает физический уровень и канальный уровень с двумя подуровнями: MAC и LLC.

На физическом уровне определены несколько вариантов спецификаций, которые различаются:

· используемым диапазоном частот;

· методом кодирования;

· скоростью передачи данных.

Варианты построения беспроводных ЛВС стандарта 802.11, получившего название WiFi.

IEEE 802.11 (вариант 1):

· среда передачи – ИК-излучение;

· передача в зоне прямой видимости;

· используются 3 варианта распространения излучения:

Ненаправленная антенна;

Отражение от потолка;

Фокусное направленное излучение («точка-точка»).

IEEE 802.11 (вариант 2):

· метод кодирования – FHSS: до 79 частотных диапазонов шириной

1 МГц, длительность каждого из которых составляет 400 мс (рис.3.49);

· при 2-х состояниях сигнала обеспечивается пропускная способность среды передачи в 1 Мбит/с, при 4-х – 2 Мбит/с.

IEEE 802.11 (вариант 3):

· среда передачи – микроволновый диапазон 2,4 ГГц;

· метод кодирования – DSSS c 11-битным кодом в качестве расширяющей последовательности: 10110111000.

IEEE 802.11a:

1) диапазон частот – 5 ГГц;

2) скорости передачи: 6, 9, 12, 18, 24, 36, 48, 54 Мбит/с;

3) метод кодирования – OFDM.

Недостатки:

· слишком дорогое оборудование;

· в некоторых странах частоты этого диапазона подлежат лицензированию.

IEEE 802.11b:

1) диапазон частот – 2,4 ГГц;

2) скорость передачи: до 11 Мбит/с;

3) метод кодирования – модернизированный DSSS.

IEEE 802.11g:

1) диапазон частот – 2,4 ГГц;

2) максимальная скорости передачи: до 54 Мбит/с;

3) метод кодирования – OFDM.

В сентябре 2009 года был утверждён стандарт IEEE 802.11n. Его применение позволит повысить скорость передачи данных практически вчетверо по сравнению с устройствами стандартов 802.11g. Теоретически 802.11n способен обеспечить скорость передачи данных до 600 Мбит/с. Радиус действия беспроводных сетей IEEE 802.11 – до 100 метров.

Технология WiМах

Технология беспроводного широкополосного доступа с высокой пропускной способностью WiMax представлена группой стандартов IEEE 802.16 и первоначально была предназначена для построения протяженных (до 50 км) беспроводных сетей, относящихся к классу региональных или городских сетей.

Стандарт IEEE 802.16 или IEEE 802.16-2001 (декабрь 2001 года), являющийся первым стандартом «точка-многоточка», был ориентирован на работу в спектре от 10 до 66 ГГц и, как следствие, требовал нахождения передатчика и приёмника в области прямой видимости, что является существенным недостатком, особенно в условиях города. Согласно описанным спецификациям, сеть 802.16 могла обслуживать до 60 клиентов со скоростью канала T-1 (1,554 Мбит/с).

Позднее появились стандарты IEEE 802.16a, IEEE 802.16-2004 и IEEE 802.16е (мобильный WiMax), в которых было снято требование прямой видимости между передатчиком и приёмником.

Основные параметры перечисленных стандартов технологии WiMax.

Рассмотрим основные отличия технологии WiМах от WiFi.

1. Малая мобильность. Первоначально стандарт разрабатывался для стационарной беспроводной связи на большие расстояния и предусматривал мобильность пользователей в пределах здания. Лишь в 2005 году был разработан стандарт IEEE 802.16e, ориентированный на мобильных пользователей. В настоящее время ведётся разработка новых спецификаций 802.16f и 802.16h для сетей доступа с поддержкой работы мобильных (подвижных) клиентов при скорости их движения до 300 км/ч.

2. Использование более качественных радиоприемников и передатчиков обусловливает более высокие затраты на построение сети. 3. Большие расстояния для передачи данных требуют решения ряда специфических проблем: формирование сигналов разной мощности, использование нескольких схем модуляции, проблемы защиты информации.

4. Большое число пользователей в одной ячейке.

5. Более высокая пропускная способность , предоставляемая пользователю.

6. Высокое качество обслуживания мультимедийного трафика.

Первоначально считалось, что IEEE 802.11 мобильный аналог Ethernet , 802.16 – беспроводной стационарный аналог кабельного телевидения . Однако появление и развитие технологии WiMax (IEEE 802.16e) для поддержки мобильных пользователей делает это утверждение спорным.


Министерство транспорта Российской Федерации
Государственное образовательное учреждение
Высшего профессионального образования
Волжская государственная академия водного транспорта

Кафедра информатики, систем управления и телекоммуникаций

Курсовая работа по теме:
«Модуляция с расширением спектра. Прямое расширение спектра»

Выполнил
студент группы Р-312
Аминов А.Р.

Проверил
Преображенский А.В.

Н.Новгород
2009г.

Модуляция с расширением спектра.
Повсеместное распространение беспроводных сетей, развитие инфраструктуры хот-спотов, появление мобильных технологий со встроенным беспроводным решением (Intel Centrino) привело к тому, что конечные пользователи (не говоря уже о корпоративных клиентах) стали обращать все большее внимание на беспроводные решения. Такие решения рассматриваются, прежде всего, как средство развертывания мобильных и стационарных беспроводных локальных сетей и средство оперативного доступа в Интернет. Однако конечный пользователь, не являющийся сетевым администратором, как правило, не слишком хорошо разбирается в сетевых технологиях, поэтому ему трудно сделать выбор при покупке беспроводного решения, особенно учитывая многообразие предлагаемых сегодня продуктов.
Бурное развитие технологии беспроводной связи привело к тому, что пользователи, не успев привыкнуть к одному стандарту, вынуждены переходить на другой, предлагающий еще более высокие скорости передачи. Речь, конечно же, идет о семействе протоколов беспроводной связи, известном как IEEE 802.11, куда входят следующие протоколы: 802.11, 802.11b, 802.11b+, 802.11a, 802.11g. В последнее время стали говорить и о расширении протокола 802.11g.
Различные типы беспроводных сетей отличаются друг от друга и радиусом действия, и поддерживаемыми скоростями соединения, и технологией кодирования данных. Так, стандарт IEEE 802.11b предусматривает максимальную скорость соединения 11 Мбит/с, стандарт IEEE 802.11b+ - 22 Мбит/с, стандарты IEEE 802.11g и 802.11a - 54 Мбит/с.
Будущее стандарта 802.11a довольно туманно. Наверняка в России и в Европе этот стандарт не получит широкого распространения, да и в США, где он сейчас используется, скорее всего, в ближайшее время произойдет переход на альтернативные стандарты. А вот новый стандарт 802.11g имеет значительные шансы завоевать признание во всем мире. Другое преимущество нового стандарта 802.11g заключается в том, что он полностью совместим со стандартами 802.11b и 802.11b+, то есть любое устройство, поддерживающее стандарт 802.11g, будет работать (правда, на меньших скоростях соединения) и в сетях стандарта 802.11b/b+, а устройство, поддерживающее стандарт 802.11b/b+ - в сетях стандарта 802.11g, хотя и с меньшей скоростью соединения.
Совместимость стандартов 802.11g и 802.11b/b+ обусловлена, во-первых, тем, что они предполагают использование одного и того же частотного диапазона, а во-вторых, что все режимы, предусмотренные в протоколах 802.11b/b+, реализованы и в стандарте 802.11g. Поэтому стандарт 802.11b/b+ можно рассматривать как подмножество стандарта 802.11g.
Физический уровень протокола 802.11
Обзор протоколов семейства 802.11b/g целесообразно начать именно с протокола 802.11, который, хотя уже и не встречается в чистом виде, в то же время является прародителем всех остальных протоколов. В стандарте 802.11, как и во всех остальных стандартах данного семейства, предусмотрено использование частотного диапазона от 2400 до 2483,5 МГц, то есть частотный диапазон шириной 83,5 МГц, который, как будет показано далее, разбит на несколько частотных подканалов.
Технология расширения спектра
В основе всех беспроводных протоколов семейства 802.11 лежит технология уширения спектра (Spread Spectrum, SS). Данная технология подразумевает, что первоначально узкополосный (в смысле ширины спектра) полезный информационный сигнал при передаче преобразуется таким образом, что его спектр оказывается значительно шире спектра первоначального сигнала. То есть спектр сигнала как бы «размазывается» по частотному диапазону. Одновременно с уширением спектра сигнала происходит и перераспределение спектральной энергетической плотности сигнала - энергия сигнала также «размазывается» по спектру. В результате максимальная мощность преобразованного сигнала оказывается значительно ниже мощности исходного сигнала. При этом уровень полезного информационного сигнала может в буквальном смысле сравниваться с уровнем естественного шума. В результате сигнал становится, в каком то смысле, «невидимым» - он просто теряется на уровне естественного шума.
Собственно, именно в изменении спектральной энергетической плотности сигнала и заключается идея уширения спектра. Дело в том, что если подходить к проблеме передачи данных традиционным способом, то есть так, как это делается в радиоэфире, где каждой радиостанции отводится свой диапазон вещания, то мы неизбежно столкнемся с проблемой, что в ограниченном радиодиапазоне, предназначенном для совместного использования, невозможно «уместить» всех желающих. Поэтому необходимо найти такой способ передачи информации, при котором пользователи могли бы сосуществовать в одном частотном диапазоне и при этом не мешать друг другу. Именно эту задачу и решает технология уширения спектра.
Преимущества систем с расширением спектра
- Высокая помехоустойчивость. При ограниченной полосе спектральной плотности помехи отношение сигнал /шум увеличивается в G p = П ш /П раз, где П –полоса исходного сигнала, П ш - полоса сигнала после расширения спектра, G p - коэффициент расширения спектра. Если спектр помехи равномерен (белый шум), отношение сигнал /шум не улучшается.
- Конфиденциальность связи. Сообщение нельзя прочитать, не зная алгоритма расширения спектра.
- Возможность одновременной передачи многих сообщений на одной несущей частоте в системе с кодовым разделением каналов (CDMA (англ. Code Division Multiple Access) - множественный доступ с кодовым разделением.
Каналы трафика при таком способе разделения среды создаются присвоением каждому пользователю отдельного числового кода, который распространяется по всей ширине полосы. Нет временного разделения, все абоненты постоянно используют всю ширину канала. Полоса частот одного канала очень широка, вещание абонентов накладывается друг на друга но, поскольку их коды отличаются, они могут быть дифференцированы.
Технология множественного доступа с кодовым разделением каналов известна давно. В СССР первая работа, посвящённая этой теме, была опубликована ещё в 1935 году Д. В. Агеевым
.)

- Возможность передачи маломощного сигнала. Энергия сигнала сохраняется высокой за счет увеличения длительности сигнала. Обеспечивается энергетическая скрытность связи. Сигнал не обнаруживается, а воспринимается как шум.
- Высокая разрешающая способность по времени (чем шире спектр, тем круче фронт сигнала). Момент начала сигнала определяется очень точно, что важно для систем измерения расстояния по времени прохождения сигнала и для синхронизации передатчика и приемника.
Наиболее распространенные методы расширения спектра
- Прямое расширение спектра (direct sequencing) с использованием двоичной псевдослучайной последовательности (ПСП), модулирующей сигнал. Ширина спектра ограничивается минимальной технически реализуемой длительностью элементарного символа ПСП. Спектр расширяется до десятков мегагерц.
- Скачкообразная перестройка несущей частоты (frequency hopping). Обычно используется М-арная частотная манипуляция. М символам соответствуют М частот, разнесенных друг от друга на интервал D f. Центральная частота f 0 этого диапазона изменяется скачками под управлением ПСП в полосе перестройки несколько раз за время передачи одного символа сообщения (быстрая перестройка) или с интервалом, равным длительности нескольких символов (медленная перестройка). Из-за скачков частоты трудно сохранить когерентность сигнала. Поэтому демодуляция обычно некогерентная. Для обеспечения ортогональности сигналов расстояние между частотами должно удовлетворять условию D f = m/ T s , m –целое число. Спектр может расширяться до нескольких гигагерц: коэффициент расширения спектра выше, чем при прямом расширении.
Прямое расширение спектра
При потенциальном кодировании информационные биты - логические нули и единицы - передаются прямоугольными импульсами напряжений. Прямоугольный импульс длительности T имеет спектр, ширина которого обратно пропорциональна длительности импульса. Поэтому чем меньше длительность информационного бита, тем больший спектр занимает такой сигнал.
Для преднамеренного уширения спектра первоначально узкополосного сигнала в технологии DSSS в каждый передаваемый информационный бит (логический 0 или 1) в буквальном смысле встраивается последовательность так называемых чипов. Если информационные биты - логические нули или единицы - при потенциальном кодировании информации можно представить в виде последовательности прямоугольных импульсов, то каждый отдельный чип - это тоже прямоугольный импульс, но его длительность в несколько раз меньше длительности информационного бита. Последовательность чипов представляет собой последовательность прямоугольных импульсов, то есть нулей и единиц, однако эти нули и единицы не являются информационными. Поскольку длительность одного чипа в n раз меньше длительности информационного бита, то и ширина спектра преобразованного сигнала будет в n-раз больше ширины спектра первоначального сигнала. При этом и амплитуда передаваемого сигнала уменьшится в n раз.
Чиповые последовательности, встраиваемые в информационные биты, называют шумоподобными кодами (PN-последовательности), что подчеркивает то обстоятельство, что результирующий сигнал становится шумоподобным и его трудно отличить от естественного шума.
Как уширить спектр сигнала и сделать его неотличимым от естественного шума, понятно. Для этого, в принципе, можно воспользоваться произвольной (случайной) чиповой последовательностью. Однако, возникает вопрос: а как такой сигнал принимать? Ведь если он становится шумоподобным, то выделить из него полезный информационный сигнал не так то просто, если вообще возможно. Оказывается, возможно, но для этого нужно соответствующим образом подобрать чиповую последовательность. Используемые для уширения спектра сигнала чиповые последовательности должны удовлетворять определенным требованиям автокорреляции. Под термином автокорреляции в математике подразумевают степень подобия функции самой себе в различные моменты времени. Если подобрать такую чиповую последовательность, для которой функция автокорреляции будет иметь резко выраженный пик лишь для одного момента времени, то такой информационный сигнал возможно будет выделить на уровне шума. Для этого в приемнике полученный сигнал умножается на ту же чиповую последовательность, то есть вычисляется автокорреляционная функция сигнала. В результате сигнал становится опять узкополосным, поэтому его фильтруют в узкой полосе частот и любая помеха, попадающая в полосу исходного широкополосного сигнала, после умножения на чиповую последовательность, наоборот, становится широкополосной и обрезается фильтрами, а в узкую информационную полосу попадает лишь часть помехи, по мощности значительно меньшая, чем помеха, действующая на входе приемника.
Основные требования к ПСП
- Непредсказуемость появления знаков 1 и 0, благодаря чему спектр сигнала становится равномерным, а определение алгоритма формирования ПСП по ее участку ограниченной длины – невозможным.
- Наличие большого набора разных ПСП одинаковой длины для построения систем с кодовым разделением каналов.
- Хорошие корреляционные свойства ПСП, описываемые функциями автокорреляции (ФАК) и взаимной корреляции (ФВК), периодическими и апериодическими.
Характеристики псевдослучайных последовательностей (ПСП)
Характеристиками ПСП являются функции автокорреляции (ФАК) и взаимной корреляции (ФВК), периодические и апериодические. ФАК и ФВК вычисляются подсчетом разности числа совпадающих и не совпадающих разрядов сравниваемых ПСП при сдвигах одной из них.
Периодические ФАК и ФВК
и т.д.................

При расширении спектра методом прямой последовательности (direct sequence spread spectrum - DSSS) после обработки исходного сигнала кодом расширения каждому исходному биту ставится в соответствие несколько битов передаваемого сигнала. Степень расширения спектра прямо пропорциональна количеству битов кода. Другими словами, 10-битовый код расширяет полосу частот сигнала в 10 раз больше, чем 1-битовый код.

Один из методов применения DSSS - комбинирование цифрового информа­ционного потока и битовой последовательности кода расширения с использова­нием исключающего ИЛИ. Операция исключающего ИЛИ выполняется согласно следующим правилам:

Пример такого комбинирования приводится на рис. 7.6. Отметим, что бит дан­ных, равный единице, инвертирует биты кода; если же бит данных равен нулю, биты кода расширения передаются без изменений. Комбинация двух последова­тельностей битов имеет такую же скорость передачи, как и последовательность кода расширения. Следовательно, полоса комбинированной последовательности больше полосы последовательности данных. В данном примере скорость переда­чи последовательности битов кода в четыре раза превышает аналогичный пара­метр для битов данных.

DSSS с использованием BPSK

Рассмотрим использование схемы DSSS на практике, предполагая применение модуляции BPSK. Для обозначения двоичных данных удобнее будет использо­вать не нуль и единицу, а "+1" и "−1" соответственно. Как было показано в уравнении (6.5), сигнал BPSK можно описать следующей формулой:

А - амплитуда сигнала;

f c - несущая частота;

d (t ) - дискретная функция, принимающая значение +1, если соответствую­щий бит потока данных равен 1, и −1, когда бит данных равен 0.

Рис. 7.6. Пример использования расширения спектра

методом прямой последовательности

Чтобы получить сигнал DSSS, необходимо умножить s d (t ) на функцию c (t ), которая соответствует псевдослучайной последовательности и принимает значе­ния −1 и +1:

При поступлении сигнала на приемник он еще раз умножается на c (t ). Посколь­ку c (t ) × c (t ) = 1, в результате умножения будет восстановлен исходный сигнал:

Формулу (7.5) можно интерпретировать двояко, откуда следуют две реали­зации описанного метода. Первая интерпретация - умножение c (t ) на d (t ) с по­следующим применением модуляции BPSK (именно такой подход рассматривал­ся выше). Можно также использовать альтернативный подход - модуляцию по схеме BPSK потока данных d (t ) с последующим умножением полученной функ­ции s d (t ) на c (t ).

Рис. 7.7. Система расширения спектра методом

прямой последовательности

Реализация второй трактовки приведена на рис. 7.7 Пример использования такого подхода изображен на рис. 7.8.

Рис. 7.8. Пример системы расширения спектра методом

прямой последователь­ности (модуляция BPSK )

Анализ производительности

Расширение спектра при использовании схемы DSSS определить довольно просто (рис. 7.9). В нашем примере ширина полосы одного бита информационного сиг­нала равна Т , что соответствует скорости передачи данных 1/T . Следовательно, в зависимости от кодировки ширина спектра сигнала будет составлять порядка 2/T . Подобным образом, спектр псевдослучайного сигнала равен 2/Т с . Получаю­щийся расширенный спектр изображен на рис. 7.9, в. Степень расширения пря­мо зависит от скорости передачи псевдослучайной последовательности.

Как и для схемы FSSS, представление об эффективности DSSS можно полу­чить, проанализировав устойчивость системы связи к подавлению. Предполо­жим, что намеренная помеха ставится на центральной частоте системы DSSS. Сигнал помех имеет следующий вид:

Полученный сигнал можно представить так:

s (t ) - переданный сигнал;

s j (t ) - сигнал намеренных помех;

n (t ) - аддитивный белый шум;

S j - мощность сигнала помех.

Рис. 7.9. Приблизительный спектр сигнала DSSS

Устройство сужения спектра в приемнике умножает s r (t ) на c (t ). Компонент сиг­нала, соответствующий намеренным помехам, можно записать в следующем виде:

Таким образом, имеем простое применение модуляции BPSK к несущему тону. Следовательно, мощность несущей S j распределена в полосе, ширина которой приблизительно равна 2/Т с . В то же время демодулятор BPSK (рис. 7.7), следую­щий за устройством сужения спектра, включает полосовой фильтр с шириной полосы 2/T , который согласован с данными BPSK. Значит, большая часть мощ­ности помех отфильтровывается. Хотя строго следует учитывать влияние множе­ства факторов, мощность намеренных помех, которые не были отсеяны полосо­вым фильтром, можно записать приблизительно:

Таким образом, использование расширенного спектра снизило мощность наме­ренных помех в (Т c /Т ) раз. Величина, обратная данному коэффициенту, выража­ет выигрыш в отношении сигнал/шум:

R c - скорость передачи данных кода расширения;

R - скорость передачи данных;

W d - ширина полосы сигнала;

W s - ширина полосы сигнала расширенного спектра.

Результат подобен полученному ранее для схемы FHSS (уравнение (7.3)).