Электронный трансформатор в блоке питания. Эксперименты с электронным трансформатором tashibra. Схема электронный трансформатор. Схема электронного трансформатора для галогенных ламп

Люминесцентные и галогенные лампы постепенно уходят в прошлое, уступая место светодиодным. В светильниках, где они применялись, остались ненужные электронные трансформаторы, отвечавшие за розжиг этих ламп. Кажется, что ненужному - место на помойке. Но это не так. Из этих трансформаторов можно собрать мощные блоки питания, которые смогут питать электроинструменты, светодиодные ленты и многое другое.

Устройство электронного трансформатора

Привычные нам массивные трансформаторы не так давно стали заменяться на электронные, которые отличаются дешевизной и компактностью. Размеры электронного трансформатора настолько малы, что его встраивают в корпуса компактных люминесцентных ламп (КЛЛ).

Все такие трансформаторы сделаны по одной схеме, различия между ними минимальны. В основе схемы лежит симметричный автогенератор, иначе называемый мультивибратором.

Состоят они из диодного моста, транзисторов и двух трансформаторов: согласующего и силового . Это основные части схемы, но далеко не все. Кроме них, в схему входят различные резисторы, конденсаторы и диоды.

Принципиальная схема электронного трансформатора.

В этой схеме постоянный ток из диодного моста поступает на транзисторы автогенератора, которые накачивают энергию в силовой трансформатор. Номиналы и тип всех радиодеталей подобраны так, чтобы на выходе получалось строго определённое напряжение.

Если включить такой трансформатор без нагрузки, то автогенератор не запустится и напряжения на выходе не будет.

Сборка по схеме своими руками

Электронный балласт можно купить в магазине или найти у себя в закромах, но самым интересным вариантом будет сборка электронного трансформатора своими руками. Собирается он довольно просто, а большинство необходимых деталей можно наковырять в сломанных блоках питания и в энергосберегающих лампах.

  • Необходимые компоненты:Диодный мост с обратным напряжением не ниже 400 В и током не менее 3 А или четыре диода с такими же характеристиками.
  • Предохранитель на 5 А.
  • Симметричный динистор DB3.
  • Резистор 500 кОм.
  • 2 резистора 2,2 Ом, 0,5 Вт.
  • 2 биполярных транзистора MJE13009.
  • 3 плёночных конденсатора 600 В, 100 нФ.
  • 2 тороидальных сердечника.
  • Провод с лаковым покрытием 0,5 мм².
  • Провод в обычной изоляции 2,5 мм².
  • Радиатор для транзисторов.
  • Макетная плата.

Начинается все с макетной платы, на которую вы будете устанавливать все радиокомпоненты. На рынке можно купить два вида плат - с односторонней металлизацией на коричневом стеклотекстолите.

И с двусторонней сквозной, на зелёном.

От выбора платы зависит, сколько времени и сил вы потратите на сборку проекта.

Коричневые платы - отвратительного качества. Металлизация на них выполнена настолько тонким слоем, что в некоторых местах на ней видны разрывы . Припоем она смачивается плохо, даже если использовать хороший флюс. А все, что удалось припаять - отрывается вместе с металлизацией при малейшем усилии.

Зелёные - стоят в полтора-два раза дороже, но зато с качеством все в порядке. Металлизация на них с толщиной проблем не имеет. Все отверстия в плате залужены на производстве, благодаря чему медь не окисляется и проблем при пайке не возникает.

Найти и купить эти макетки можно как в ближайшем радиомагазине, так и на алиэкспрессе. В Китае они стоят в два раза дешевле, но доставки придётся подождать.

Радиодетали выбирайте с длинными выводами, они вам пригодятся при монтаже схемы. Если вы собираетесь использовать бывшие в употреблении детали, то обязательно проверяйте их работоспособность и отсутствие внешних повреждений.

Единственная деталь, которую вам придётся сделать самим - это трансформатор.

Согласующий нужно наматывать тонким проводом. Количество витков в каждой обмотке:

  • I - 7 витков.
  • II - 7.
  • III - 3.

Не забывайте фиксировать обмотки скотчем, иначе они расползутся.

Силовой трансформатор состоит всего из двух обмоток. Первичную наматывайте проводом 0,5мм², а вторичную - 2,5мм². Первичка и вторичка состоят из 90 и 12 витков соответственно.

Для пайки лучше не использовать «дедовские» паяльники - ими запросто можно сжечь чувствительные к температуре радиоэлементы. Возьмите лучше паяльник с регулировкой мощности, они не перегреваются, в отличие от первых.

ранзисторы заранее установите на радиаторы. Делать это на уже собранной плате - крайне неудобно. Собирать схему нужно от маленьких деталей к большим. Если вы сначала установите большие, то они будут мешаться при пайке маленьких. Учитывайте это.

При сборке смотрите на принципиальную схему, все соединения радиоэлементов должны соответствовать ей. Просуньте выводы деталей в отверстия на плате и согните их в нужном направлении. Если длины не хватает, удлиняйте их проводом. Трансформаторы после пайки приклейте к плате эпоксидной смолой.

После сборки подключите к выводам устройства нагрузку и убедитесь в том, что оно работает.

Переделка в блок питания

Случается так, что аккумуляторы электроинструмента выходят из строя, а возможности купить новый нет. В таком случае поможет адаптер в виде блока питания. Из электронного трансформатора после небольшой доработки можно собрать такой переходник.

Детали, которые понадобятся для переделки:

  • Терморезистор NTC 4 Ом.
  • Конденсатор 100 мкФ, 400 В.
  • Конденсатор 100 мкФ, 63В.
  • Плёночный конденсатор 100 нФ.
  • 2 резистора 6,8 Ом, 5 Вт.
  • Резистор 500 Ом, 2 Вт.
  • 4 диода КД213Б.
  • Радиатор для диодов.
  • Тороидальный сердечник.
  • Провод сечением 1,2 мм².
  • Кусочек монтажной платы.

Перед работой проверьте, вдруг вы забыли какую-нибудь деталь. Если все детали на месте, начинайте переделку электронного трансформатора в блок питания.

К выходу диодного моста подпаяйте конденсатор 400 В, 100 мкФ. Для уменьшения зарядного тока конденсатора впаяйте терморезистор в разрыв силового провода. Если вы забудете это сделать, при первом же включении в сеть у вас сгорит диодный мост.

Отсоедините вторую обмотку согласующего трансформатора и замените её перемычкой. Добавьте на обоих трансформаторах по одной обмотке. На согласующем сделайте один виток, на силовом - два. Соедините обмотки между собой, впаяв в разрыв провода два параллельно соединённых резистора на 6,8 Ом.

Для изготовления дросселя намотайте на сердечник 24 витка провода 1,2 мм² и закрепите его скотчем. Затем на макетной плате соберите по схеме оставшиеся радиодетали и подключите сборку к основной схеме. Не забудьте установить диоды на радиатор , при работе под нагрузкой они сильно греются.

Закрепите всю конструкцию в любом подходящем корпусе и блок питания можно считать собранным.

После окончательной сборки включите устройство в сеть и проверьте его работу. Оно должно выдавать напряжение в 12 вольт. Если блок питания их выдаёт - вы со своей задачей справились на отлично. Если он не заработал, проверьте, вдруг вы взяли нерабочий трансформатор.

Думаю, что достоинства этого трансформатора оценили уже многие из тех, кто когда-либо занимался проблемами питания различных электронных конструкций. А достоинств у этого электронного трансформатора - не мало. Малый вес и габариты (как и у всех аналогичных схем), простота переделки под собственные нужды, наличие экранирующего корпуса, невысокая стоимость и относительная надежность (по крайней мере, если не допускать экстремальных режимов и КЗ, изделие, выполненное по аналогичной схеме, способно проработать долгие годы).

Диапазон применения блоков питания на базе "Tasсhibra" может быть весьма широким, сопоставимым с применением обычных трансформаторов.

Применение оправдано в случаях дефицита времени, средств, отсутсвия необходимости стабилизации.
Ну, что, - поэксперемтируем? Сразу оговорюсь, что целью экспериментов являлась проверка цепи запуска "Tasсhibra" при различных нагрузках, частотах и применении различных трансформаторов. Так же хотелось подобрать оптимальные номиналы компонентов цепи ПОС и проверить температурные режимы компонентов схемы при работе на различные нагрузки с учетом использования корпуса "Tasсhibra" в качестве радиатора.

Схема ЭТ Taschibra (Ташибра, Tashibra)

Несмотря на большое количество опубликованных схем электронного трансформатора, не поленюсь еще раз выложить ее на обозрение. Смотрим рис1, иллюстрирующий начинку "Tashibra".

Исключён фрагмент. Наш журнал существует на пожертвования читателей. Полный вариант этой статьи доступен только

Схема справедлива для ЭТ "Tashibra" 60-150Вт. Издевательство же производилось на ЭТ 150Вт. Предполагается, однако, что ввиду идентичности схем, результаты экспериментов с легкостью можно проецировать на экземпляры как с меньшей, так и с большей мощностью.

И еще раз напомню, чего же не хватает "Tashibra" для полноценного блока питания.
1. Отсутствие входного сглаживающего фильтра (он же - противопомеховый, предотвращающий попадание продуктов преобразования в сеть),
2. Токовая ПОС, допускающая возбуждение преобразователя и его нормальную работу лишь при наличии определенного тока нагрузки,
3. Отсутствие выходного выпрямителя,
4. Отсутствие элементов выходного фильтра.

Попробуем исправить все перечисленные недостатки "Tasсhibra" и попытаемся добиться его приемлемой работы с желаемыми выходными характеристиками. Для начала даже не будем вскрывать корпус электронного трансформатора, а просто добавим недостающие элементы...

1. Входной фильтр: конденсаторы С`1, C`2 с симметричным двухобмоточным дросселем (трансформатором) T`1
2. диодный мост VDS`1 со сглаживающим конденсатором C`3 и резистором R`1 для защиты моста от зарядного тока конденсатора.

Сглаживающий конденсатор обычно выбирается из расчета 1,0 - 1,5мкФ на ватт мощности, а параллельно конденсатору следует подключить разрядный резистор сопротивлением 300-500кОм для безопасности (прикосновение к выводам заряженного относительно высоким напряжением конденсатора - не очень приятно).
Резистор R`1 можно заменить термистором 5-15Ом/1-5А. Такая замена в меньшей степени снизит КПД трансформатора.

На выходе ЭТ, как показано в схеме на рис3, подсоединим цепь из диода VD`1, конденсаторов C`4-C`5 и дросселя L1, включенного между ними, - для получения фильтрованного постоянного напряжения на выходе "пациента". При этом, на полистироловый конденсатор, размещенный непосредственно за диодом, приходится основная доля поглощения продуктов преобразования после выпрямления. Предполагается, что электролитический конденсатор, "спрятанный" за индуктивностью дросселя, будет выполнять лишь свои прямые функции, предотвращая "провал" напряжения при пиковой мощности подключенного к ЭТ устройства. Но и параллельно ему рекомендуется установить неэлектролитический конденсатор.

После добавления входной цепи в работе электронного трансформатора произошли изменения: амплитуда выходных импульсов (до диода VD`1) несколько возросла за счет повышения напряжения на входе устройства за счет добавления C`3 и модуляция частотой 50Гц уже практически отсутствует. Это - при расчетной для ЭТ нагрузке.
Однако этого недостаточно. "Tashibra" не желает запускаться без существенного тока нагрузки.

Установка на выходе преобразователя нагрузочных резисторов для возникновения какого-либо минимального значения тока, способного запустить преобразователь, лишь снижает общий КПД устройства. Запуск при токе нагрузки около 100мА производится на очень низкой частоте, которую достаточно сложно будет отфильтровать, если блок питания предполагается для совместного применения с УМЗЧ и другим аудио-оборудованием с небольшим током потребления в режиме отсутствия сигнала, например. Амплитуда импульсов при этом также - меньше, чем при полной нагрузке.

Изменение частоты в режимах различной мощности - довольно сильное: от пары до нескольких десятков килогерц. Это обстоятельство накладывает существенные ограничения на использование "Tashibra" в таком (пока еще) виде при работе со многими устройствами.

Но - продолжим. Встречались предложения подключения дополнительного трансформатора к выходу ЭТ, как это показано, например, на рис2.

Предполагалось, что первичная обмотка дополнительного трансформатора способна создать ток, достаточный для нормальной работы базовой схемы ЭТ. Предложение, однако, заманчиво лишь тем, что не разбирая ЭТ, с помощью дополнительного трансформатора можно создать набор необходимых (по своему вкусу) напряжений. На самом деле тока холостого хода дополнительного трансформатора недостаточно для запуска ЭТ. Попытки увеличения тока (вроде лампочки на 6,3ВХ0,3А, подключенной к дополнительной обмотке), способного обеспечить НОРМАЛЬНУЮ работу ЭТ, приводили лишь к запуску преобразователя и зажиганию лампочки.

Но, быть может, кого-то заинтересует и этот результат, т.к. подключение дополнительного трансформатора справедливо и во многих других случаях для решения множества задач. Так, например, дополнительный трансформатор можно использовать совместно со старым (но рабочим) компьютерным БП, способного обеспечить значительную мощность на выходе, но имеющего ограниченный (зато - стабилизированный) набор напряжений.

Можно было бы и далее продолжать искать истину в шаманстве вокруг "Tashibra", однако, я счел для себя эту тему исчерпанной, т.к. для достижения необходимого результата (устойчивый запуск и выход на рабочий режим при отсутствии нагрузки, а, значит, и - высокий КПД; небольшое изменение частоты при работе БП от минимальной до максимальной мощности и устойчивый запуск при максимальной нагрузке) гораздо эффективней - влезть внутрь "Tashibra" и произвести все необходимые изменения в схеме самого ЭТ таким образом, как это показано на рис 4.
Тем более, чт ос полсотни подобных схем мною было собрано еще во времена эры компьютеров "Спектрум" (именно для этих компьютеров). Различный УМЗЧ, запитанные аналогичными БП, где-то работают и сейчас. БП, выполненные по этой схеме, проявили себя с наилучшей стороны, работая, будучи собранными из самых различных комплектующих и в различных вариантах.

Переделываем? Конечно!

Тем более, что это совсем не сложно.

Выпаиваем трансформатор. Разогреваем его для удобства разборки, чтобы перемотать вторичную обмотку для получения желаемых выходных параметров так, как показано на этом фото или с помощью любых других технологий.


В данном случае трансформатор выпаян лишь для того, чтобы поинтересоваться его моточными данными (кстати: Ш-образный магнитопровод с круглым керном, стандартных для компьютерных БП габаритов с 90 витками первичной обмотки, намотанными в 3 слоя проводом диаметром 0,65мм и 7-ю витками вторичной обмотки с впятеро сложенным проводом диаметром приблизительно 1,1мм; все это без малейшей межслойной и межобмоточной изоляции - только лак) и освободить место для другого трансформатора.

Для экспериментов мне было проще использовать кольцевые магнитопроводы. Занимают меньше места на плате, что дает (при необходимости) возможность использования дополнительных компонентов в объеме корпуса. В данном случае использовалась пара ферритовых колец с внешним, внутренним диаметрами и высотой, соответственно 32Х20Х6мм, сложенных вдвое (без склеивания) - Н2000-НМ1. 90 витков первички (диаметр провода - 0,65мм) и 2Х12 (1,2мм) витков вторички с необходимой межобмоточной изоляцией.

Обмотка связи содержит 1 виток монтажного провода диаметром 0,35мм. Все обмотки наматываются в порядке, соответствующем нумерации обмоток. Изоляция самого магнитопровода - обязательна. В данном случае магнитопровод обмотан двумя слоями изоленты, надежно, кстати, фиксируя сложенные кольца.

Перед установкой трансформатора на плату ЭТ, выпаиваем токовую обмотку коммутирующего трансформатора и используем ее в качестве перемычки, запаяв туда же, но уже не пропуская через окно кольца трансформатора.

Устанавливаем намотанный трансформатор Tr2 на плату, запаяв выводы в соответствии со схемой на рис 4. и пропускаем провод обмотки III в окно кольца коммутирующего трансформатора. Используя жесткость провода, образуем подобие геометрически замкнутой окружности и виток обратной связи готов. В разрыв монтажного провода, образующего обмотки III обоих (коммутирующего и силового) трансформаторов, припаиваем достаточно мощный резистор (>1Вт) сопротивлением 3-10 Ом.

На схеме в рис 4 штатные диоды ЭТ не используются. Их следует удалить, как, впрочем, и резистор R1 в целях повышения КПД блока в целом. Но можно и пренебречь несколькими процентами КПД и оставить перечисленные детали на плате. По крайней мере, в момент проведения экспериментов с ЭТ, эти детали оставались на плате. Резисторы, установленные базовых цепях транзисторов следует оставить - они выполняют функции ограничения тока базы при запуске преобразователя, облегчая его работу на емкостную нагрузку.

Транзисторы непременно следует установить на радиаторы через изолирующие теплопроводящие прокладки (повзаимствованные, например, у неисправного компьютерного БП), предотвратив, тем самым их случайный мгновенный разогрев и обеспечив некоторую собственную безопасность в случае прикосновения к радиатору во время работы устройства.

Кстати, электрокартон, используемый в ЭТ для изоляции транзисторов и платы от корпуса, не является теплопроводным. Поэтому при "упаковке" готовой схемы БП в штатный корпус, между транзисторами и корпусом следует установить именно такие прокладки. Лишь в этом случае будет обеспечен хоть какой-то теплоотвод. При использовании преобразователя с мощностями свыше 100Вт на корпус устройства необходимо установить дополнительный радиатор. Но это, так, - на будущее.

А пока, закончив монтаж схемы, выполним еще один пункт безопасности, включив его вход последовательно через лампу накаливания мощностью 150-200 Вт. Лампа, в случае нештатной ситуации (КЗ, например) ограничит ток через конструкцию до безопасной величины и в худшем случае создаст дополнительное освещение рабочего пространства.

В лучшем случае, при некотрой наблюдательности лампой можно пользоваться, как индикатором, например, - сквозного тока. Так, слабое (или несколько более интенсивное) свечение нити лампы при ненагруженном или слабо нагруженном преобразователе, будет свидетельствовать о наличии сквозного тока. Подтверждением может послужить температура ключевых элементов - разогрев в режиме сквозного тока будет довольно быстрым.
При работе исправного преобразователя видимое на фоне дневного света свечение нити 200-ваттной лампы проявится лишь на пороге 20-35 Вт.

Первый запуск

Итак, все готово для первого пуска переделанной схемы "Tashibra". Включаем для начала - без нагрузки, но не забываем о предварительно подключенном вольтметре на выход преобразователя и осциллографе. При правильно сфазированных обмотках обратной связи, преобразователь должен запуститься без проблем.

Если запуска не произошло, то провод, пропущенный в окно коммутирующего трансформатора (отпаяв его предварительно от резистора R5), пропускаем с другой стороны, придав ему, опять же, вид законченного витка. Подпаиваем провод к R5. Вновь подаем питание на преобразователь. Не помогло? Ищите ошибки в монтаже: КЗ, "непропаи", ошибочно установленные номиналы.

При запуске исправного преобразователя с указанными моточными данными, на дисплее осциллографа, подсоединенного к вторичной обмотке трансформатора Tr2 (в моем случае - к половине обмотки) будет отображена неизменяющаяся во времени последовательность четких прямоугольных импульсов. Частота преобразования подбирается резистором R5 и в моем случае при R5=5,1 Ohm, частота ненагруженного преобразователя составила 18 кГц.

При нагрузке 20 Ом - 20,5 кГц. При нагрузке 12 Ом - 22,3 кГц. Нагрузка подсоединялась непосредственно к контролируемой приборами обмотке трансформатора с действующим значением напряжения 17,5 В. Расчетное значение напряжения было несколько иным (20 В), но выяснилось, что вместо номинала 5,1 Ом, сопротивление установленного на плате R1=51 Ом. Будьте внимательны к подобным сюрпризам от китайсикх товарищей.

Впрочем, я счел возможность продолжить эксперименты без замены этого резистора, несмотря на его существенный, но терпимый нагрев. При отдаваемой преобразователем мощности в нагрузку около 25 Вт, мощность, рассеиваемая на этом резисторе не превышала 0,4 Вт.

Что же касается потенциальной мощности БП, то при частоте 20кГц установленный трансформатор сможет отдать в нагрузку не более 60-65Вт.

Попробуем частоту повысить. При включении резистора (R5) сопротивлением 8,2 Ом, частота преобразователя без нагрузки возросла до 38,5 кГц, с нагрузкой 12 Ом - 41,8 кГц.

При такой частоте преобразования с имеющимся силовым трансформатором можно смело обслужить нагрузку мощностью до 120Вт.
С сопротивлениями в цепи ПОС можно экспериментировать и дальше, добиваясь необходимого значения частоты, имея ввиду, однако, что слишком большое сопротивление R5 может приводить к срывам генерации и нестабильному запуску преобразователя. При изменении параметров ПОС преобразователя, следует контролировать ток, проходящий через ключи преобразователя.

Можно эксперементировать так же и с обмотками ПОС обоих трансформаторов на свой страх и риск. При этом следует предварительно произвести расчеты количества витков коммутирующего трансформатора по формулам, размещенным на страничке //interlavka.narod.ru/stats/Blokpit02.htm, например, или с помощью оной из программ г-на Москатова, размещенных на страничке его сайта //www.moskatov.narod.ru/Design_tools_pulse_transformers.html.

Усовершенствование Tasсhibra - конденсатор в ПОС вместо резистора!


Можно избежать нагрева резистора R5, заменив его... конденсатором. Цепь ПОС при этом безусловно пробретает некоторые резонансные свойства, но каких либо ухудшений в работе БП не проявляется. Более того, конденсатор, установленный взамен резистора, нагревается значительно меньше, чем замененный резистор. Так, частота при установленном конденсаторе емкостью 220nF, возросла до 86,5кГц (без нагрузки) и составила при работе на нагрузку 88,1кГц.


Запуск и работа преобразователя оставались такими же стабильными, как и в случае с применением резистора в цепи ПОС. Заметим, что потенциальная мощность БП пи такой частоте возрастает до 220 Вт (минимально).
Мощность трансформатора: значения - приблизительны, с определенными допущениями, но не завышены.

C детства - музыка и электро/радио-техника. Перепаял множество схем самых различных по разным поводам и просто, - для интереса, - и своих, и чужих.

За 18 лет работы в Северо-Западном Телекоме изготовил много различных стендов для проверки различного ремонтируемого оборудования.
Сконструировал несколько, различных по функционалу и элементной базе, цифровых измерителей длительности импульсов.

Более 30-ти рацпредложений по модернизации узлов различного профильного оборудования, в т.ч. - электропитающего. С давних пор все больше занимаюсь силовой автоматикой и электроникой.

Почему я здесь? Да потому, что здесь все - такие же, как я. Здесь много для меня интересного, поскольку я не силен в аудио-технике, а хотелось бы иметь больший опыт именно в этом направлении.

Читательское голосование

Статью одобрили 102 читателя.

Для участия в голосовании зарегистрируйтесь и войдите на сайт с вашими логином и паролем.

Недавно в магазине на глаза попался электронный трансформатор для галогенных ламп. Стоит такой трансформатор копейки - всего 2,5$, что в разы дешевле стоимости используемых в нем компонентов. Блок был куплен для опытов. Как позже оказалось, он не имел защиту и при КЗ случился настоящий взрыв... Трансформатор был довольно мощным (150 Ватт), поэтому на входе был установлен предохранитель, который буквально лопнул. После проверки, оказалось, что половина компонентов сгорело. Ремонт обойдется дорого, да и незачем тратить нервы и время, лучше купить новый. На следующий день были куплены сразу три трансформатора на 50, 105 и 150 ватт.

Планировалось доработать блок, поскольку это был ИБП - без каких-либо фильтров и защит.

После доработки должен был получиться мощный ИБП, основная особенность которого - компактность.
Для начала блок был снабжен сетевым фильтром.

Дроссель был выпаян из блока питания DVD проигрывателя, состоит из двух идентичных обмоток, каждая содержит по 35 витков провода 0.3мм. Только проходя через фильтр, напряжение подается на основную схему. Для сглаживания НЧ помех использовались конденсаторы на 0.1 мкФ (подобрать с напряжением 250-400 вольт). Светодиод показывает наличие сетевого напряжения.

Регулятор напряжения

Была использована схема с применением всего одного транзистора. Эта самая простая схема из всех существующих, содержит пару компонентов и работает очень хорошо. Недостаток схемы - перегрев транзистора при больших нагрузках, но все не так уж и страшно. В схеме можно использовать любые мощные биполярные НЧ транзисторы обратной проводимости - КТ803,805,819,825,827 - рекомендую использовать последние три. Подстроечник можно брать с сопротивлением 1...6.8к, дополнительный защитный резистор берем с мощностью 0,5-1 Ватт.
Регулятор готов, идем дальше.

Защита

Еще одна простая схема, по сути это защита от переплюсовки. Реле буквально любое на 10-15 Ампер. Диод тоже можно применить любой выпрямительный, с током 1 ампер и более (отлично справляется широко применяемый 1N4007). Светодиод сигнализирует о неправильной полярности. Эта система отключает напряжение, если на выходе КЗ или неправильно подключено проверяемое устройство. БП можно использовать для проверки работоспособности самодельных УНЧ, преобразователей, автомагнитол и т.п., при этом не нужно боятся, что вдруг перепутаете полярность питания.

В дальнейшем мы рассмотрим еще несколько простых переделок электронного трансформатора, ну а пока у нас есть простой, компактный и мощный ИБП, который можно использовать в качестве лабораторного блока для начинающего.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Т1 Биполярный транзистор

КТ827А

1 В блокнот
VD1 Выпрямительный диод

1N4007

1 В блокнот
Диодный мост 1 В блокнот
С1, С2 Конденсатор 0.1 мкФ 2 В блокнот
С3 Конденсатор 0.22 мкФ 1 В блокнот
С4-С5 Электролитический конденсатор 3300 мкФ 2 В блокнот
R2 Резистор

480 Ом

1 В блокнот
R3 Переменный резистор 1 кОм 1 В блокнот
R4 Резистор

2.2 кОм

1 В блокнот
R5 Резистор

На сегодняшний день, электромеханики достаточно редко занимаются починкой электронных трансформаторов. В большинстве случаев, я и сам не очень заморачиваюсь тем, чтобы потрудиться над реанимацией подобных устройств, просто потому что, обычно покупка нового электронного трансформатора обходится куда дешевле, чем ремонт старого. Однако, в обратной ситуации — почему бы и не потрудиться экономии ради. К тому же не у всех есть возможность добраться до специализированного магазина, чтобы подыскать там замену, или обратиться в мастерскую. По этой причине, любому радиолюбителю нужно уметь и знать, как производится проверка и ремонт импульсных (электронных) трансформаторов в домашних условиях, какие могут возникнуть неоднозначные моменты и как их разрешить.

Ввиду того, что не все имеют обширный объём знаний по теме, постараюсь представить всю имеющуюся информацию максимально доступно.

Немного о трансформаторах

Рис.1: Трансформатор.

Прежде, чем приступить к основной части, сделаю небольшое напоминание о том, что же такое электронный трансформатор и для чего он предназначен. Трансформатор используется для преобразования одной переменной напряжения в другую (например, 220 вольт в 12 вольт). Это свойство электронного трансформатора очень широко используется в радиоэлектронике. Существуют однофазные (ток течёт по двум проводам – фаза и «0») и трёхфазные (ток течёт по четырём проводам – три фазы и «0») трансформаторы. Основным значимым моментом при использовании электронного трансформатора является то, что при понижении напряжения сила тока в трансформаторе увеличивается.

У трансформатора имеется как минимум одна первичная и одна вторичная обмотка. Питающее напряжение подключается на первичную обмотку, ко вторичной обмотке подключается нагрузка, либо снимается выходное напряжение. В понижающих трансформаторах провод первичной обмотки всегда имеет меньшее сечение, чем провод вторичной. Это позволяет увеличить количество витков первичной обмотки и как следствие её сопротивление. То есть при проверке мультиметром первичная обмотка показывает сопротивление в разы большее, чем вторичная. Если же по какой-то причине диаметр провода вторичной обмотки будет небольшим, то по закону Джоуля-Лэнса вторичная обмотка перегреется и спалит весь трансформатор. Неисправность трансформатора может заключаться в обрыве и или КЗ (коротком замыкании) обмоток. При обрыве мультиметр показывает единицу на сопротивлении.

Как проверять электронные трансформаторы?

На самом деле, чтобы разобраться с причиной поломки не нужно обладать огромным багажом знаний, достаточно иметь под рукой мультиметр (стандартный китайский, как на рисунке №2) и знать, какие цифры должен выдавать на выходе каждый из компонентов (конденсатор, диод и т.д.).

Рис 2: Мультиметр.

Мультиметр может измерить постоянное, переменное напряжение, сопротивление. Также он может работать в режиме прозвонки. Желательно, чтобы щуп мультиметра был обмотан скотчем, (как на рисунке №2), это убережёт его от обрывов.

Чтобы правильно производить прозвонку различных элементов трансформера рекомендую всё-таки выпаивать их (многие пытаются обойтись без этого) и исследовать отдельно, поскольку в противном случае показания могут быть неточными.

Диоды

Нельзя забывать, что диоды прозваниваются только в одну сторону. Для этого мультиметр устанавливается в режим прозвонки, красный щуп прикладывается к плюсу, чёрный к минусу. Если всё в норме, то прибор издаёт характерный звук. При наложении щупов на противоположные полюса не должно происходит вообще ничего, а если это не так, то можно диагностировать пробой диода.

Транзисторы

При проверке транзисторов, их также нужно выпаивать и прозванивать переходы база-эмиттер, база-коллектор, выявляя их проходимость в одну, и в другую сторону. Обычно, роль коллектора в транзисторе выполняет задняя железная часть.

Обмотка

Нельзя забывать проверять обмотку, как первичную, так и вторичную. Если возникают проблемы с определением того, где первичная обмотка, а где вторичная, то помните, что первичная обмотка даёт большее сопротивление.

Конденсаторы (радиаторы)

Ёмкость конденсатора измеряется в фарадах (пикофарадах, микрофарадах). Для его исследования тоже используется мультиметр, на котором выставляется сопротивление в 2000 кОм. Положительный щуп прикладывается к минусу конденсатора, отрицательный к плюсу. На экране должны появляться всё возрастающие цифры вплоть до почти двух тысяч, которые сменяются единицей, что расшифровывается как бесконечное сопротивление. Это может свидетельствовать об исправности конденсатора, но лишь в отношении его способности накапливать заряд.

Ещё один момент: если в процессе прозвонки возникла путаница с тем, где расположен «вход», а где «выход» трансформатора, то нужно просто перевернуть плату и на обратной стороне на одном конце платы вы увидите небольшую маркировку «SEC» (второй), которой обозначается выход, а на другом «PRI» (первый) — вход.

А также, не забывайте, что электронные трансформаторы нельзя запускать без загрузки! Это очень важно.

Ремонт электронного трансформатора

Пример 1

Возможность попрактиковаться в починке трансформатора представилась не так давно, когда мне принесли электронный трансформатор от потолочной люстры (напряжение — 12 вольт). Люстра рассчитана на 9 лампочек, каждая по 20 ватт (в сумме – 180 ватт). На упаковке от трансформатора значилось также: 180 ватт.А вот пометка на плате гласила: 160 ватт. Страна производитель – конечно же,Китай. Аналогичный электронный трансформатор стоит не более 3$, и это на самом деле совсем немного, если сравнивать со стоимостью остальных компонентов устройства, в котором он был задействован.

В полученном мной электронном трансформаторе сгорела пара ключей на биполярных транзисторах (модель: 13009).

Рабочая схема стандартная двухтактная, на месте выходного транзистора поставлен инвертор ТОР(Thor), у которого вторичная обмотка состоит из 6-ти витков, а переменный ток сразу же перенаправляется на выход, то есть к лампам.

Такие блоки питания обладают весьма значимым недостатком: отсутствует защита против короткого замыкания на выходе. Даже при секундном замыкании выходной обмотки, можно ожидать весьма впечатляющего взрыва схемы. Поэтому рисковать подобным образом и замыкать вторичную обмотку крайне не рекомендуется. В целом, именно по этой причине радиолюбители не очень любят связываться с электронными трансформаторами подобного типа. Впрочем, некоторые наоборот пытаются их самостоятельно доработать, что, на мой взгляд, весьма неплохо.

Но вернёмся к делу: поскольку наблюдалось потемнение платы прямо под ключами, то не приходилось сомневаться, что они вышли из строя именно из-за перегрева. Тем более, что радиаторы не слишком активно охлаждают заполненную множеством деталей коробочку корпуса, да ещё и прикрываются картонкой. Хотя, если судить по исходным данным, также имела место перегрузка в 20 ватт.

Из-за того, что нагрузка превышает возможности блока питания, достижение номинальной мощности практически равнозначно выходу из строя. Те более, что в идеале, с расчётом на долговременное функционирование, мощность БП должна быть не меньше, а вдвое больше необходимого. Вот такая она китайская электроника. Снизить уровень нагрузки, сняв несколько лампочек, не представлялось возможным. Поэтому единственный подходящий, на мой взгляд, вариант исправления ситуации заключался в наращивании теплоотводов.

Чтобы подтвердить (или опровергнуть) свою версию, я запустил плату прямо на столе и дал нагрузку с помощью двух галогеновых парных ламп. Когда всё было подключено – капнул немного парафина на радиаторы. Расчёт был такой: если парафин будет таять и испаряться, то можно гарантировать, что электронный трансформатор (благо, если только он сам) будет сгорать меньше чем за полчаса работы по причине перегрева.После 5 минут работы воск так и не расплавился, получалось, что основная проблема связана именно с плохой вентиляцией, а не с неисправностью радиатора. Наиболее изящный вариант решения проблемы – просто подогнать другой более просторный корпус под электронный трансформатор, который обеспечит достаточную вентиляцию. Но я предпочёл подсоединить теплоотвод в виде алюминиевой полоски. Собственно, этого оказалось вполне достаточно для исправления ситуации.

Пример 2

В качестве ещё одного примера починки электронного трансформатора я хотел бы рассказать о ремонте устройства, обеспечивающего понижение напряжения с 220 на 12 Вольт. Оно использовалось для галогенных ламп на 12 Вольт (мощность – 50 Ватт).

Рассматриваемый экземпляр перестал работать без всяких спецэффектов. До того, как он оказался у меня в руках, от работы с ним отказалось несколько мастеров: некоторые не смогли найти решение проблемы, другие, как уже и говорилось выше, решили, что это экономически нецелесообразно.

Для очистки совести я проверил все элементы, дорожки на плате, нигде не обнаружил обрывов.

Тогда я решил проверить конденсаторы. Диагностика мультиметром вроде бы прошла успешно, однако, с учётом того, что накопление заряда происходило на протяжении целых 10 секунд (это многовато для конденсаторов подобного типа), возникло подозрение, что неполадка именно в нём. Я произвёл замену конденсатора на новый.

Тут нужно небольшое отступление: на корпусе рассматриваемого электронного трансформатора имелось обозначение: 35-105 VA. Эти показания говорят о том, при какой нагрузке можно включать устройство. Включать его вообще без нагрузки (или, если по-человечески, без лампы), как уже говорилось ранее, нельзя. Поэтому я подсоединил к электронному трансформатору лампу на 50 Ватт (то есть значение, которое вписывается между нижней и верхней границей допустимой нагрузки).

Рис. 4: Галогеновая лампа на 50Ватт (упаковка).

После подключения никаких изменений в работоспособности трансформатора не произошло. Тогда я ещё раз полностью осмотрел конструкцию и понял, что при первой проверке не обратил внимания на термопредохранитель (в данном случае модель L33, ограничение до 130C). Если в режиме прозвонки этот элемент даёт единицу, то можно говорить о его неисправности и обрыве цепи. Изначально термопредохранитель не был проверен по той причине, что при помощи термоусадки он вплотную крепится к транзистору. То есть для полноценной проверки элемента придётся избавляться от термоусадки, а это весьма трудоёмко.

Рис.5: Термопредохранитель, прикреплённый термоусадкой к транзистору (элемент белого цвета, на который указывает ручка).

Впрочем, для анализа работы схемы без данного элемента, достаточно закоротить его «ножки» на обратной стороне. Что я и сделал. Электронный трансформатор тут же заработал, да и произведённая ранее замена конденсатора оказалась не лишней, поскольку ёмкость установленного до этого элемента не отвечала заявленной. Причина, вероятно, была в том, что он просто износился.

В итоге, я заменил термопредохранитель, и на этом ремонт электронного трансформатора можно было считать завершённым.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

Многие начинающие радиолюбители, и не только, сталкиваются с проблемами при изготовлении мощных источников питания. Сейчас в продаже появилось большое количество электронных трансформаторов, используемых для питания галогенных ламп. Электронный трансформатор представляет собой полумостовой автогенераторный импульсный преобразователь напряжения.
Импульсные преобразователи имеют высокий КПД, малые размеры и вес.
Стоят данные изделия не дорого, примерно 1рубль за один ватт. Их после доработки вполне можно использовать для питания радиолюбительских конструкций. В сети есть немало статей по этой теме. Хочу поделиться своим опытом переделки электронного трансформатора Taschibra 105W.

Рассмотрим принципиальную схему электронного преобразователя.
Напряжение сети через предохранитель поступает на диодный мост D1-D4 . Выпрямленное напряжение питает полумостовой преобразователь на транзисторах Q1 и Q2. В диагональ моста, образованного этими транзисторами и конденсаторами С1, С2, включена обмотка I импульсного трансформатора Т2. Запуск преобразователя обеспечивается цепью, состоящей из резисторов R1, R2, конденсатора С3, диода D5 и диака D6. Трансформатор обратной связи Т1 имеет три обмотки - обмотка обратной связи по току, которая включена последовательно с первичной обмоткой силового трансформатора, и две обмотки по 3 витка, питающие базовые цепи транзисторов.
Выходное напряжение электронного трансформатора представляет собой прямоугольные импульсы частотой 30 кГц, промодулированные частотой 100 Гц.


Для того, чтобы использовать электронный трансформатор в качестве источника питания, его необходимо доработать.

Подключаем на выходе выпрямительного моста конденсатор, для сглаживания пульсаций выпрямленного напряжения. Емкость выбирается из расчета 1мкФ на 1Вт. Рабочее напряжение конденсатора должно быть не менее 400В.
При включении в сеть выпрямительного моста с конденсатором возникает бросок тока, поэтому нужно в разрыв одного из сетевых проводов включить терморезистор NTC или резистор 4,7 Ом 5Вт. Это ограничит пусковой ток.

Если необходимо другое выходное напряжение, перематываем вторичную обмотку силового трансформатора. Диаметр провода (жгута из проводов) выбирается исходя из тока нагрузки.

Электронные трансформаторы имеют ОС по току, поэтому выходное напряжение будет изменяться в зависимости от нагрузки. Если нагрузка не подключена, трансформатор не запустится. Для того чтобы этого не было, нужно изменить схему обратной связи по току на ОС по напряжению.
Обмотку обратной связи по току удаляем и вместо нее на плате ставим перемычку. Затем пропускаем гибкий многожильный провод через силовой трансформатор и делаем 2 витка, далее пропускаем провод через трансформатор обратной связи и делаем один виток. Концы, пропущенного через силовой трансформатор и трансформатор обратной связи провода, соединяем через два параллельно соединенных резистора 6,8 Ом 5 Вт. Этим токоограничивающим резистором устанавливается частота преобразования (примерно 30кГц). При увеличении тока нагрузки частота становится больше.
Если преобразователь не запустится необходимо изменить направление намотки.

В трансформаторах Taschibra транзисторы прижаты к корпусу через картон, что небезопасно при эксплуатации. К тому же бумага очень плохо проводит тепло. Поэтому лучше установить транзисторы через теплопроводящую прокладку.
Для выпрямления переменного напряжения частотой 30кГц на выходе электронного трансформатора устанавливаем диодный мост.
Наилучшие результаты показали, из всех опробованных диодов, отечественные КД213Б (200В; 10А; 100кГц; 0,17мкс). При больших токах нагрузки они греются, поэтому их необходимо установить на радиатор через теплопроводящие прокладки.
Электронные трансформаторы плохо работают с емкостной нагрузкой или не запускаются вообще. Для нормальной работы необходим плавный запуск устройства. Обеспечению плавного запуска способствует дроссель L1. Совместно с конденсатором 100мкФ он также выполняет функцию фильтрации выпрямленного напряжения.
Дроссель L1 50мкГ наматывается на сердечнике Т106-26 фирмы Micrometals и содержит 24 витка проводом 1,2мм. Такие сердечники (жёлтого цвета, с одной гранью белого цвета) применяются в компьютерных блоках питания. Внешний диаметр 27мм, внутренний 14мм, и высота 12мм. Кстати, в убитых блоках питания можно найти и другие детали, в том числе терморезистор.

Если у вас есть шуруповерт или другой инструмент, у которого аккумуляторная батарея выработала свой ресурс, то в корпусе этой батареи можно поместить блок питания из электронного трансформатора. В результате у вас получится инструмент, работающий от сети.
Для стабильной работы на выходе блока питания желательно поставить резистор приблизительно 500 Ом 2Вт.

В процессе наладки трансформатора нужно быть предельно внимательным и аккуратным. На элементах устройства присутствует высокое напряжение. Не касайтесь фланцев транзисторов, чтобы проверить греются они или нет. Необходимо также помнить, что после выключения конденсаторы остаются заряженными некоторое время.