Базовые логические элементы кмоп. Микросхемы ттл и кмоп. Элементы транзисторно-транзисторной логики

ВВЕДЕНИЕ

Давайте поговорим о характеристиках идеального семейства логических микросхем. Они не должны рассеивать мощность, иметь нулевую задержку распространения сигнала, управляемые времена нарастания и спада сигнала, а также иметь помехоустойчивость, эквивалентную 50% размаха выходного сигнала.

Параметры современных семейств КМОП-микросхем (комплементарных МОП) приближаются к этим идеальным характеристикам.

Во-первых, КМОП-микросхемы рассеивают малую мощность. Типовое значение статической рассеиваемой мощности составляет порядка 10 нВ на один вентиль, которая образуется токами утечки. Активная (или динамическая) рассеваемая мощность зависит от напряжения источника питания, частоты, выходной нагрузки и времени нарастания входного сигнала, но ее типовое значение для одного вентиля при частоте 1 МГц и нагрузке емкостью 50 пФ не превышает 10 мВт.

Во-вторых, время задержки распространения сигнала в КМОП-вентилях хотя и не равно нулю, но достаточно мало. В зависимости от напряжения источника питания, задержка распространения сигнала для типового элемента находится в диапазоне от 25 до 50 нс.

В третьих, времена нарастания и спада контролируемы, и представляют собой скорее линейные, чем ступенчатые функции. Обычно времена нарастания и спада имеют на 20-40% большие значения, чем время задержки распространения сигнала.

И, наконец, типовое значение помехоустойчивости приближается к 50% и составляет приблизительно 45% от амплитуды выходного сигнала.

Еще одним немаловажным фактором, свидетельствующим в пользу КМОП-микросхем, является их малая стоимость, особенно при использовании в портативном оборудовании, питающемся от маломощных батарей.

Источники питания, в системах, построенных на КМОП-микросхемах, могут быть маломощными, и, как следствие, недорогими. Благодаря малой потребляемой мощности, подсистема питания может быть проще, а значит дешевле. В радиаторах и вентиляторах нет необходимости, благодаря низкой рассеиваемой мощности. Непрерывное совершенствование технологических процессов, а также увеличение объемов производства и расширение ассортимента выпускаемых КМОП-микросхем приводит к снижению их стоимости.

Существует множество серий логических микросхем КМОП-структуры. Первой из них была серия К176, далее К561 (CD4000AN) и КР1561 (CD4000BN), но наибольшее развитие функциональные ряды получили в сериях КР1554 (74ACxx), КР1564 (74HCxx) и КР1594 (74ACTxx).

Функциональные ряды современных КМОП-микросхем серий КР1554, КР1564 и КР1594 содержат полнофункциональные эквиваленты микросхем ТТЛШ-серий КР1533 (74ALS) и К555 (74LS), которые полностью совпадают как по выполняемым функциям, так и по разводке выводов (цоколевке). Современные КМОП-микросхемы по сравнению с их прототипами, сериями К176 и К561, потребляют значительно меньшую динамическую мощность и многократно превосходят их по быстродействию.

Для упрощения схемотехнических решений, разработаны КМОП-серии с входным пороговым напряжением ТТЛ-уровней (КР1594 и некоторые другие), так и КМОП-уровней (КР1554, КР1564 и некоторые другие). Диапазон рабочих температур для микросхем общего применения находится в пределах -40-+85С, и -55-+125С —специального применения. В табл. 1 приведено сравнение входных и выходных характеристик КМОП и ТТЛШ-микросхем.

Таблица 1. Сравнение электрических параметров КМОП и ТТЛШ-схем

ТЕХНОЛОГИЯ

КМОП с ПКК-затвором

Улучш.

КМОП с ПКК-затвором

КМОП с Метали-ческим.-затвором

Стан-дартн.

Малопо-требля-ющая ТТЛШ

Улучшенная Малопотреб-ляющая ТТЛШ

Быстро-действу-ющая

ТТЛШ

Power dissipation per gate (mW)

Статическая

При частоте 100 кГц

Время задержки распространения

(нс) (CL = 15 пФ)

Максимальная тактовая частота

(МГц) (CL = 15 пФ)

Минимальный выходной ток (мА)

Стандартные выходы

Коэффициент разветвления по выходу (Нагрузка на на один вход К555)

Стандартные выходы

Выходы с повышенной нагрузочной способностью

Максимальный входной ток, IIL (мА) (VI = 0,4 В)

ХАРАКТЕРИСТИКИ КМОП-МИКРОСХЕМ

Цель данного раздела заключается в том, чтобы дать разработчику системы необходимые сведения о том, как работают цифровые микросхемы структуры КМОП и ведут себя при воздействии различных управляющих сигналов. Достаточно много было написано о конструкции и технологии производства микросхем КМОП, поэтому здесь рассмотрим только схемотехнические особенности микросхем этого семейства.

Основной КМОП-схемой является инвертор, показанный на рис. 1. Он состоит из двух полевых транзисторов, работающих в режиме обогащения: с каналом P-типа (верхний) и каналом N-типа (нижний). Для обозначения выводов питания приняты: VDD или VCC — для положительного вывода и VSS или GND — для отрицательного. Обозначения VDD и VCC позаимствованы из обычных МОП-схем и символизируют источники питания истока и стока транзисторов. Они не относятся непосредственно к схемам КМОП, поскольку выводами питания являются истоки обоих комплементарных транзисторов. Обозначения VSS или GND позаимствованы от ТТЛ-схем, и эта терминология сохранилась и для КМОП-микросхем. Далее будут указываться обозначения VCC и GND.

Логическими уровнями в КМОП-системе являются VCC (логическая “1”) и GND (логический “0”). Поскольку ток, протекающий во “включенном” МОП-транзисторе практически не создает на нем падения напряжения, и поскольку входное сопротивление КМОП-вентиля очень велико (входная характеристика МОП-транзистора, в основном, емкостная и выглядит подобно вольтамперной характеристике МОП-транзистора сопротивлением 1012 Ом, зашунтированного конденсатором емкостью 5 пФ), то и логические уровни в КМОП-системе будут практически равны напряжению источника питания.

Теперь давайте посмотрим на характеристические кривые МОП-транзисторов, для того чтобы получить представление о том, как времена нарастания и спада, задержки распространения сигнала и рассеиваемая мощность будут изменяться с изменением напряжения источника питания и емкости нагрузки.

На рис. 2 показаны характерные кривые N-канального и P-канального полевых транзисторов, работающих в режиме обогащения.

Из этих характеристик следует ряд важных выводов. Рассмотрим кривую для N-канального транзистора с напряжением Затвор-Исток равным VGS=15 В. Следует заметить, что для постоянного управляющего напряжения VGS, транзистор ведет себя, как источник тока для значений VDS (напряжение Сток-Исток) больших, чем VGS-VT (VT-пороговое напряжение МОП-транзистора). Для значений VDS меньше VGS-VT транзистор ведет себя, в основном, подобно резистору.

Следует также заметить, что для меньших значений VGS кривые имеют аналогичный характер, за тем исключением, что величина IDS значительно меньше, и, в действительности, IDS возрастает пропорционально квадрату VGS. P-канальный транзистор имеет практически одинаковые, но комплементарные (дополняющие) характеристики.

В случае управления емкостной нагрузкой с помощью КМОП-элементов, начальное изменение напряжения, приложенного к нагрузке, будет иметь линейный характер, благодаря “токовой” характеристике на начальном участке, получаемой округлением преобладающей резистивной характеристики, когда значение VDS мало отличается от нуля. Применительно к простейшему КМОП-инвертору, показанному на рис. 1, по мере уменьшения напряжения VDS до нуля, выходное напряжение VOUT будет стремиться к VCC или GND, в зависимости от того, какой транзистор открыт: P-канальный или N-канальный.

Если увеличивать VCC, и, следовательно, VGS, инвертор должен развивать на конденсаторе большую амплитуду напряжения. Однако, для одного и того же приращения напряжения, нагрузочная способность IDS резко возрастает, как квадрат VGS, и поэтому времена нарастания и задержки распространения сигнала, показанные на рис. 3, уменьшаются.

Таким образом, можно видеть, что для данной конструкции, и, следовательно, фиксированного значения емкости нагрузки, увеличение напряжения источника питания увеличит быстродействие системы. Увеличение VCC увеличит быстродействие, но также и рассеиваемую мощность. Это верно по двум причинам. Во-первых, произведение CV2f, а значит мощность, возрастают. Это мощность, рассеиваемая в КМОП-схеме, или любой аналогичной схеме, по названной выше причине, при управлении емкостной нагрузкой.

Для указанных значений емкости нагрузки и частоты переключения, рассеиваемая мощность возрастает пропорционально квадрату падения напряжения на нагрузке.

Вторая причина заключается в том, что произведение VI или мощность, рассеиваемая на КМОП-схеме, возрастает с ростом напряжения источника питания VCC (для VCC>2VT). Каждый раз, когда схема переключается из одного состояния в другое, кратковременно возникает сквозной ток, протекающий от VCC к GND через два одновременно открытых выходных транзистора.

Поскольку пороговые напряжения транзисторов не изменяются с ростом VCC, то диапазон входного напряжения, в пределах которого верхний и нижний транзисторы одновременно находятся в проводящем состоянии, увеличивается с ростом VCC. В то же время, большее значение VCC обеспечивает большие значения управляющих напряжений VGS, которые также приводят к увеличению токов JDS. В связи с этим, если время нарастания входного сигнала равняется нулю, то через выходные транзисторы не было бы сквозного тока от VCC к GND. Эти токи возникают по той причине, что фронты входного сигнала имеют конечно малые времена нарастания и спада, и, следовательно, входное напряжение требует определенного конечно малого времени для прохождения диапазона, в котором два выходных транзистора включены одновременно. Очевидно, что времена нарастания и спада фронтов входного сигнала должны иметь минимальное значение, для уменьшения рассеиваемой мощности.

Давайте взглянем на передаточные характеристики (рис. 5), как они изменяются с изменением питающего напряжения VCC. Условимся считать, что оба транзистора в нашем простейшем инверторе имеют идентичные, но комплементарные характеристики и пороговые напряжения. Предположим, что пороговые напряжения, VT, равны 2V. Если VCC меньше порогового напряжения 2V, ни один из транзисторов не может быть включен, и схема работать не будет. На рис. 5а показана ситуация, когда напряжение источника питания в точности соответствует пороговому напряжению. В таком случае схема должна работать со 100% гистерезисом. Однако, это не совсем гистерезис, поскольку оба выходных транзистора закрыты, и выходное напряжение поддерживается на емкостях затворов, следующих по цепи схем. Если VCC находится в пределах одного и двух пороговых напряжений (рис. 5б), происходит уменьшение величины “гистерезиса”, по мере приближения VCC к значению, эквивалентному 2VT (рис. 5в). При напряжении VCC, эквивалентном двум пороговым напряжениям, “гистерезис” отсутствует; также нет сквозного тока через два одновременно открытых выходных транзистора в моменты переключений. Когда значение VCC превышает два пороговых напряжения, кривые передаточной характеристики начинают закругляться (рис. 5г). Когда VIN проходит через область, где оба транзистора открыты, т.е. в проводящем состоянии, токи, протекающие в каналах транзисторов, создают падения напряжений, дающие закругления характеристик.

Рассматривая КМОП-систему на предмет шума, необходимо рассматривать, по крайней мере, две характеристики: помехоустойчивость и запас помехоустойчивости.

Современные КМОП-схемы имеют типичное значение помехоустойчивости равное 0,45VCC. Это означает, что ложный входной сигнал, равный 0,45VCC или менее отличающийся от VCC или GND, не будет распространяться в системе, как ошибочный логический уровень. Это не означает, что на выходе первой схемы вообще не появится никакого сигнала. На самом деле, в результате воздействия сигнала помехи, на выходе появится выходной сигнал, но он будет ослаблен по амплитуде. По мере распространения этого сигнала в системе, он будет ослаблен последующими схемами еще больше, пока он совсем не исчезнет. Обычно такой сигнал не изменяет выходное состояние логического элемента. В обычном триггере, ложный входной синхронизирующий импульс амплитудой 0,45VCC не приведет к изменению его состояния.

Производитель КМОП-микросхем также гарантирует наличие запаса помехоустойчивости 1 Вольт во всем диапазоне питающих напряжений и температур и для любой комбинации входов. Это всего лишь отклонение характеристики помехоустойчивости, для которой гарантирован особый набор входных и выходных напряжений. Другими словами, из данной характеристики следует, что для того, чтобы выходной сигнал схемы, выраженный в Вольтах, находился в пределах 0,1VCC от значения соответствующего логического уровня (“нуля” или “единицы”), входной сигнал не должен превышать значение 0,1VCC плюс 1 Вольт выше уровня “земли” или ниже уровня “питания”. Графически данная ситуация показана на рис. 4.

Данные характеристики близко напоминают запас помехоустойчивости стандартных ТТЛ-схем, который составляет 0,4 В (рис. 6). Для полноты картины зависимости выходного напряжения VOUT от входного VIN, приведем кривые передаточных характеристик (рис. 5).

АНАЛИЗ ПРИМЕНЕНИЯ В СИСТЕМЕ

В данном разделе рассмотрены различные ситуации, возникающие при разработке системы: неиспользуемые входы, параллельное включение элементов для увеличения нагрузочной способности, разводка шин данных, согласование с логическими элементами других семейств.

НЕИСПОЛЬЗУЕМЫЕ ВХОДЫ

Проще говоря, неиспользуемые входы не должны быть оставлены не подключенными. По причине очень большого входного сопротивления (1012 Ом), плавающий вход может дрейфовать между логическими “нулем” и “единицей”, создавая непредсказуемое поведение выхода схемы и связанные с этим проблемы в системе. Все неиспользуемые входы должны быть подключены к шине питания, “общему” проводу или другому используемому входу. Выбор совершенно не случаен, поскольку следует учитывать возможное влияние на выходную нагрузочную способность схемы. Рассмотрим, к примеру, четырехвходовый элемент 4И-НЕ, используемый, как двухвходовый логический вентиль 2И-НЕ. Его внутренняя структура показана на рис. 7. Пусть входы A и B будут неиспользуемыми входами.

Если неиспользуемые входы должны быть подключены к фиксированному логическому уровню, тогда входы A и B должны быть подключены к шине питания, чтобы разрешить работу остальных входов. Это приведет к включению нижних A и B транзисторов и выключению соответствующих верхних A и B. В таком случае, не более двух верхних транзисторов могут быть включены одновременно. Однако если входы A и B подключены к входу C, входная емкость утроится, но каждый раз, когда на вход C поступает уровень логического “нуля”, верхние транзисторы A, B и C — включаются, утраивая значение максимального выходного тока уровня логической “единицы”. Если на вход D поступает также уровень логического “нуля”, все четыре верхних транзистора — включены. Таким образом, подключение неиспользуемых входов элемента И-НЕ к шине питания (ИЛИ-НЕ к “общему” проводу) приведет к их включению, но подключение неиспользуемых входов к другим используемым входам гарантирует увеличение выходного вытекающего тока уровня логической “единицы”, в случае элемента И-НЕ (или выходного втекающего тока уровня логического “нуля”, в случае элемента ИЛИ-НЕ).

Для последовательно включенных транзисторов увеличения выходного тока не происходит. Учитывая это обстоятельство, многовходовый логический элемент может быть использован для непосредственного управления мощной нагрузкой, к примеру, обмоткой реле или лампой накаливания.

ПАРАЛЛЕЛЬНОЕ ВКЛЮЧЕНИЕ ЛОГИЧЕСКИХ ЭЛЕМЕНТОВ

В зависимости от типа логического элемента, объединение входов гарантирует увеличение нагрузочной способности для вытекающего или втекающего токов, но не двух одновременно. Для того чтобы гарантировать увеличение двух выходных токов необходимо параллельно включить несколько логических элементов (рис. 8). В таком случае, увеличение нагрузочной способности достигается за счет параллельного включения нескольких цепочек транзисторов (рис. 7), таким образом, увеличивая соответствующий выходной ток.

РАЗВОДКА ШИН ДАННЫХ

Для этого существует два основных способа. Первый способ — это параллельное соединение обычных буферных КМОП-элементов (например, ). И второй, наиболее предпочтительный, способ — соединение элементов с тремя выходными состояниями.

ФИЛЬТРАЦИЯ ПОМЕХ ИСТОЧНИКА ПИТАНИЯ

Поскольку КМОП-схемы могут работать в широком диапазоне питающих напряжений (3-15 В), необходима минимальная фильтрация. Минимальное значение напряжения источника питания определяется максимальной рабочей частотой самого быстрого элемента в системе (обычно очень небольшая часть системы работает на максимальной частоте). Фильтры должны быть выбраны из расчета поддержания питающего напряжения примерно посередине между указанным минимальным значением и максимальным напряжением, при котором микросхемы еще работоспособны. Однако если требуется минимизировать рассеиваемую мощность, напряжение источника питания должно быть выбрано как можно меньшим, при одновременном удовлетворении требований быстродействия.

МИНИМИЗАЦИЯ РАССЕИВАЕМОЙ МОЩНОСТИ СИСТЕМЫ

Для того чтобы минимизировать энергопотребление системы, она должна работать на минимальной скорости, выполняя поставленную задачу при минимальном питающем напряжении. Мгновенные значения динамической (AC) и статической (DC) потребляемой мощностей возрастают, как при увеличении частоты, так и напряжения источника питания. Динамическая потребляемая мощность (AC) представляет собой функцию произведения CV2f. Это мощность, рассеиваемая в буферном элементе, управляющим емкостной нагрузкой.

Очевидно, что динамическая потребляемая мощность возрастает прямо пропорционально частоте и пропорционально квадрату напряжения источника питания. Она также возрастает с увеличением емкости нагрузки, определяемой, в основном, системой, и не является переменной величиной. Статическая (DC) потребляемая мощность рассеивается в моменты переключения и представляет собой произведение VI. В любом КМОП элементе возникает мгновенный ток от шины питания на “общий” провод (при VCC>2VT) рис. 9.

Максимальная амплитуда тока — это быстро возрастающая функция входного напряжения, которое, в свою очередь, представляет собой функцию напряжения источника питания (рис. 5г).
Действительная величина произведения VI мощности, рассеиваемой системой, определяется тремя показателями: напряжением источника питания, частотой и временами фронтов нарастания и спада входного сигнала. Очень важным фактором является время нарастания входного сигнала. Если время нарастания велико, рассеиваемая мощность возрастает, т.к. устанавливается токовый путь в течение всего времени, пока входной сигнал проходит область между пороговыми напряжениями верхнего и нижнего транзисторов. Теоретически, если время нарастания считать равным нулю, токовый путь не возникал бы, и VI мощность равнялась бы нулю. Однако, поскольку время нарастания имеет конечно малую величину, всегда появляется сквозной ток, который быстро возрастает с увеличением напряжения питания.

Есть еще одно обстоятельство, касающееся времени нарастания входного сигнала и потребляемой мощности. Если схема используется для управления большим числом нагрузок, время нарастания выходного сигнала будет возрастать. Это приведет к увеличению VI рассеиваемой мощности в каждом устройстве, управляемом такой схемой (но не в самой управляющей схеме). Если потребляемая мощность достигает критического значения, необходимо увеличить крутизну выходного сигнала параллельным включением буферных элементов или разделением нагрузок для того, чтобы уменьшить общую потребляемую мощность.

Теперь подведем итоги влияния эффектов напряжения источника питания, входного напряжения, времен нарастания и спада фронтов входного сигнала, емкости нагрузки на рассеиваемую мощность. Можно сделать следующие выводы:

  1. Напряжение источника питания. Произведение CV2f рассеиваемой мощности возрастает пропорционально квадрату напряжения питания. Произведение VI рассеиваемой мощности возрастает приблизительно пропорционально квадрату напряжения источника питания.
  2. Уровень входного напряжения. Произведение VI рассеиваемой мощности возрастает, если входное напряжение находится в пределах между “нулевым потенциалом (GND) плюс пороговое напряжение” и “напряжением питания (VCC) минус пороговое напряжение”. Наибольшая рассеиваемая мощность наблюдается, когда VIN приближается к 0,5 VCC. На произведение CV2f уровень входного напряжения влияния не оказывает.
  3. Время нарастания входного сигнала. Произведение VI рассеиваемой мощности возрастает с увеличением времени нарастания, поскольку сквозной ток через одновременно открытые выходные транзисторы устанавливается на более продолжительное время. На произведение CV2f время нарастания входного сигнала влияния также не оказывает.
  4. Емкость нагрузки. Произведение CV2f мощности, рассеиваемой в схеме, возрастает пропорционально емкости нагрузки. Произведение VI рассеиваемой мощности не зависит от емкости нагрузки. Однако увеличение емкости нагрузки приведет к увеличению времен нарастания фронтов выходного сигнала, что, в свою очередь, приведет к росту произведения VI рассеиваемой мощности в управляемых этим сигналом логических элементах.

СОГЛАСОВАНИЕ С ЛОГИЧЕСКИМИ ЭЛЕМЕНТАМИ ДРУГИХ СЕМЕЙСТВ

Существует два основных правила для согласования элементов всех других семейств с микросхемами КМОП. Во-первых, КМОП-схема должна обеспечивать необходимые требования по входным токам и напряжениям элементов других семейств. И, во-вторых, что еще важнее, амплитуда выходного сигнала логических элементов других семейств должна максимально соответствовать напряжению источника питания КМОП-схемы.

P-КАНАЛЬНЫЕ МОП-СХЕМЫ

Существует целый ряд требований, которые необходимо обеспечить при согласовании P-МОП и КМОП-схем. Во-первых, это набор источников питания с различными напряжениями. Большинство P-МОП-схем рассчитаны для работы при напряжении от 17 В до 24 В, в то время как схемы-КМОП рассчитаны на максимальное напряжение 15 В. Другой проблемой P-МОП-схем, в отличие от КМОП, является значительно меньшая амплитуда выходного сигнала, чем напряжение источника питания. Выходное напряжение P-МОП-схем изменяется в пределах практически от более положительного потенциала питающего напряжения (VSS) до нескольких вольт выше более отрицательного потенциала (VDD). Поэтому, даже в случае работы P-МОП-схемы от источника напряжением 15 В, амплитуда ее выходного сигнала все равно будет меньше необходимой, чтобы обеспечить согласование с КМОП-схемой. Существует несколько способов решения данной проблемы, в зависимости от конфигурации системы. Рассмотрим два способа построения системы полностью на МОП-схемах и один способ, когда в системе используются ТТЛШ-схемы.

В первом примере используются только P-МОП и КМОП-схемы с напряжением питания менее 15 В (см. рис. 10). В этой конфигурации КМОП-схема управляет P-МОП непосредственно. Однако P-МОП-схема не может управлять КМОП напрямую, поскольку ее выходное напряжение уровня логического нуля значительно превышает нулевой потенциал системы. Для “подтягивания” выходного потенциала схемы к нулю, вводится дополнительный резистор RPD. Его величина выбирается достаточно малой, чтобы обеспечить желаемую постоянную времени RC при переключении выхода из “единицы” в “ноль” и, в то же время, достаточно большой, чтобы обеспечить необходимую величину уровня логической “единицы”. Этот способ подходит также и для выходов P-МОП-схем с открытыми стоками.

Другим способом в полностью МОП-системе является применение источника опорного напряжения на основе обычного стабилитрона для формирования более отрицательного потенциала, питающего КМОП-схему (рис. 11).

В этой конфигурации используется источник питания P-МОП-схемы напряжением 17-24 В. Опорное напряжение выбирается таким образом, чтобы уменьшить напряжение питания КМОП-схем до минимального размаха выходного напряжения P-МОП-схемы. КМОП-схема может по-прежнему управлять P-МОП непосредственно, но теперь, P-МОП-схема может управлять КМОП без “подтягивающего” резистора. Другими ограничениями являются: питающее напряжение КМОП-схем, которое должно быть меньше 15 В, и необходимость обеспечения опорным источником достаточного тока для питания всех КМОП-схем в системе. Это решение вполне пригодно, если источник питания P-МОП-схемы должен быть больше 15 В, и потребляемый ток КМОП-схемами достаточно мал, чтобы его мог обеспечить простейший параметрический стабилизатор.

Если в системе используются ТТЛШ-схемы, то должны быть, по крайней мере, два источника питания. В таком случае, КМОП-схема может работать от однополярного источника и управлять P-МОП-схемой непосредственно (рис. 12).

N-КАНАЛЬНЫЕ МОП-СХЕМЫ

Согласование КМОП с N-МОП-схемами проще, хотя некоторые проблемы существуют. Во-первых, N-МОП-схемы требуют меньшего напряжения источника питания, обычно в диапазоне 5-12 В. Это позволяет согласовывать их с КМОП-схемами непосредственно. Во вторых, амплитуда выходного сигнала КМОП-схем находится в диапазоне практически от нуля до напряжения источника питания минус 1-2 В.

При более высоких значениях напряжения источника питания N-МОП и КМОП-схемы могут работать напрямую, поскольку выходной уровень логической единицы N-МОП-схемы будет отличаться от напряжения источника питания всего на 10-20%. Однако, при меньших значениях напряжения питания, напряжение уровня логической единицы будет меньше уже на 20-40%, поэтому необходимо включение “подтягивающего” резистора (рис. 13).

ТТЛ-, ТТЛШ-СХЕМЫ

При согласовании данных семейств с КМОП-схемами возникают два вопроса. Во-первых, достаточно ли напряжения уровня логической единицы биполярных семейств для непосредственного управления КМОП-схемами? ТТЛ- и ТТЛШ-схемы вполне способны управлять КМОП-схемами серии 74HCXX напрямую без дополнительных “подтягивающих” резисторов. Однако, КМОП-схемами серии CD4000 (К561, КР1561) они управлять не способны, поскольку характеристики последних не гарантируют работоспособность в случае непосредственного подключения без подтягивающих резисторов.

ТТЛШ-схемы способны непосредственно управлять КМОП-схемами во всем диапазоне рабочих температур. Стандартные ТТЛ-схемы способны непосредственно управлять КМОП-схемами в большей части температурного диапазона. Однако, ближе к нижней границе температурного диапазона, напряжение уровня логической единицы ТТЛ-схем уменьшается и рекомендуется введение “подтягивающего” резистора (рис. 14).

Согласно зависимости допустимых значений напряжений входных уровней от напряжения источника питания для КМОП-схем (см. рис. 4), если входное напряжение превышает значение VCC-1,5 В (при VCC=5 В), то выходное напряжение не превысит 0,5В. Следующий КМОП-элемент усилит это напряжение 0,5 В до соответствующего напряжения VCC или GND. Напряжение уровня логической “1” для стандартных ТТЛ-схем составляет минимум 2,4 В при выходном токе 400 мкА. Это наихудший случай, поскольку выходное напряжение ТТЛ-схемы будет только приближаться к этому значению при минимальной температуре, максимальном значении входного уровня “0” (0,8 В), максимальных токах утечки и минимальном напряжении питания (VCC=4,5 В).

При нормальных условиях (25°С, VIN=0,4 В, номинальных токах утечки в КМОП-схеме и напряжении источника питания VCC=5 В) уровень логической “1” будет скорее соответствовать VCC-2VD или VCC-1,2 В. При изменении одной только температуры, выходное напряжение будет изменяться по зависимости “два умножить -2 мВ на один градус температуры” или “-4 мВ на градус”. Напряжения VCC-1,2 В вполне достаточно для непосредственного управления КМОП-схемой без необходимости включения “подтягивающего” резистора.

Если при определенных условиях выходное напряжение ТТЛ-схемы уровня логической “1” может упасть ниже VCC-1,5 В необходимо использовать резистор для управления КМОП-схемой.
Вторым вопросом является, сможет ли КМОП-схема обеспечить достаточный выходной ток, чтобы обеспечить входное напряжение уровня логического “0” для ТТЛ-схемы? Для логической “1” такой проблемы не существует.

Для ТТЛШ-схемы входной ток достаточно мал, чтобы обеспечить непосредственное управление двумя такими входами. Для стандартной ТТЛ-схемы входной ток в десять раз превышает ток ТТЛШ-схемы и, следовательно, выходное напряжение КМОП-схемы, в таком случае, превысит максимально допустимое значение напряжения уровня логического “0” (0,8 В). Однако, внимательно изучая спецификацию выходной нагрузочной способности КМОП-схем, можно заметить, что двухвходовый элемент И-НЕ может управлять одним ТТЛ-входом, хотя и в крайнем случае. К примеру, выходное напряжение уровня логического “нуля” для приборов MM74C00 и MM74C02 во всем температурном диапазоне составляет 0,4 В при токе 360 мкА, при входном напряжении 4,0 В и напряжении питания 4,75 В. Обе схемы показаны на рис. 15.

Обе схемы имеют одинаковую нагрузочную способность, но их структуры различны. Это означает, что каждый из двух нижних транзисторов прибора MM74C02 может обеспечить тот же ток, что и два последовательно включенных транзистора MM74C00. Два транзистора MM74C02 вместе могут обеспечить вдвое больший ток при заданном выходном напряжении. Если допустить увеличение выходного напряжения логического “нуля” до значения 0,8 В, то прибор MM74C02 сможет обеспечить в четыре раза больший выходной ток, чем 360мкА, т.е. 1,44 мА, что близко к 1,6 мА. На самом деле, ток 1,6 мА — это максимальный входной ток для ТТЛ-входа, и большинство ТТЛ-схем работают при токе не более 1 мА. Также, ток 360 мкА — это минимальный выходной ток для КМОП-схем. Реальное значение находится в пределах 360-540 мкА (что соответствует входному току 2-3 ТТЛШ-входов). Ток 360мкА указан для входного напряжения 4 В. Для входного напряжения 5 В, выходной ток будет порядка 560 мкА во всем диапазоне температур, делая управление ТТЛ-входом еще проще. При комнатной температуре и входном напряжении 5 В, выход КМОП-схемы может обеспечить ток 800 мкА. Следовательно, двухвходовый элемент ИЛИ-НЕ обеспечит выходной ток 1,6 мА при напряжении 0,4 В, если на оба входа элемента ИЛИ-НЕ поступает напряжение 5 В.

Отсюда можно заключить, что один двухвходовый элемент ИЛИ-НЕ, входящий в состав прибора MM74C02, можно использовать для управления стандартным ТТЛ-входом вместо специального буфера. Однако это приведет к некоторому снижению помехоустойчивости в диапазоне температур.

Источники информации

Для конкретной серии микросхем характерно использование типового электронного узла — базового логического элемента. Этот элемент является основой построения самых разнообразных цифровых электронных устройств.

Ниже рассмотрим особенности базовых логических элементов различных логик.

Элементы транзисторно-транзисторной логики

Характерной особенностью ТТЛ является использование многоэмиттерных транзисторов. Эти транзисторы сконструированы таким образом, что отдельные эмиттеры не оказывают влияния друг на друга. Каждому эмиттеру соответствует свой p-n-переход. В первом приближении многоэмиттерный может моделироваться схемой на диодах (см. пунктир на рис. 3.27).

Упрощенная схема ТТЛ-элемента приведена на рис. 3.27. При мысленной замене многоэмиттерного транзистора диодами получаем элемент диодно-транзисторной логики «И-НЕ». Из анализа схемы можно сделать вывод, что если на один из входов или на оба входа подать низкий уровень напряжения, то базы транзистора Т 2 будет равен нулю, и на коллекторе транзистора Т 2 будет высокий уровень напряжения. Если на оба входа подать высокий уровень , то через базу Т 2 транзистора будет протекать большой базовый и на коллекторе транзистора Т 2 будет низкий уровень , т. е. данный элемент реализует функцию И-НЕ:

u вых = u 1 · u 2 . Базовый элемент ТТЛ содержит многоэмиттерный транзистор, выполняющий логическую операцию И, и сложный инвертор (рис. 3.28).

Если на один или оба входа одновременно подан низкий уровень напряжения, то многоэмиттерный транзистор находится в состоянии насыщения и Т 2 закрыт, а следовательно, закрыт и транзистор Т 4 , т. е. на выходе будет высокий уровень . Если на обоих входах одновременно действует высокий уровень напряжения, то Т 2 открывается и входит в режим насыщения, что приводит к открытию и насыщению транзистора Т 4 и запиранию транзистора Т 3 , т. е. реализуется функция И-НЕ.

Для увеличения быстродействия элементов ТТЛ используются транзисторы с диодами Шоттки (транзисторы Шоттки).

Базовый логический элемент ТТЛШ (на примере серии К555)

В качестве базового элемента серии микросхем К555 использован элемент И-НЕ. На рис. 3.29, а изображена схема этого элемента, а условное графическое обозначение приведено на рис. 3.29, б .

Такой эквивалентен рассмотренной выше паре из обычного транзистора и диода Шоттки. ТранзисторVT 4 — обычный биполярный транзистор.

Если оба входных напряжения u вх1 и u вх2 имеют высокий уровень, то диодыVD 3 и VD 4 закрыты, транзисторы VT 1 ,VT 5 открыты и на выходе имеет место напряжение низкого уровня. Если хотя бы на одном входе имеется низкого уровня, то транзисторы VT 1 и VT 5 закрыты, а транзисторы VT 3 и VT 4 открыты, и на входе имеет место напряжение низкого уровня. Полезно отметить, что транзисторы VT 3 и VT 4 образуют так называемый составной (схему Дарлингтона).

Микросхемы ТТЛШ

Микросхемы ТТЛШ серии К555 характеризуются следующими параметрами:

● питания +5 В;

● выходное напряжение низкого уровня — не более 0,4 В;

● выходное высокого уровня — не менее 2,5 В;

● помехоустойчивость — не менее 0,3 В;

● среднее время задержки распространения сигнала — 20 нс;

● максимальная рабочая частота — 25 МГц.

Микросхемы ТТЛШ обычно совместимы по логическим уровням, помехоустойчивости и питания с микросхемами ТТЛ. Время задержки распространения сигнала элементов ТТЛШ в среднем в два раза меньше по сравнению с аналогичными элементами ТТЛ.

Особенности других логик

Основой базового логического элемента ЭСЛ является токовый ключ. Схема токового ключа (рис. 3.30) подобна схеме дифференциального усилителя.

Необходимо обратить внимание на то, что микросхемы ЭСЛ питаются отрицательным напряжением (к примеру, −4,5 В для серии К1500). На базу транзистора VT 2 подано отрицательное постоянное опорное напряжение U оп. Изменение входного u вх1 приводит к перераспределению постоянного тока i э0 , заданного сопротивлением R э между транзисторами, что имеет следствием изменение напряжений на их коллекторах. Транзисторы не входят в режим насыщения, и это является одной из причин высокого быстродействия элементов ЭСЛ.

Микросхемы серий 100, 500 имеют следующие параметры:

● питания −5,2 В;

● потребляемая мощность — 100 мВт;

● коэффициент разветвления по выходу — 15;

● задержка распространения сигнала — 2,9 нс.

В микросхемах n-МОП и p-МОП используются ключи соответственно на МОП-транзисторах с n-каналом и динамической нагрузкой (рассмотрены выше) и на МОП-транзисторах с p-каналом.

В качестве примера рассмотрим элемент логики n-МОП, реализующий функцию ИЛИ-НЕ (рис. 3.31).

Он состоит из нагрузочного транзистора Т 3 и двух управляющих транзисторов Т 1 и Т 2 . Если оба транзистора Т 1 и Т 2 закрыты, то на выходе устанавливается высокий уровень . Если одно или оба напряжения u 1 и u 2 имеют высокий уровень, то открывается один или оба транзистора Т 1 и Т 2 и на выходе устанавливается низкий уровень , т. е. реализуется функция u вых = u 1 + u 2.

Для исключения потребления мощности логическим элементом в статическом состоянии используются комплементарные МДП — логические элементы (КМДП или КМОП-логика). В микросхемах КМОП используются комплементарные ключи на МОП-транзисторах. Они отличаются высокой помехоустойчивостью. Логика КМОП является очень перспективной. Рассмотренный ранее комплементарный ключ фактически является элементом НЕ (инвертором).

КМОП — логический элемент

Рассмотрим КМОП — логический элемент, реализующий функцию ИЛИ-НЕ (рис. 3.32).

Если входные напряжения имеют низкие уровни (u 1 и u 2 меньше порогового напряжения n-МОП-транзистора U зи.порог. n), то транзисторы Т 1 и Т 2 закрыты, транзисторы Т 3 и Т 4 открыты и выходное напряжение имеет высокий уровень. Если одно или оба входных u 1 и u 2 имеют высокий уровень, превышающий U зи.порог. n , то открывается один или оба транзистора Т 1 и Т 2 , а между истоком и затвором одного или обоих транзисторов Т 3 и Т 4 устанавливается низкое напряжение, что приводит к запиранию одного или обоих транзисторов Т 3 и Т 4 , а следовательно, на выходе устанавливается низкое . Таким образом, этот элемент реализует функцию u вых = u 1 +u 2 и потребляет мощность от источника питания лишь в короткие промежутки времени, когда происходит его переключение.

Интегральная инжекционная логика (ИИЛ или И 2 Л) построена на использовании биполярных транзисторов и применении оригинальных схемотехнических и технологических решений. Для нее характерно очень экономичное использование площади кристалла полупроводника. Элементы И 2 Л могут быть реализованы только в интегральном исполнении и не имеют аналогов в дискретной схемотехнике. Структура такого элемента и его эквивалентная схема приведены на рис. 3.33, из которого видно, что транзистор T 1 (p-n-p) расположен горизонтально, а многоколлекторный Т 2 (n-p n) расположен вертикально. T 1 выполняет роль инжектора, обеспечивающего поступление дырок из эмиттера транзистора T 1 (при подаче на него положительного через ограничивающий резистор) в базу транзистора Т 2 . Если u 1 соответствует логическому «0», то инжекционный не протекает по базе многоколлекторного транзистора Т 2 и токи в цепях коллекторов транзистора Т 2 не протекают, т. е. на выходах транзистора Т 2 устанавливаются логические «1». При напряжении u 1 соответствующем логической «1», инжекционный протекает по базе транзистора Т 2 и на выходах транзистора Т 2 — логические нули.

Рассмотрим реализацию элемента ИЛИ-НЕ на основе элемента, представленного на рис. 3.34 (для упрощения другие коллекторы многоколлекторных транзисторов Т 3 и Т 4 на рисунке не показаны). Когда на один или оба входа подается логический сигнал «1», то u вых соответствует логическому нулю. Если на обоих входах логические сигналы «0», то напряжение u вых соответствует логической единице.

Логика на основе полупроводника из арсенида галлия GaAs характеризуется наиболее высоким быстродействием, что является следствием высокой подвижности электронов (в 3…6 раз больше по сравнению с кремнием). Микросхемы на основе GaAs могут работать на частотах порядка 10 ГГц и более.

Сокращение КМОП означает «комплементарный МОП-транзистор». Также иногда используется сокращение COSMOS, которое обозначает «комплементарная симметричная МОП-структура». Логические элементы этого подсемейства строятся как на «-канальных МОП-полевых транзисторах, так и на /^-канальных МОП-полевых транзисторах. Схемы этого подсемейства характеризуются ярко выраженной симметрией. При разработке схем применяют только самозапирающиеся МОП-транзисторы (см. Бойт, Электроника, ч. 2, разд. 8.2, МОП-полевые транзисторы).
Симметричность схем видна особенно хорошо в схеме элемента НЕ (рис. 6.91). Если на входе А действует Я-уровень, например +5 В, то транзистор Т2 отпирается. На его истоке и подложке 0 В. Напряжение затвор-исток UGS составляет +5 В. К истоку и подложке транзистора Тх приложены +5 В.

Если к управляющему электроду также прикладываются +5 В, то напряжение затвор-исток UGS = О В. Транзистор Тх заперт. Если Тх заперт, а Т2 открыт, то выход элемента Z имеет уровень L (рис. 6.92).
Если на входе А действует i-уровень О В, то транзистор Т2 запирается и напряжение затвор-исток UGS составляет О В. Напряжение затвор-исток транзистора Ту UGS = —5 В, так как напряжение истока +5 В, а затвора О В. Транзистор отпирается. Если Тх открыт, а Т2 заперт, выход элемента Z имеет уровень Н.
В КМОП-НЕ-элементе всегда один транзистор открыт, а другой заперт.
Если на выходе элемента НЕ действует уровень 0, то элемент практически не потребляет ток, так как Тх заперт. Если на выходе элемента НЕ действует уровень Н, то элемент также практически не потребляет ток, так как теперь Т2 заперт. Для управления последовательно включенными элементами также не требуется ток, так как полевые транзисторы практически не потребляют мощность. Только во время переключения от источника питания потребляется небольшой ток, так как оба транзистора одновременно, но недолго открыты. Один из транзисторов переходит из открытого состояния в запертое и еще не полностью заперт, а другой — из запертого в открытое и еще не полностью открыт. Также должны перезарядиться транзисторные емкости.
Все КМОП-элементы устроены так, что в токовой ветви один транзистор закрыт, а другой открыт. Энергопотребление КМОП-элементов крайне низко. Оно зависит в основном от количества переключений в секунду или частоты переключения.
КМОП-элементы отличаются малым энергопотреблением.
На рис. 6.93 изображена следующая типичная КМОП-схема. Если на обоих входах действует уровень L, то транзисторы 7’ и Т2 будут открыты, транзисторы Тг и Т4 заперты. Ту и Т2 при О В на А и В имеют UGS = — 5 В, а Т3 и Т4 имеют UGS = О В. На выходе Z действует уровень Н.
Если на входе А действует уровень Н(+5 В), а на входе 5-уровень L (О В), то Ту закрывается, а Т2 открывается. Путь от источника питания к выходу Z блокирован запертым транзистором.

Одновременно отпирается транзистор Т3 и на выходе Z действует примерно О В, то есть уровень L. Г4 заперт. Z всегда имеет уровень Z, если по крайней мере на одном входе действует уровень Н. Соответствующая схеме (рис. 6.93) рабочая таблица представлена на рис. 6.94. Схема производит при положительной логике операцию ИЛИ-НЕ.
Какую логическую операцию производит схема на рис. 6.95? Прежде всего для схемы должна быть составлена рабочая таблица. Если на обоих входах действуют Z-уровни (О В), то транзисторы Т{ и Т2 открываются (UGS = — 5 В). Транзисторы Т3 и Г4 закрываются (UGS = О В). На выходе Л-уровень.
Если на обоих входах действуют #-уровни (+5 В), то транзисторы Тъ и Т4 открываются, а транзисторы Тх и Т2 закрываются. На выходе Z будет действовать Z-уровень.
Если на один вход приложен Я-уровень, а на другой — Z-уровень, то один из верхних транзисторов на рис. 6.95 (7^ или Т2) открывается. Один из нижних (Т3 или Г4) запирается. Через открытые транзисторы к выходу будет прикладываться if-уровень. На рис. 6.96 представлена соответствующая таблица истинности. Схема выполняет при положительной логике функцию И-НЕ.

КМОП-элементы производятся в основном в виде элементов И-НЕ и ИЛИ-НЕ.
Особым элементом подсемейства КМОП является передаточный элемент. Он состоит из параллельного включенных и-канального МОП-транзистора и ^-канального МОП-транзистора (рис. 6.97).
Передаточный элемент работает как переключатель.
Если к Gx будет приложен уровень Н (например +5 В) и к G2 — уровень L (О В), то оба транзистора запираются. В /ьканальном МОП-транзисторе между управляющим электродом и подложкой приложено напряжение О В. Образование проводящего канала между истоком и стоком становится невозможным. Также и в я-канальном МОП-транзисторе между управляющим электродом и подложкой приложено напряжение О В. Здесь также не может возникнуть проводящий канал. Сопротивление между точками А и Zдостигает нескольких сотен МОм.
Если на <7, действует уровень L (О В), а на G2 — уровень Н (+5 В), то напряжение затвора /^-канального МОП-транзистора относительно подложки будет —5 В. Напряжение затвора и-канального МОП-транзистора относительно подложки +5 В. При этих напряжениях образуются проводящие каналы между истоком и стоком. Канал между А и Z будет низкоомным (примерно от 200 Ом до 400 Ом). Рабочая таблица представлена на рис. 6.98.
Уровни на входах Gl и G2 всегда прикладываются в противофазе. Управление может происходить с помощью элемента НЕ (рис. 6.99). Получается двунаправленный ключ. У полевых транзисторов передаточного элемента исток и сток могут взаимно менять свои функции. Поэтому вывод затвора обозначается в середине его условной линии (рис. 6.99).
Интегрированные КМОП-микросхемы всегда содержат множество логических элементов, которые могут быть использованы по отдельности или как единая сложная логическая функция. На рис. 6.100 показана структура схемы CD 4000 А. Эта схема содержит два элемента ИЛИ-HE с тремя входами каждый и элемент НЕ. Схема CD 4012 А (рис. 6.101) содержит два элемента И-НЕ с четырьмя входами каждый.
Интегральные схемы арифметических логических устройств содержат очень много КМОП-элементов. На рис. 6.102 приведена схема 4-битного сдвигающего регистра. Эта схема рассмотрена подробно в гл. 8.

Рис. 6.102. Схема КМОП-4-битного сдвигового регистра CD 4015 A (RCA)

Микросхема CD 4008 А является 4-битным полным сумматором. Полные сумматоры рассматриваются подробно в гл. 10. Схема приведена здесь как пример КМОП-схемотехники (рис. 6.103).
Интегральные микросхемы в КМОП-исполнении могут производиться с очень большой плотностью элементов,
Можно схему целого калькулятора уместить в одной микросхеме. Дальнейшее совершенствование технологий ведет к повышению возможной плотности компоновки.
Напряжение питания КМОП-элементов может колебаться в широком диапазоне.
Для серии CD-4000-A (рис. 6.100—6.103) фирма-производитель RCA указывает диапазон напряжений питания от 3 В до 15 В. Типичные передаточные характеристики при ряде напряжений питания показаны на рис. 6.104.
Часто используются напряжения питания +5 В и +10 В. Для этих напряжений питания на рис. 6.105 и 6.106 показаны диаграммы уровней. Для больших напряжений питания характерна лучшая помехоустойчивость.
Разность между уровнями L и Н, отвечающая за помехоустойчивость, для КМОП-схем составляет примерно от 30% до 40% напряжения питания.
В следующей таблице приведены важнейшие параметры КМОП-эле-ментов:

Рис. 6.103. Схема КМОП-4-битного полного сумматора CD 4008 A (RCA)

Лекция. Изготовление процессоров

Микропроцессор - это интегральная схема, сформированная на маленьком кристалле кремния. Кремний применяется в микросхемах в силу того, что он обладает полупроводниковыми свойствами: его электрическая проводимость больше, чем у диэлектриков, но меньше, чем у металлов. Кремний можно сделать как изолятором, препятствующим движению электрических зарядов, так и проводником - тогда электрические заряды будут свободно проходить через него. Проводимостью полупроводника можно управлять путем введения примесей.

Микропроцессор содержит миллионы транзисторов , соединенных между собой тончайшими проводниками из алюминия или меди и используемых для обработки данных. Так формируются внутренние шины. В результате микропроцессор выполняет множество функций – от математических и логических операций до управления работой других микросхем и всего компьютера.

Один из главных параметров работы микпроцессора – частота работы кристалла, определяющая количество операций за единицу времени, частота работы системной шины, объем внутренней кэш-памяти SRAM. По частоте работы кристалла маркируют процессор. Частота работы кристалла определяется частотой переключений транзисторов из закрытого состояния в открытое. Возможность транзистора переключаться быстрее определяется технологией производства кремниевых пластин, из которых делаются чипы. Размерность технологического процесса определяет размеры транзистора (его толщину и длину затвора).

Как делают микросхемы

Как известно из школьного курса физики, в современной электронике основными компонентами интегральных микросхем являются полупроводники p-типа и n-типа (в зависимости от типа проводимости). Полупроводник - это вещество, по проводимости превосходящее диэлектрики, но уступающее металлам. Основой полупроводников обоих типов может служить кремний (Si), который в чистом виде (так называемый собственный полупроводник) плохо проводит электрический ток, однако добавление (внедрение) в кремний определенной примеси позволяет радикально изменить его проводящие свойства. Существует два типа примеси: донорная и акцепторная .



Донорная примесь приводит к образованию полупроводников n-типа c электронным типом проводимости, а акцепторная - к образованию полупроводников p-типа с дырочным типом проводимости. Контакты p- и n-полупроводников позволяют формировать транзисторы - основные структурные элементы современных микросхем. Такие транзисторы, называемые КМОП-транзисторами, могут находиться в двух основных состояниях: открытом, когда они проводят электрический ток, и запертом - при этом они электрический ток не проводят. Поскольку КМОП-транзисторы являются основными элементами современных микросхем, поговорим о них подробнее.

Говоря о процессорах Intel, часто используют такие специфические понятия, как 0,13-микронный технологический процесс, а в последнее время - 90-нанометровый технологический процесс. К примеру, принято говорить, что новый процессор Intel Pentium 4 с ядром Northwood выполнен по 0,13-микронной технологии, а будущее поколение процессоров будет основано на 90-нанометровом технологическом процессе. В чем же разница между этими технологическими процессами и как она отражается на возможностях самих процессоров?

Как устроен КМОП-транзистор

Простейший КМОП-транзистор n-типа имеет три электрода: исток, затвор и сток . Сам транзистор выполнен в полупроводнике p-типа с дырочной проводимостью, а в областях стока и истока формируются полупроводники n-типов с электронной проводимостью. Естественно, что за счет диффузии дырок из p-области в n-область и обратной диффузии электронов из n-области в p-область на границах переходов p- и n-областей формируются обедненные слои (слои, в которых отсутствуют основные носители зарядов). В обычном состоянии, то есть когда к затвору не прикладывается напряжение, транзистор находится в «запертом» состоянии, то есть не способен проводить ток от истока к стоку. Ситуация не меняется, даже если приложить напряжение между стоком и истоком (при этом мы не принимаем во внимание токи утечки, вызванные движением под воздействием формируемых электрических полей неосновных носителей заряда, то есть дырок для n-области и электронов для p-области).

Однако если к затвору приложить положительный потенциал (рис. 1), то ситуация в корне изменится.

Рис. 1. Принцип работы КМОП-транзистора

Под воздействием электрического поля затвора дырки выталкиваются в глубь p-полупроводника, а электроны, наоборот, втягиваются в область под затвором, образуя обогащенный электронами канал между истоком и стоком. Если приложить к затвору положительное напряжение, эти электроны начинают двигаться от истока к стоку. При этом транзистор проводит ток - говорят, что транзистор «открывается». Если напряжение с затвора снимается, электроны перестают втягиваться в область между истоком и стоком, проводящий канал разрушается и транзистор перестает пропускать ток, то есть «запирается». Таким образом, меняя напряжение на затворе, можно открывать или запирать транзистор, аналогично тому, как можно включать или выключать обычный тумблер, управляя прохождением тока по цепи. Именно поэтому транзисторы иногда называют электронными переключателями. Однако, в отличие от обычных механических переключателей, КМОП-транзисторы практически безынерционны и способны переходить из открытого в запертое состояние триллионы раз в секунду! Именно этой характеристикой, то есть способностью мгновенного переключения, и определяется в конечном счете быстродействие процессора, который состоит из десятков миллионов таких простейших транзисторов.

Итак, современная интегральная микросхема состоит из десятков миллионов простейших КМОП-транзисторов.

Вот изображение поперечного сечения процессора:

Сверху находится защитная металлическая крышка, которая помимо защитной функции, так же выполняет роль теплораспределителя – именно ее мы обильно мажем термопастой, когда устанавливаем кулер. Под теплораспределителем находится тот самый кусочек кремния, который выполняет все пользовательские задачи. Еще ниже – специальная подложка, которая нужна для разводки контактов (и увеличения площади «ножек»), чтобы процессор можно было установить в сокет материнской платы.

Сам чип состоит из кремния, на котором находится до 9 слоев металлизации (из меди) – именно столько уровней нужно, чтобы по определенному закону можно было соединить транзисторы, находящиеся на поверхности кремния (так как сделать все это на одном уровне просто невозможно). По сути, эти слои выполняют роль соединительных проводов, только в гораздо меньшем масштабе; чтобы «провода» не закорачивали друг друга, их разделяют слоем оксида (с низкой диэлектрической проницаемостью).

Остановимся более подробно на процессе изготовления микросхем, первый этап которого - получение кремниевых подложек.

Шаг 1. Выращивание болванок

Шаг 2. Нанесение защитной пленки диэлектрика (SiO2)

Шаг 3. Нанесение фоторезистива

Шаг 4. Литография

Шаг 5. Травление

Шаг 6. Диффузия (ионная имплантация)

Шаг 7. Напыление и осаждение

Шаг 8. Заключительный этап

Перспективные технологии

Параметры современных КМОП-микросхем (комплементарных МОП-микросхем) приближаются к идеальным. Во-первых, типовое значение статической рассеиваемой мощности КМОП-микросхемы, которая возникает из-за токов утечки, составляет порядка 10 нВт на один вентиль. Активная же (или динамическая) рассе-ваемая мощность зависит от напряжения источника питания, частоты переключения, выходной нагрузки и времени нарастания входного сигнала, но ее типовое значение для одного вентиля при частоте 1 МГц и нагрузке емкостью 50пФ не превышает 10мВт.

Во-вторых, хотя время задержки распространения сигнала в КМОП-вентилях и не равно нулю, но достаточно мало. В зависимости от напряжения источника питания задержка распространения сигнала для типового элемента находится в диапазоне от 4 до 8 не.

В-третьих, времена нарастания и спада контролируемы и представляют собой скорее линейные, чем ступенчатые функции. Обычно они имеют на 20-40% большие значения, чем время задержки распространения сигнала.

И, наконец, типовое значение помехоустойчивости составляет приблизительно 45% от амплитуды выходного сигнала.

Еще одним немаловажным фактором, свидетельствующим в пользу КМОП-микросхем, является их малая стоимость, особенно при использовании в портативном оборудовании, питающемся от маломощных батарей.

Источники питания, в системах, построенных на КМОП-микросхемах, могут быть маломощными, и, как следствие, недорогими. Благодаря малой потребляемой мощности, подсистема питания может быть проще, а значит дешевле. В радиаторах и вентиляторах нет необходимости, благодаря низкой рассеиваемой мощности. Непрерывное совершенствование технологических процессов, а также увеличение объемов производства и расширение ассортимента выпускаемых КМОП-микросхем приводят к снижению их стоимости.

Существует множество серий логических микросхем КМОП-структуры. Первой из них была серия К176, далее - К561 (CD4000AN) и КР1561 (CD4000BN), но наибольшее развитие функциональные ряды получили в сериях КР1554 (74АСхх), КР1564 (74HCxx) и КР1594 (74ACTxx).

Функциональные ряды современных КМОП-микросхем серий КР1554, КР1564 и КР1594 содержат полнофункциональные эквиваленты микросхем ТТЛШ-серий КР1533 (74ALS) и К555 (74LS), которые полностью совпадают как по выполняемым функциям, так и по разводке выводов А.Л. Одинец, г. Минск, E-mail: [email protected] (цоколевке). Современные КМОП-микросхемы по сравнению с их прототипами, сериями К176 и К561, потребляют значительно меньшую динамическую мощность и многократно превосходят их по быстродействию.

Для упрощения схемотехнических решений разработаны КМОП-серии как с входным пороговым напряжением ТТЛ-уровней (КР1594 и некоторые другие), так и КМОП-уровней (КР1554, КР1564 и некоторые другие). Диапазон рабочих температур для микросхем общего применения находится в пределах -4О...+85°С и -55... + 125°С - для микросхем специального применения. В таблице 1 приведено сравнение входных и выходных характеристик КМОП и ТТЛШ-микросхем.

Характеристики КМОП-микросхем

Цель данного раздела заключается в том, чтобы дать разработчику цифровых систем необходимые сведения о том, как работают цифровые микросхемы структуры КМОП и как ведут себя при воздействии различных управляющих сигналов. Достаточно много было написано о конструкции и технологии производства микросхем КМОП, поэтому сегодня рассмотрим только их схемотехнические особенности.

Таблица 1. Сравнение электрических параметров КМОП и ТТЛШ-схем

Основной КМОП-схемой является инвертор, показанный на рис. 1. Он состоит из двух полевых транзисторов, работающих в режиме обогащения: с каналом Р-типа (верхний) и каналом N-типа (нижний). Для обозначения выводов питания приняты: VDD или Vcc- для положительного вывода и Vss или GND - для отрицательного. Обозначения VDD и Vcc позаимствованы из обычных МОП-схем и символизируют источники питания истока и стока транзисторов. Они не относятся непосредственно к схемам КМОП, поскольку выводами питания являются истоки обоих комплементарных транзисторов. Обозначения Vss или GND позаимствованы от ТТЛ-схем, и эта терминология сохранилась и для КМОП-микросхем. Далее будут указываться обозначения VCC и GND.


Рис. 1. Простейший КМОП-инвертор

Логическими уровнями в КМОП-системе являются Vcc (логическая "1") и GND (логический "0"). Поскольку ток, протекающий во "включенном" МОП-транзисторе, практически не создает на нем падения напряжения, а входное сопротивление КМОП-вентиля очень велико (входная характеристика МОП-транзистора в основном емкостная и выглядит подобно его вольтамперной характеристике сопротивлением 1012Ом, зашунтированного конденсатором емкостью 5пФ), то и логические уровни в КМОП-системе будут практически равны напряжению источника питания.

Предлагаем рассмотреть характеристические кривые МОП-транзисторов для того, чтобы получить представление о том, как будут изменяться времена нарастания и спада, задержки распространения сигнала и рассеиваемая мощность с изменением напряжения источника питания и емкости нагрузки.

На рис. 2 показаны характерные кривые N-каналь-ного и Р-канального полевых транзисторов, работающих в режиме обогащения.

Из этих характеристик следует ряд важных выводов. Рассмотрим кривую для N-канального транзистора с напряжением Затвор-Исток, равным VGS=15B. Следует заметить, что для постоянного управляющего напряжения VGS, транзистор ведет себя, как источник тока при значениях VDS (напряжение Сток-Исток) больших, чем VGS-VT (Ут-пороговое напряжение МОП-транзистора). При значениях VDS, меньших VGS-VT, транзистор ведет себя в основном подобно резистору.

Следует также заметить, что при меньших значениях VGS кривые имеют аналогичный характер, за тем исключением, что величина 1Ю (ток Сток-Исток) значительно меньше, и, в действительности, 1Ш возрастает пропорционально квадрату VGS. Р-канальный транзистор имеет практически одинаковые, но комплементарные (дополняющие) характеристики.

В случае управления емкостной нагрузкой с помощью КМОП-элементов начальное изменение напряжения, приложенного к нагрузке, будет иметь линейный характер, благодаря "токовой" характеристике на начальном участке, получаемой округлением преобладающей резистивной характеристики, когда значение VDS мало отличается от нуля. Применительно к простейшему КМОП-инвертору, показанному на рис. 1, по мере уменьшения напряжения VDS до нуля выходное напряжение V0UT будет стремиться кУссили GND, в зависимости от того, какой транзистор открыт: Р-канальный или N-канальный.

Если увеличивать Vcc, и, следовательно, VGS, инвертор должен развивать на емкости большую амплитуду напряжения. Однако для одного и того же приращения напряжения нагрузочная способность 1Ю резко возрастает как квадрат VGS, и поэтому времена нарастания и задержки распространения сигнала, показанные на рис. 3, уменьшаются.

Таким образом, можно видеть, что для данной конструкции, и, следовательно, фиксированного значения емкости нагрузки, увеличение напряжения источника питания повысит быстродействие системы. Увеличение Vcc не только повысит быстродействие, но также и рассеиваемую инвертором динамическую мощность, имеющую две составляющие. Во-первых, это мощность, расходуемая на перезарядку емкости нагрузки. Эта составляющая рассеиваемой мощности пропорциональна величине емкости нагрузки, частоте переключения инвертора и квадрату падения напряжения на нагрузке.


Рис. 2. Зависимость выходного тока Ids от выходного напряжения для трех разных значений питающего напряжения Voo и начального смещения Затвор-Исток Vos

Вторая составляющая рассеиваемой инвертором мощности обусловлена тем, что каждый раз, когда схема переключается из одного состояния в другое, при VCC>2VT кратковременно возникает сквозной tokIsw, протекающий от Vcc к GND через два одновременно частично открытых выходных транзистора.

Поскольку пороговые напряжения транзисторов не изменяются с ростом Vcc, то диапазон входного напряжения, в пределах которого верхний и нижний транзисторы одновременно находятся в проводящем состоянии, увеличивается с ростом Vcc. В то же время большее значение Vcc обеспечивает большие значения управляющих напряжений VGS, которые также приводят к увеличению тока Isw. Однако если бы время нарастания входного сигнала равнялось нулю, то через выходные транзисторы не было сквозного тока. Очевидно, что времена нарастания и спада фронтов входного сигнала должны иметь минимальное значение для уменьшения рассеиваемой мощности.

Рассмотрим, как зависят передаточные характеристики инвертора от питающего напряжения Vcc(pnc. 5). Условимся считать, что оба транзистора имеют идентичные, но комплементарные (взаимодополняющиеся)характеристики и пороговые напряжения. Если Vcc меньше порогового напряжения 2VT, ни один из транзисторов не может быть включен, и схема находится в закрытом состоянии. На рис. 5а показана ситуация, когда напряжение источника питания в точности соответствует пороговому напряжению. В таком случае схема должна работать со 100% гистерезисом. Однако, это не совсем гистерезис, поскольку оба выходных транзистора закрыты, и выходное напряжение поддерживается на емкостях затворов, следующих по цепи схем. Если Vcc находится в пределах одного-двух пороговых напряжений (рис. 56), происходит уменьшение величины "гистерезиса" по мере приближения Vcc кзначению, эквивалентному 2VT (рис. 5в). При напряжении Vcc, эквивалентном двум пороговым напряжениям "гистерезис" отсутствует, также нет и сквозного тока через транзисторы в моменты переключений. Когда значение Vcc превышает два пороговых напряжения, кривые передаточной характеристики начинают закругляться (рис. 5г). Когда Vm проходит через область, где оба транзистора открыты, протекающие в каналах транзисторов токи создают падения напряжений, дающие закругления характеристик.

Рассматривая КМОП-систему на предмет устойчивости к шуму, необходимо иметь ввиду, по крайней мере, две характеристики: помехоустойчивость и запас помехоустойчивости.


Рис. З. Измерение времен нарастания и спада, а также задержек распространения сигнала в КМОП-системе

Современные КМОП-схемы имеют типичное значение помехоустойчивости, равное 0,45Vcc. Это означает, что ложный входной сигнал, отличающийся от Vcc или GND на величину, равную 0,45Vcc, или меньшую, не будет распространяться в системе, как ошибочный логический уровень. Обычно такой сигнал не изменяет выходное состояние логического элемента. В триггере, например, ложный входной синхронизирующий импульс амплитудой 0,45Vcc не приведет к изменению его состояния.

Это не означает, что на выходе схемы вообще не появится никакого сигнала. На самом деле в результате воздействия сигнала помехи на выходе инвертора появится выходной сигнал, но он будет ослаблен по амплитуде. По мере его распространения в цифровой системе, сигнал будет ослаблен последующими схемами еще больше, пока совсем не исчезнет.


Рис. 4. Гарантированный запас помехоустойчивости КМОП-схемы в диапазоне температур как функция напряжения питания V

Производитель КМОП-микросхем также гарантирует наличие запаса помехоустойчивости в 1В во всем диапазоне питающих напряжений и температур и для любой комбинации входов. Это всего лишь отклонение характеристики помехоустойчивости. Другими словами, из данной характеристики следует, что для того, чтобы выходной сигнал схемы, выраженный в вольтах, находился в пределах 0,1 Vcc от значения соответствующего логического уровня ("нуля" или "единицы"), входной сигнал не должен превышать значение 0,1 Vcc плюс 1В выше уровня "земли" или ниже уровня "питания". Графически данная ситуация показана на рис. 4.

Для стандартных ТТЛ-схем, например, запас помехоустойчивости составляет 0,4В (рис. 6).

Анализ особенностей применения КМОП-микросхем


Рис.5 Передаточные характеристики для разных значений питающего напряжения Vcc

В данном разделе рассмотрены различные ситуации, возникающие при разработке цифровых систем с использованием КМОП-микросхем: неиспользуемые входы, параллельное включение элементов для увеличения нагрузочной способности, разводка шин данных, согласование с логическими элементами других семейств.


Рис. 6. Гарантированные значения диапазона напряжений логических уровней для ТТЛ-схем в диапазоне температур как функция напряжения питания V

Неиспользуемые выводы или, проще говоря, неиспользуемые входы не должны оставаться неподключенными. Из-за очень большого входного сопротивления (1012 Ом) плавающий вход может дрейфовать между логическими "нулем" и "единицей", создавая непредсказуемое поведение выхода схемы и связанные с этим проблемы в системе. Все неиспользуемые входы должны быть подключены к шине питания, "общему" проводу или другому используемому входу. Выбор решения не случаен, поскольку надо учитывать возможное влияние на выходную нагрузочную способность схемы. Рассмотрим для примера че-тырехвходовый элемент 4И-НЕ, используемый как двухвходовый логический вентиль 2И-НЕ. Его внутренняя структура показана на рис. 7.

Пусть входы А и В будут неиспользуемыми входами. Если неиспользуемые входы подключены к фиксированному высокому логическому уровню, то входы А и В - к шине питания, чтобы разрешить работу остальных входов. Это приведет к включению нижних А и В транзисторов и выключению соответствующих верхних А и В. В таком случае могут быть включены одновременно не более двух верхних транзисторов. Однако если входы А и В подключены к входу С, входная емкость утроится, но каждый раз, когда на вход С поступает уровень логического "нуля", верхние транзисторы А, В и С включаются, утраивая значение максимального выходного тока уровня логической "единицы". Если на вход D поступает также уровень логического "нуля", все четыре верхних транзистора включены. Таким образом, подключение неиспользуемых входов элемента И-НЕ к шине питания (ИЛИ-НЕ к "общему" проводу) приведет к их включению, но подключение неиспользуемых входов к другим используемым входам гарантирует увеличение выходного вытекающего тока уровня логической "единицы", в случае элемента И-НЕ (или выходного втекающего тока уровня логического "нуля" в случае элемента ИЛИ-НЕ).

Для последовательно включенных транзисторов увеличения выходного тока не происходит. Учитывая это обстоятельство, многовходовый логический элемент может использоваться для непосредственного управления мощной нагрузкой, к примеру, обмоткой реле или лампой накаливания.

В зависимости от типа логического элемента объединение входов гарантирует увеличение нагрузочной способности для вытекающего или втекающего токов, но не двух одновременно. Для того чтобы гарантировать увеличение двух выходных токов, необходимо параллельно включить несколько логических элементов (рис. 8). В таком случае увеличение нагрузочной способности достигается за счет параллельного включения нескольких цепочек транзисторов (рис. 7), что увеличивает соответствующий выходной ток.


Рис. 7. Четырехвходовый логический элемент 4И-НЕ, входящий в состав микросхемы КР1561ЛА1

Для разводки шин данных существуют два основных способа. Первый способ - параллельное соединение обычных буферных КМОП-элементов (например, К561ЛН2). И второй, наиболее предпочтительный, способ - соединение элементов с тремя выходными состояниями.

Статья предоставлена редакцией журнала Электроника . Другие статьи журнала "Электроника" можно прочитать