Область допустимых значений - ОДЗ. (2019). Определение функции

Функция y=f(x) — это такая зависимость переменной y от переменной x , когда каждому допустимому значению переменной x соответствует единственное значение переменной y .

Областью определения функции D(f) называют множество всех допустимых значений переменной x .

Область значений функции E(f) — множество всех допустимых значений переменной y .

График функции y=f(x) — множество точек плоскости, координаты которых удовлетворяют данной функциональной зависимости, то есть точек, вида M (x; f(x)) . График функции представляет собой некоторую линию на плоскости.

Если b=0 , то функция примет вид y=kx и будет называться прямой пропорциональностью .

D(f) : x \in R;\enspace E(f) : y \in R

График линейной функции — прямая.

Угловой коэффициент k прямой y=kx+b вычисляется по следующей формуле:

k= tg \alpha , где \alpha — угол наклона прямой к положительному направлению оси Ox .

1) Функция монотонно возрастает при k > 0 .

Например: y=x+1

2) Функция монотонно убывает при k < 0 .

Например: y=-x+1

3) Если k=0 , то придавая b произвольные значения, получим семейство прямых параллельных оси Ox .

Например: y=-1

Обратная пропорциональность

Обратной пропорциональностью называется функция вида y=\frac {k}{x} , где k — отличное от нуля, действительное число

D(f) : x \in \left \{ R/x \neq 0 \right \}; \: E(f) : y \in \left \{R/y \neq 0 \right \} .

Графиком функции y=\frac {k}{x} является гипербола.

1) Если k > 0 , то график функции будет располагаться в первой и третьей четверти координатной плоскости.

Например: y=\frac{1}{x}

2) Если k < 0 , то график функции будет располагаться во второй и четвертой координатной плоскости.

Например: y=-\frac{1}{x}

Степенная функция

Степенная функция — это функция вида y=x^n , где n — отличное от нуля, действительное число

1) Если n=2 , то y=x^2 . D(f) : x \in R; \: E(f) : y \in ; основной период функции T=2 \pi

Любое выражение с переменной имеет свою область допустимых значений, где оно существует. ОДЗ необходимо всегда учитывать при решении. При его отсутствии можно получить неверный результат.

В данной статье будет показано, как правильно находить ОДЗ, использовать на примерах. Также будет рассмотрена важность указания ОДЗ при решении.

Yandex.RTB R-A-339285-1

Допустимые и недопустимые значения переменных

Данное определение связано с допустимыми значениями переменной. При введении определения посмотрим, к какому результату приведет.

Начиная с 7 класса, мы начинаем работать с числами и числовыми выражениями. Начальные определения с переменными переходят к значению выражений с выбранными переменными.

Когда имеются выражения с выбранными переменными, то некоторые из них могут не удовлетворять. Например, выражение вида 1: а, если а = 0 , тогда оно не имеет смысла, так как делить на ноль нельзя. То есть выражение должно иметь такие значения, которые подойдут в любом случае и дадут ответ. Иначе говоря, имеют смысл с имеющимися переменными.

Определение 1

Если имеется выражение с переменными, то оно имеет смысл только тогда, когда при их подстановке значение может быть вычислено.

Определение 2

Если имеется выражение с переменными, то оно не имеет смысл, когда при их подстановке значение не может быть вычислено.

То есть отсюда следует полное определение

Определение 3

Существующими допустимыми переменными называют такие значения, при которых выражение имеет смысл. А если смысла не имеет, значит они считаются недопустимыми.

Для уточнения вышесказанного: если переменных более одной, тогда может быть и пара подходящих значений.

Пример 1

Для примера рассмотрим выражение вида 1 x - y + z , где имеются три переменные. Иначе можно записать, как x = 0 , y = 1 , z = 2 , другая же запись имеет вид (0 , 1 , 2) . Данные значения называют допустимыми, значит, можно найти значение выражения. Получим, что 1 0 - 1 + 2 = 1 1 = 1 . Отсюда видим, что (1 , 1 , 2) недопустимы. Подстановка дает в результате деление на ноль, то есть 1 1 - 2 + 1 = 1 0 .

Что такое ОДЗ?

Область допустимых значений – важный элемент при вычислении алгебраических выражений. Поэтому стоит обратить на это внимание при расчетах.

Определение 4

Область ОДЗ – это множество значений, допустимых для данного выражения.

Рассмотрим на примере выражения.

Пример 2

Если имеем выражение вида 5 z - 3 , тогда ОДЗ имеет вид (− ∞ , 3) ∪ (3 , + ∞) . Эта область допустимых значений, удовлетворяющая переменной z для заданного выражения.

Если имеется выражения вида z x - y , тогда видно, что x ≠ y , z принимает любое значение. Это и называют ОДЗ выражения. Его необходимо учитывать, чтобы не получить при подстановке деление на ноль.

Область допустимых значений и область определения имеет один и тот же смысл. Только второй из них используется для выражений, а первый – для уравнений или неравенств. При помощи ОДЗ выражение или неравенство имеет смысл. Область определения функции совпадает с областью допустимых значений переменной х к выражению f (x) .

Как найти ОДЗ? Примеры, решения

Найти ОДЗ означает найти все допустимые значения, подходящие для заданной функции или неравенства. При невыполнении этих условий можно получить неверный результат. Для нахождения ОДЗ зачастую необходимо пройти через преобразования в заданном выражении.

Существуют выражения, где их вычисление невозможно:

  • если имеется деление на ноль;
  • извлечение корня из отрицательного числа;
  • наличие отрицательного целого показателя – только для положительных чисел;
  • вычисление логарифма отрицательного числа;
  • область определения тангенса π 2 + π · k , k ∈ Z и котангенса π · k , k ∈ Z ;
  • нахождение значения арксинуса и арккосинуса числа при значении, не принадлежащем [ - 1 ; 1 ] .

Все это говорит о том, как важно наличие ОДЗ.

Пример 3

Найти ОДЗ выражения x 3 + 2 · x · y − 4 .

Решение

В куб можно возводить любое число. Данное выражение не имеет дроби, поэтому значения x и у могут быть любыми. То есть ОДЗ – это любое число.

Ответ: x и y – любые значения.

Пример 4

Найти ОДЗ выражения 1 3 - x + 1 0 .

Решение

Видно, что имеется одна дробь, где в знаменателе ноль. Это говорит о том, что при любом значении х мы получим деление на ноль. Значит, можно сделать вывод о том, что это выражение считается неопределенным, то есть не имеет ОДЗ.

Ответ: ∅ .

Пример 5

Найти ОДЗ заданного выражения x + 2 · y + 3 - 5 · x .

Решение

Наличие квадратного корня говорит о том, что это выражение обязательно должно быть больше или равно нулю. При отрицательном значении оно не имеет смысла. Значит, необходимо записать неравенство вида x + 2 · y + 3 ≥ 0 . То есть это и есть искомая область допустимых значений.

Ответ: множество x и y , где x + 2 · y + 3 ≥ 0 .

Пример 6

Определить ОДЗ выражения вида 1 x + 1 - 1 + log x + 8 (x 2 + 3) .

Решение

По условию имеем дробь, поэтому ее знаменатель не должен равняться нулю. Получаем, что x + 1 - 1 ≠ 0 . Подкоренное выражение всегда имеет смысл, когда больше или равно нулю, то есть x + 1 ≥ 0 . Так как имеет логарифм, то его выражение должно быть строго положительным, то есть x 2 + 3 > 0 . Основание логарифма также должно иметь положительное значение и отличное от 1 , тогда добавляем еще условия x + 8 > 0 и x + 8 ≠ 1 . Отсюда следует, что искомое ОДЗ примет вид:

x + 1 - 1 ≠ 0 , x + 1 ≥ 0 , x 2 + 3 > 0 , x + 8 > 0 , x + 8 ≠ 1

Иначе говоря, называют системой неравенств с одной переменной. Решение приведет к такой записи ОДЗ [ − 1 , 0) ∪ (0 , + ∞) .

Ответ: [ − 1 , 0) ∪ (0 , + ∞)

Почему важно учитывать ОДЗ при проведении преобразований?

При тождественных преобразованиях важно находить ОДЗ. Бывают случаи, когда существование ОДЗ не имеет место. Чтобы понять, имеет ли решение заданное выражение, нужно сравнить ОДЗ переменных исходного выражения и ОДЗ полученного.

Тождественные преобразования:

  • могут не влиять на ОДЗ;
  • могут привести в расширению или дополнению ОДЗ;
  • могут сузить ОДЗ.

Рассмотрим на примере.

Пример 7

Если имеем выражение вида x 2 + x + 3 · x , тогда его ОДЗ определено на всей области определения. Даже при приведении подобных слагаемых и упрощении выражения ОДЗ не меняется.

Пример 8

Если взять пример выражения x + 3 x − 3 x , то дела обстоят иначе. У нас имеется дробное выражение. А мы знаем, что деление на ноль недопустимо. Тогда ОДЗ имеет вид (− ∞ , 0) ∪ (0 , + ∞) . Видно, что ноль не является решением, поэтому добавляем его с круглой скобкой.

Рассмотрим пример с наличием подкоренного выражения.

Пример 9

Если имеется x - 1 · x - 3 , тогда следует обратить внимание на ОДЗ, так как его необходимо записать в виде неравенства (x − 1) · (x − 3) ≥ 0 . Возможно решение методом интервалов, тогда получаем, что ОДЗ примет вид (− ∞ , 1 ] ∪ [ 3 , + ∞) . После преобразования x - 1 · x - 3 и применения свойства корней имеем, что ОДЗ можно дополнить и записать все в виде системы неравенства вида x - 1 ≥ 0 , x - 3 ≥ 0 . При ее решении получаем, что [ 3 , + ∞) . Значит, ОДЗ полностью записывается так: (− ∞ , 1 ] ∪ [ 3 , + ∞) .

Нужно избегать преобразований, которые сужают ОДЗ.

Пример 10

Рассмотрим пример выражения x - 1 · x - 3 , когда х = - 1 . При подстановке получим, что - 1 - 1 · - 1 - 3 = 8 = 2 2 . Если это выражение преобразовать и привести к виду x - 1 · x - 3 , тогда при вычислении получим, что 2 - 1 · 2 - 3 выражение смысла не имеет, так как подкоренное выражение не должно быть отрицательным.

Следует придерживаться тождественных преобразований, которые ОДЗ не изменят.

Если имеются примеры, которые его расширяют, тогда его нужно добавлять в ОДЗ.

Пример 11

Рассмотрим на примере дроби вида x x 3 + x . Если сократить на x , тогда получаем, что 1 x 2 + 1 . Тогда ОДЗ расширяется и становится (− ∞ 0) ∪ (0 , + ∞) . Причем при вычислении уже работаем со второй упрощенной дробью.

При наличии логарифмов дело обстоит немного иначе.

Пример 12

Если имеется выражение вида ln x + ln (x + 3) , его заменяют на ln (x · (x + 3)) , опираясь на свойство логарифма. Отсюда видно, что ОДЗ с (0 , + ∞) до (− ∞ , − 3) ∪ (0 , + ∞) . Поэтому для определения ОДЗ ln (x · (x + 3)) необходимо производить вычисления на ОДЗ, то есть (0 , + ∞) множества.

При решении всегда необходимо обращать внимание на структуру и вид данного по условию выражения. При правильном нахождении области определения результат будет положительным.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Как найти область определения функции? Ученикам средних классов приходится часто сталкиваться с данной задачей.

Родителям следует помочь своим детям разобраться в данном вопросе.

Задание функции.

Напомним основополагающие термины алгебры. Функцией в математике называют зависимость одной переменной от другой. Можно сказать, что это строгий математический закон, который связывает два числа определенным образом.

В математике при анализе формул числовые переменные подменяют буквенными символами. Наиболее часто используют икс («х») и игрек («у»). Переменную х называют аргументом, а переменную у — зависимой переменной или функцией от х.

Существуют различные способы задания зависимостей переменных.

Перечислим их:

  1. Аналитический тип.
  2. Табличный вид.
  3. Графическое отображение.

Аналитический способ представляют формулой. Рассмотрим примеры: у=2х+3, у=log(х), у=sin(х). Формула у=2х+3 является типичной для линейной функции. Подставляя в заданную формулу числовое значение аргумента, получаем значение y.

Табличный способ представляет собой таблицу, состоящую из двух столбцов. Первая колонка выделяется для значений икса, а в следующей графе записывают данные игрека.

Графический способ считается наиболее наглядным. Графиком называют отображение множества всех точек на плоскости.

Для построения графика применяют декартовую систему координат. Система состоит из двух перпендикулярных прямых. На осях откладывают одинаковые единичные отрезки. Отсчет производят от центральной точки пересечения прямых линий.

Независимую переменную указывают на горизонтальной линии. Ее называют осью абсцисс. Вертикальная прямая (ось ординат) отображает числовое значение зависимой переменной. Точки отмечают на пересечении перпендикуляров к данным осям. Соединяя точки между собой, получаем сплошную линию. Она являться основой графика.

Виды зависимостей переменных

Определение.

В общем виде зависимость представляется как уравнение: y=f(x). Из формулы следует, что для каждого значения числа х существует определенное число у. Величину игрека, которая соответствует числу икс, называют значением функции.

Все возможные значения, которые приобретает независимая переменная, образуют область определения функции. Соответственно, все множество чисел зависимой переменной определяет область значений функции. Областью определения являются все значения аргумента, при котором f(x) имеет смысл.

Начальная задача при исследовании математических законов состоит в нахождении области определения. Следует верно определять этот термин. В противном случае все дальнейшие расчеты будут бесполезны. Ведь объем значений формируется на основе элементов первого множества.

Область определения функции находится в прямой зависимости от ограничений. Ограничения обусловливаются невозможностью выполнения некоторых операций. Также существуют границы применения числовых значений.

При отсутствии ограничений область определения представляет собой все числовое пространство. Знак бесконечности имеет символ горизонтальной восьмерки. Все множество чисел записывается так: (-∞; ∞).

В определенных случаях массив данных состоит из нескольких подмножеств. Рамки числовых промежутков или пробелов зависят от вида закона изменения параметров.

Укажем список факторов, которые влияют на ограничения:

  • обратная пропорциональность;
  • арифметический корень;
  • возведение в степень;
  • логарифмическая зависимость;
  • тригонометрические формы.

Если таких элементов несколько, то поиск ограничений разбивают для каждого из них. Наибольшую проблему представляет выявление критических точек и промежутков. Решением задачи станет объединение всех числовых подмножеств.

Множество и подмножество чисел

О множествах.

Область определения выражают как D(f), а знак объединения представлен символом ∪. Все числовые промежутки заключают в скобки. Если граница участка не входит во множество, то ставят полукруглую скобку. В ином случае, когда число включается в подмножество, используют скобки квадратной формы.

Обратная пропорциональность выражена формулой у=к/х. График функции представляет собой кривую линию, состоящую из двух веток. Ее принято называть гиперболой.

Так как функция выражена дробью, нахождение области определения сводится к анализу знаменателя. Общеизвестно, что в математике деление на нуль запрещено. Решение задачи сводится к уравниванию знаменателя к нулю и нахождению корней.

Приведем пример:

Задается: у=1/(х+4). Найти область определения.

  1. Приравниваем знаменатель к нулю.
    х+4=0
  2. Находим корень уравнения.
    х=-4
  3. Определяем множество всех возможных значений аргумента.
    D(f)=(-∞ ; -4)∪(-4; +∞)

Ответ: областью определения функции являются все действительные числа, кроме -4.

Значение числа под знаком квадратного корня не может быть отрицательным. В этом случае определения функции с корнем сводится к решению неравенства. Подкоренное выражение должно быть больше нуля.

Область определения корня связана с четностью показателя корня. Если показатель делится на 2, то выражение имеет смысл только при его положительном значении. Нечетное число показателя указывает на допустимость любого значения подкоренного выражения: как положительного, так и отрицательного.

Неравенство решают так же, как уравнение. Существует только одно различие. После перемножения обеих частей неравенства на отрицательное число следует поменять знак на противоположный.

Если квадратный корень находится в знаменателе, то следует наложить дополнительное условие. Значение числа не должно равняться нулю. Неравенство переходит в разряд строгих неравенств.

Логарифмические и тригонометрические функции

Логарифмическая форма имеет смысл при положительных числах. Таким образом, область определения логарифмической функции аналогична функции квадратного корня, за исключением нуля.

Рассмотрим пример логарифмической зависимости: y=lоg(2x-6). Найти область определения.

  • 2x-6>0
  • 2x>6
  • х>6/2

Ответ: (3; +∞).

Областью определения y=sin x и y=cos x является множество всех действительных чисел. Для тангенса и котангенса существуют ограничения. Они связаны с делением на косинус либо синус угла.

Тангенс угла определяют отношением синуса к косинусу. Укажем величины углов, при которых значение тангенса не существует. Функция у=tg x имеет смысл при всех значениях аргумента, кроме x=π/2+πn, n∈Z.

Областью определения функции y=ctg x является все множество действительных чисел, исключая x=πn, n∈Z. При равенстве аргумента числу π или кратному π синус угла равен нулю. В этих точках (асимптотах) котангенс не может существовать.

Первые задания на выявление области определения начинаются на уроках в 7 классе. При первом ознакомлении с этим разделом алгебры ученик должен четко усвоить тему.

Следует учесть, что данный термин будет сопровождать школьника, а затем и студента на протяжении всего периода обучения.

В математике бесконечное множество функций. И у каждой - свой характер.) Для работы с самыми разнообразными функциями нужен единый подход. Иначе, какая же это математика?!) И такой подход есть!

При работе с любой функцией мы предъявляем ей стандартный набор вопросов. И первый, самый важный вопрос - это область определения функции. Иногда эту область называют множеством допустимых значений аргумента, областью задания функции и т.п.

Что такое область определения функции? Как её находить? Эти вопросы частенько представляются сложными и непонятными... Хотя, на самом деле, всё чрезвычайно просто. В чём вы сможете убедиться лично, прочитав эту страничку. Поехали?)

Ну, что тут сказать... Только респект.) Да! Естественная область определения функции (о которой здесь идёт речь) совпадает с ОДЗ выражений, входящих в функцию. Соответственно, и ищутся они по одним и тем же правилам.

А сейчас рассмотрим не совсем естественную область определения.)

Дополнительные ограничения на область определения функции.

Здесь речь пойдёт об ограничениях, которые накладываются заданием. Т.е. в задании присутствуют какие-то дополнительные условия, которые придумал составитель. Или ограничения выплывают из самого способа задания функции.

Что касается ограничений в задании - тут всё просто. Обычно, и искать-то ничего не надо, всё в задании уже сказано. Напомню, что ограничения, написанные автором задания, никак не отменяют принципиальные ограничения математики. Нужно просто не забыть учесть условия задания.

Например, такое задание:

Найти область определения функции:

на множестве положительных чисел.

Естественную область определения этой функции мы нашли выше. Эта область:

D(f)=(-∞ ; -1) (-1; 2]

В словесном способе задания функции нужно внимательно читать условие и находить там ограничения на иксы. Иногда глаза ищут формулы, а слова свистят мимо сознания да...) Пример из предыдущего урока:

Функция задана условием: каждому значению натурального аргумента х ставится в соответствие сумма цифр, из которых состоит значение х.

Здесь надо заметить, что речь идёт только о натуральных значениях икса. Тогда и D(f) мгновенно записывается:

D(f): х N

Как видите, область определения функции - не такое уж сложное понятие. Нахождение этой области сводится к осмотру функции, записи системы неравенств и решению этой системы. Конечно, системы бывают всякие, простые и сложные. Но...

Открою маленький секрет. Иногда функция, для которой надо найти область определения, выглядит просто устрашающе. Хочется побледнеть и заплакать.) Но стоит записать систему неравенств... И, вдруг, системка оказывается элементарной! Причём, частенько, чем ужаснее функция, тем проще система...

Мораль: глаза боятся, голова решает!)

Функция с квадратным корнем определена только при тех значениях «икс», когдаподкоренное выражение неотрицательно : . Если корень расположился в знаменателе , то условие очевидным образом ужесточается: . Аналогичные выкладки справедливы для любого корня положительной чётной степени: , правда, корень уже 4-ой степени в исследованиях функций не припоминаю.

Пример 5


Решение : подкоренное выражение должно быть неотрицательным:

Прежде чем продолжить решение, напомню основные правила работы с неравенствами, известные ещё со школы.

Обращаю особое внимание! Сейчас рассматриваются неравенства с одной переменной – то есть для нас существует только одна размерность по оси . Пожалуйста, не путайте снеравенствами двух переменных , где геометрически задействована вся координатная плоскость. Однако есть и приятные совпадения! Итак, для неравенства равносильны следующие преобразования:

1) Слагаемые можно переносить из части в часть со сменой знака.

2) Обе части неравенства можно умножить на положительное число.

3) Если обе части неравенства умножить на отрицательное число, то необходимо сменитьзнак самого неравенства . Например, если было «больше», то станет «меньше»; если было «меньше либо равно», то станет «больше либо равно».

В неравенстве перенесём «тройку» в правую часть со сменой знака (правило №1):

Умножим обе части неравенства на –1 (правило №3):

Умножим обе части неравенства на (правило №2):

Ответ : область определения:

Ответ также можно записать эквивалентной фразой: «функция определена при ».
Геометрически область определения изображается штриховкой соответствующих интервалов на оси абсцисс. В данном случае:

Ещё раз напоминаю геометрический смысл области определения – график функции существует только на заштрихованном участке и отсутствует при .

В большинстве случаев годится чисто аналитическое нахождение области определения, но когда функция сильно заморочена, следует чертить ось и делать пометки.

Пример 6

Найти область определения функции

Это пример для самостоятельного решения.

Когда под квадратным корнем находится квадратный двучлен или трёхчлен, ситуация немного усложняется, и сейчас мы подробно разберём технику решения:

Пример 7

Найти область определения функции

Решение : подкоренное выражение должно быть строго положительным, то есть нам необходимо решить неравенство . На первом шаге пытаемся разложить квадратный трёхчлен на множители:

Дискриминант положителен, ищем корни:

Таким образом, парабола пересекает ось абсцисс в двух точках, а это значит, что часть параболы расположена ниже оси (неравенство ), а часть параболы – выше оси (нужное нам неравенство ).


Поскольку коэффициент , то ветви параболы смотрят вверх. Из вышесказанного следует, что на интервалах выполнено неравенство (ветки параболы уходят вверх на бесконечность), а вершина параболы расположена на промежутке ниже оси абсцисс, что соответствует неравенству :

! Примечание: если вам не до конца понятны объяснения, пожалуйста, начертите вторую ось и параболу целиком! Целесообразно вернуться к статье Графики и свойства элементарных функций и методичке Горячие формулы школьного курса математики .

Обратите внимание, что сами точки выколоты (не входят в решение), поскольку неравенство у нас строгое.

Ответ : область определения:

Вообще, многие неравенства (в том числе рассмотренное) решаются универсальнымметодом интервалов , известным опять же из школьной программы. Но в случаях квадратных дву- и трёхчленов, на мой взгляд, гораздо удобнее и быстрее проанализировать расположение параболы относительно оси . А основной способ – метод интервалов мы детально разберём в статье Нули функции. Интервалы знакопостоянства .

Пример 8

Найти область определения функции

Это пример для самостоятельного решения. В образце подробно закомментирована логика рассуждений + второй способ решения и ещё одно важное преобразование неравенства, без знания которого студент будет хромать на одну ногу…, …хмм… на счёт ноги, пожалуй, погорячился, скорее – на один палец. Большой палец.

Может ли функция с квадратным корнем быть определена на всей числовой прямой? Конечно. Знакомые всё лица: . Или аналогичная сумма с экспонентой: . Действительно, для любых значения «икс» и «ка»: , поэтому подАвно и .. Например, функция определена на всей числовой прямой. Однако у функции единственная точка всё же не входит в область определения, поскольку обращают знаменатель в ноль. По той же причине для функции исключаются точки .

Некоторым посетителям сайта рассматриваемые примеры покажутся элементарными и примитивными, но в этом нет случайности – во-первых, я стараюсь «заточить» материал для нубов, а во-вторых, подбираю реалистичные вещи под грядущие задачи: полное исследование функции , нахождение области определения функции двух переменных и некоторые другие. Всё в математике цепляется друг за дружку. Хотя любители трудностей тоже не останутся обделёнными, более солидные задания встретятся и здесь, и на уроке
о методе интервалов .