Логические уровни кмоп. Цифровые логические микросхемы, выполненные на комплементарных моп транзисторах (кмоп микросхемы). Минимизация рассеиваемой мощности системы

ВВЕДЕНИЕ

Давайте поговорим о характеристиках идеального семейства логических микросхем. Они не должны рассеивать мощность, иметь нулевую задержку распространения сигнала, управляемые времена нарастания и спада сигнала, а также иметь помехоустойчивость, эквивалентную 50% размаха выходного сигнала.

Параметры современных семейств КМОП-микросхем (комплементарных МОП) приближаются к этим идеальным характеристикам.

Во-первых, КМОП-микросхемы рассеивают малую мощность. Типовое значение статической рассеиваемой мощности составляет порядка 10 нВ на один вентиль, которая образуется токами утечки. Активная (или динамическая) рассеваемая мощность зависит от напряжения источника питания, частоты, выходной нагрузки и времени нарастания входного сигнала, но ее типовое значение для одного вентиля при частоте 1 МГц и нагрузке емкостью 50 пФ не превышает 10 мВт.

Во-вторых, время задержки распространения сигнала в КМОП-вентилях хотя и не равно нулю, но достаточно мало. В зависимости от напряжения источника питания, задержка распространения сигнала для типового элемента находится в диапазоне от 25 до 50 нс.

В третьих, времена нарастания и спада контролируемы, и представляют собой скорее линейные, чем ступенчатые функции. Обычно времена нарастания и спада имеют на 20-40% большие значения, чем время задержки распространения сигнала.

И, наконец, типовое значение помехоустойчивости приближается к 50% и составляет приблизительно 45% от амплитуды выходного сигнала.

Еще одним немаловажным фактором, свидетельствующим в пользу КМОП-микросхем, является их малая стоимость, особенно при использовании в портативном оборудовании, питающемся от маломощных батарей.

Источники питания, в системах, построенных на КМОП-микросхемах, могут быть маломощными, и, как следствие, недорогими. Благодаря малой потребляемой мощности, подсистема питания может быть проще, а значит дешевле. В радиаторах и вентиляторах нет необходимости, благодаря низкой рассеиваемой мощности. Непрерывное совершенствование технологических процессов, а также увеличение объемов производства и расширение ассортимента выпускаемых КМОП-микросхем приводит к снижению их стоимости.

Существует множество серий логических микросхем КМОП-структуры. Первой из них была серия К176, далее К561 (CD4000AN) и КР1561 (CD4000BN), но наибольшее развитие функциональные ряды получили в сериях КР1554 (74ACxx), КР1564 (74HCxx) и КР1594 (74ACTxx).

Функциональные ряды современных КМОП-микросхем серий КР1554, КР1564 и КР1594 содержат полнофункциональные эквиваленты микросхем ТТЛШ-серий КР1533 (74ALS) и К555 (74LS), которые полностью совпадают как по выполняемым функциям, так и по разводке выводов (цоколевке). Современные КМОП-микросхемы по сравнению с их прототипами, сериями К176 и К561, потребляют значительно меньшую динамическую мощность и многократно превосходят их по быстродействию.

Для упрощения схемотехнических решений, разработаны КМОП-серии с входным пороговым напряжением ТТЛ-уровней (КР1594 и некоторые другие), так и КМОП-уровней (КР1554, КР1564 и некоторые другие). Диапазон рабочих температур для микросхем общего применения находится в пределах -40-+85С, и -55-+125С —специального применения. В табл. 1 приведено сравнение входных и выходных характеристик КМОП и ТТЛШ-микросхем.

Таблица 1. Сравнение электрических параметров КМОП и ТТЛШ-схем

ТЕХНОЛОГИЯ

КМОП с ПКК-затвором

Улучш.

КМОП с ПКК-затвором

КМОП с Метали-ческим.-затвором

Стан-дартн.

Малопо-требля-ющая ТТЛШ

Улучшенная Малопотреб-ляющая ТТЛШ

Быстро-действу-ющая

ТТЛШ

Power dissipation per gate (mW)

Статическая

При частоте 100 кГц

Время задержки распространения

(нс) (CL = 15 пФ)

Максимальная тактовая частота

(МГц) (CL = 15 пФ)

Минимальный выходной ток (мА)

Стандартные выходы

Коэффициент разветвления по выходу (Нагрузка на на один вход К555)

Стандартные выходы

Выходы с повышенной нагрузочной способностью

Максимальный входной ток, IIL (мА) (VI = 0,4 В)

ХАРАКТЕРИСТИКИ КМОП-МИКРОСХЕМ

Цель данного раздела заключается в том, чтобы дать разработчику системы необходимые сведения о том, как работают цифровые микросхемы структуры КМОП и ведут себя при воздействии различных управляющих сигналов. Достаточно много было написано о конструкции и технологии производства микросхем КМОП, поэтому здесь рассмотрим только схемотехнические особенности микросхем этого семейства.

Основной КМОП-схемой является инвертор, показанный на рис. 1. Он состоит из двух полевых транзисторов, работающих в режиме обогащения: с каналом P-типа (верхний) и каналом N-типа (нижний). Для обозначения выводов питания приняты: VDD или VCC — для положительного вывода и VSS или GND — для отрицательного. Обозначения VDD и VCC позаимствованы из обычных МОП-схем и символизируют источники питания истока и стока транзисторов. Они не относятся непосредственно к схемам КМОП, поскольку выводами питания являются истоки обоих комплементарных транзисторов. Обозначения VSS или GND позаимствованы от ТТЛ-схем, и эта терминология сохранилась и для КМОП-микросхем. Далее будут указываться обозначения VCC и GND.

Логическими уровнями в КМОП-системе являются VCC (логическая “1”) и GND (логический “0”). Поскольку ток, протекающий во “включенном” МОП-транзисторе практически не создает на нем падения напряжения, и поскольку входное сопротивление КМОП-вентиля очень велико (входная характеристика МОП-транзистора, в основном, емкостная и выглядит подобно вольтамперной характеристике МОП-транзистора сопротивлением 1012 Ом, зашунтированного конденсатором емкостью 5 пФ), то и логические уровни в КМОП-системе будут практически равны напряжению источника питания.

Теперь давайте посмотрим на характеристические кривые МОП-транзисторов, для того чтобы получить представление о том, как времена нарастания и спада, задержки распространения сигнала и рассеиваемая мощность будут изменяться с изменением напряжения источника питания и емкости нагрузки.

На рис. 2 показаны характерные кривые N-канального и P-канального полевых транзисторов, работающих в режиме обогащения.

Из этих характеристик следует ряд важных выводов. Рассмотрим кривую для N-канального транзистора с напряжением Затвор-Исток равным VGS=15 В. Следует заметить, что для постоянного управляющего напряжения VGS, транзистор ведет себя, как источник тока для значений VDS (напряжение Сток-Исток) больших, чем VGS-VT (VT-пороговое напряжение МОП-транзистора). Для значений VDS меньше VGS-VT транзистор ведет себя, в основном, подобно резистору.

Следует также заметить, что для меньших значений VGS кривые имеют аналогичный характер, за тем исключением, что величина IDS значительно меньше, и, в действительности, IDS возрастает пропорционально квадрату VGS. P-канальный транзистор имеет практически одинаковые, но комплементарные (дополняющие) характеристики.

В случае управления емкостной нагрузкой с помощью КМОП-элементов, начальное изменение напряжения, приложенного к нагрузке, будет иметь линейный характер, благодаря “токовой” характеристике на начальном участке, получаемой округлением преобладающей резистивной характеристики, когда значение VDS мало отличается от нуля. Применительно к простейшему КМОП-инвертору, показанному на рис. 1, по мере уменьшения напряжения VDS до нуля, выходное напряжение VOUT будет стремиться к VCC или GND, в зависимости от того, какой транзистор открыт: P-канальный или N-канальный.

Если увеличивать VCC, и, следовательно, VGS, инвертор должен развивать на конденсаторе большую амплитуду напряжения. Однако, для одного и того же приращения напряжения, нагрузочная способность IDS резко возрастает, как квадрат VGS, и поэтому времена нарастания и задержки распространения сигнала, показанные на рис. 3, уменьшаются.

Таким образом, можно видеть, что для данной конструкции, и, следовательно, фиксированного значения емкости нагрузки, увеличение напряжения источника питания увеличит быстродействие системы. Увеличение VCC увеличит быстродействие, но также и рассеиваемую мощность. Это верно по двум причинам. Во-первых, произведение CV2f, а значит мощность, возрастают. Это мощность, рассеиваемая в КМОП-схеме, или любой аналогичной схеме, по названной выше причине, при управлении емкостной нагрузкой.

Для указанных значений емкости нагрузки и частоты переключения, рассеиваемая мощность возрастает пропорционально квадрату падения напряжения на нагрузке.

Вторая причина заключается в том, что произведение VI или мощность, рассеиваемая на КМОП-схеме, возрастает с ростом напряжения источника питания VCC (для VCC>2VT). Каждый раз, когда схема переключается из одного состояния в другое, кратковременно возникает сквозной ток, протекающий от VCC к GND через два одновременно открытых выходных транзистора.

Поскольку пороговые напряжения транзисторов не изменяются с ростом VCC, то диапазон входного напряжения, в пределах которого верхний и нижний транзисторы одновременно находятся в проводящем состоянии, увеличивается с ростом VCC. В то же время, большее значение VCC обеспечивает большие значения управляющих напряжений VGS, которые также приводят к увеличению токов JDS. В связи с этим, если время нарастания входного сигнала равняется нулю, то через выходные транзисторы не было бы сквозного тока от VCC к GND. Эти токи возникают по той причине, что фронты входного сигнала имеют конечно малые времена нарастания и спада, и, следовательно, входное напряжение требует определенного конечно малого времени для прохождения диапазона, в котором два выходных транзистора включены одновременно. Очевидно, что времена нарастания и спада фронтов входного сигнала должны иметь минимальное значение, для уменьшения рассеиваемой мощности.

Давайте взглянем на передаточные характеристики (рис. 5), как они изменяются с изменением питающего напряжения VCC. Условимся считать, что оба транзистора в нашем простейшем инверторе имеют идентичные, но комплементарные характеристики и пороговые напряжения. Предположим, что пороговые напряжения, VT, равны 2V. Если VCC меньше порогового напряжения 2V, ни один из транзисторов не может быть включен, и схема работать не будет. На рис. 5а показана ситуация, когда напряжение источника питания в точности соответствует пороговому напряжению. В таком случае схема должна работать со 100% гистерезисом. Однако, это не совсем гистерезис, поскольку оба выходных транзистора закрыты, и выходное напряжение поддерживается на емкостях затворов, следующих по цепи схем. Если VCC находится в пределах одного и двух пороговых напряжений (рис. 5б), происходит уменьшение величины “гистерезиса”, по мере приближения VCC к значению, эквивалентному 2VT (рис. 5в). При напряжении VCC, эквивалентном двум пороговым напряжениям, “гистерезис” отсутствует; также нет сквозного тока через два одновременно открытых выходных транзистора в моменты переключений. Когда значение VCC превышает два пороговых напряжения, кривые передаточной характеристики начинают закругляться (рис. 5г). Когда VIN проходит через область, где оба транзистора открыты, т.е. в проводящем состоянии, токи, протекающие в каналах транзисторов, создают падения напряжений, дающие закругления характеристик.

Рассматривая КМОП-систему на предмет шума, необходимо рассматривать, по крайней мере, две характеристики: помехоустойчивость и запас помехоустойчивости.

Современные КМОП-схемы имеют типичное значение помехоустойчивости равное 0,45VCC. Это означает, что ложный входной сигнал, равный 0,45VCC или менее отличающийся от VCC или GND, не будет распространяться в системе, как ошибочный логический уровень. Это не означает, что на выходе первой схемы вообще не появится никакого сигнала. На самом деле, в результате воздействия сигнала помехи, на выходе появится выходной сигнал, но он будет ослаблен по амплитуде. По мере распространения этого сигнала в системе, он будет ослаблен последующими схемами еще больше, пока он совсем не исчезнет. Обычно такой сигнал не изменяет выходное состояние логического элемента. В обычном триггере, ложный входной синхронизирующий импульс амплитудой 0,45VCC не приведет к изменению его состояния.

Производитель КМОП-микросхем также гарантирует наличие запаса помехоустойчивости 1 Вольт во всем диапазоне питающих напряжений и температур и для любой комбинации входов. Это всего лишь отклонение характеристики помехоустойчивости, для которой гарантирован особый набор входных и выходных напряжений. Другими словами, из данной характеристики следует, что для того, чтобы выходной сигнал схемы, выраженный в Вольтах, находился в пределах 0,1VCC от значения соответствующего логического уровня (“нуля” или “единицы”), входной сигнал не должен превышать значение 0,1VCC плюс 1 Вольт выше уровня “земли” или ниже уровня “питания”. Графически данная ситуация показана на рис. 4.

Данные характеристики близко напоминают запас помехоустойчивости стандартных ТТЛ-схем, который составляет 0,4 В (рис. 6). Для полноты картины зависимости выходного напряжения VOUT от входного VIN, приведем кривые передаточных характеристик (рис. 5).

АНАЛИЗ ПРИМЕНЕНИЯ В СИСТЕМЕ

В данном разделе рассмотрены различные ситуации, возникающие при разработке системы: неиспользуемые входы, параллельное включение элементов для увеличения нагрузочной способности, разводка шин данных, согласование с логическими элементами других семейств.

НЕИСПОЛЬЗУЕМЫЕ ВХОДЫ

Проще говоря, неиспользуемые входы не должны быть оставлены не подключенными. По причине очень большого входного сопротивления (1012 Ом), плавающий вход может дрейфовать между логическими “нулем” и “единицей”, создавая непредсказуемое поведение выхода схемы и связанные с этим проблемы в системе. Все неиспользуемые входы должны быть подключены к шине питания, “общему” проводу или другому используемому входу. Выбор совершенно не случаен, поскольку следует учитывать возможное влияние на выходную нагрузочную способность схемы. Рассмотрим, к примеру, четырехвходовый элемент 4И-НЕ, используемый, как двухвходовый логический вентиль 2И-НЕ. Его внутренняя структура показана на рис. 7. Пусть входы A и B будут неиспользуемыми входами.

Если неиспользуемые входы должны быть подключены к фиксированному логическому уровню, тогда входы A и B должны быть подключены к шине питания, чтобы разрешить работу остальных входов. Это приведет к включению нижних A и B транзисторов и выключению соответствующих верхних A и B. В таком случае, не более двух верхних транзисторов могут быть включены одновременно. Однако если входы A и B подключены к входу C, входная емкость утроится, но каждый раз, когда на вход C поступает уровень логического “нуля”, верхние транзисторы A, B и C — включаются, утраивая значение максимального выходного тока уровня логической “единицы”. Если на вход D поступает также уровень логического “нуля”, все четыре верхних транзистора — включены. Таким образом, подключение неиспользуемых входов элемента И-НЕ к шине питания (ИЛИ-НЕ к “общему” проводу) приведет к их включению, но подключение неиспользуемых входов к другим используемым входам гарантирует увеличение выходного вытекающего тока уровня логической “единицы”, в случае элемента И-НЕ (или выходного втекающего тока уровня логического “нуля”, в случае элемента ИЛИ-НЕ).

Для последовательно включенных транзисторов увеличения выходного тока не происходит. Учитывая это обстоятельство, многовходовый логический элемент может быть использован для непосредственного управления мощной нагрузкой, к примеру, обмоткой реле или лампой накаливания.

ПАРАЛЛЕЛЬНОЕ ВКЛЮЧЕНИЕ ЛОГИЧЕСКИХ ЭЛЕМЕНТОВ

В зависимости от типа логического элемента, объединение входов гарантирует увеличение нагрузочной способности для вытекающего или втекающего токов, но не двух одновременно. Для того чтобы гарантировать увеличение двух выходных токов необходимо параллельно включить несколько логических элементов (рис. 8). В таком случае, увеличение нагрузочной способности достигается за счет параллельного включения нескольких цепочек транзисторов (рис. 7), таким образом, увеличивая соответствующий выходной ток.

РАЗВОДКА ШИН ДАННЫХ

Для этого существует два основных способа. Первый способ — это параллельное соединение обычных буферных КМОП-элементов (например, ). И второй, наиболее предпочтительный, способ — соединение элементов с тремя выходными состояниями.

ФИЛЬТРАЦИЯ ПОМЕХ ИСТОЧНИКА ПИТАНИЯ

Поскольку КМОП-схемы могут работать в широком диапазоне питающих напряжений (3-15 В), необходима минимальная фильтрация. Минимальное значение напряжения источника питания определяется максимальной рабочей частотой самого быстрого элемента в системе (обычно очень небольшая часть системы работает на максимальной частоте). Фильтры должны быть выбраны из расчета поддержания питающего напряжения примерно посередине между указанным минимальным значением и максимальным напряжением, при котором микросхемы еще работоспособны. Однако если требуется минимизировать рассеиваемую мощность, напряжение источника питания должно быть выбрано как можно меньшим, при одновременном удовлетворении требований быстродействия.

МИНИМИЗАЦИЯ РАССЕИВАЕМОЙ МОЩНОСТИ СИСТЕМЫ

Для того чтобы минимизировать энергопотребление системы, она должна работать на минимальной скорости, выполняя поставленную задачу при минимальном питающем напряжении. Мгновенные значения динамической (AC) и статической (DC) потребляемой мощностей возрастают, как при увеличении частоты, так и напряжения источника питания. Динамическая потребляемая мощность (AC) представляет собой функцию произведения CV2f. Это мощность, рассеиваемая в буферном элементе, управляющим емкостной нагрузкой.

Очевидно, что динамическая потребляемая мощность возрастает прямо пропорционально частоте и пропорционально квадрату напряжения источника питания. Она также возрастает с увеличением емкости нагрузки, определяемой, в основном, системой, и не является переменной величиной. Статическая (DC) потребляемая мощность рассеивается в моменты переключения и представляет собой произведение VI. В любом КМОП элементе возникает мгновенный ток от шины питания на “общий” провод (при VCC>2VT) рис. 9.

Максимальная амплитуда тока — это быстро возрастающая функция входного напряжения, которое, в свою очередь, представляет собой функцию напряжения источника питания (рис. 5г).
Действительная величина произведения VI мощности, рассеиваемой системой, определяется тремя показателями: напряжением источника питания, частотой и временами фронтов нарастания и спада входного сигнала. Очень важным фактором является время нарастания входного сигнала. Если время нарастания велико, рассеиваемая мощность возрастает, т.к. устанавливается токовый путь в течение всего времени, пока входной сигнал проходит область между пороговыми напряжениями верхнего и нижнего транзисторов. Теоретически, если время нарастания считать равным нулю, токовый путь не возникал бы, и VI мощность равнялась бы нулю. Однако, поскольку время нарастания имеет конечно малую величину, всегда появляется сквозной ток, который быстро возрастает с увеличением напряжения питания.

Есть еще одно обстоятельство, касающееся времени нарастания входного сигнала и потребляемой мощности. Если схема используется для управления большим числом нагрузок, время нарастания выходного сигнала будет возрастать. Это приведет к увеличению VI рассеиваемой мощности в каждом устройстве, управляемом такой схемой (но не в самой управляющей схеме). Если потребляемая мощность достигает критического значения, необходимо увеличить крутизну выходного сигнала параллельным включением буферных элементов или разделением нагрузок для того, чтобы уменьшить общую потребляемую мощность.

Теперь подведем итоги влияния эффектов напряжения источника питания, входного напряжения, времен нарастания и спада фронтов входного сигнала, емкости нагрузки на рассеиваемую мощность. Можно сделать следующие выводы:

  1. Напряжение источника питания. Произведение CV2f рассеиваемой мощности возрастает пропорционально квадрату напряжения питания. Произведение VI рассеиваемой мощности возрастает приблизительно пропорционально квадрату напряжения источника питания.
  2. Уровень входного напряжения. Произведение VI рассеиваемой мощности возрастает, если входное напряжение находится в пределах между “нулевым потенциалом (GND) плюс пороговое напряжение” и “напряжением питания (VCC) минус пороговое напряжение”. Наибольшая рассеиваемая мощность наблюдается, когда VIN приближается к 0,5 VCC. На произведение CV2f уровень входного напряжения влияния не оказывает.
  3. Время нарастания входного сигнала. Произведение VI рассеиваемой мощности возрастает с увеличением времени нарастания, поскольку сквозной ток через одновременно открытые выходные транзисторы устанавливается на более продолжительное время. На произведение CV2f время нарастания входного сигнала влияния также не оказывает.
  4. Емкость нагрузки. Произведение CV2f мощности, рассеиваемой в схеме, возрастает пропорционально емкости нагрузки. Произведение VI рассеиваемой мощности не зависит от емкости нагрузки. Однако увеличение емкости нагрузки приведет к увеличению времен нарастания фронтов выходного сигнала, что, в свою очередь, приведет к росту произведения VI рассеиваемой мощности в управляемых этим сигналом логических элементах.

СОГЛАСОВАНИЕ С ЛОГИЧЕСКИМИ ЭЛЕМЕНТАМИ ДРУГИХ СЕМЕЙСТВ

Существует два основных правила для согласования элементов всех других семейств с микросхемами КМОП. Во-первых, КМОП-схема должна обеспечивать необходимые требования по входным токам и напряжениям элементов других семейств. И, во-вторых, что еще важнее, амплитуда выходного сигнала логических элементов других семейств должна максимально соответствовать напряжению источника питания КМОП-схемы.

P-КАНАЛЬНЫЕ МОП-СХЕМЫ

Существует целый ряд требований, которые необходимо обеспечить при согласовании P-МОП и КМОП-схем. Во-первых, это набор источников питания с различными напряжениями. Большинство P-МОП-схем рассчитаны для работы при напряжении от 17 В до 24 В, в то время как схемы-КМОП рассчитаны на максимальное напряжение 15 В. Другой проблемой P-МОП-схем, в отличие от КМОП, является значительно меньшая амплитуда выходного сигнала, чем напряжение источника питания. Выходное напряжение P-МОП-схем изменяется в пределах практически от более положительного потенциала питающего напряжения (VSS) до нескольких вольт выше более отрицательного потенциала (VDD). Поэтому, даже в случае работы P-МОП-схемы от источника напряжением 15 В, амплитуда ее выходного сигнала все равно будет меньше необходимой, чтобы обеспечить согласование с КМОП-схемой. Существует несколько способов решения данной проблемы, в зависимости от конфигурации системы. Рассмотрим два способа построения системы полностью на МОП-схемах и один способ, когда в системе используются ТТЛШ-схемы.

В первом примере используются только P-МОП и КМОП-схемы с напряжением питания менее 15 В (см. рис. 10). В этой конфигурации КМОП-схема управляет P-МОП непосредственно. Однако P-МОП-схема не может управлять КМОП напрямую, поскольку ее выходное напряжение уровня логического нуля значительно превышает нулевой потенциал системы. Для “подтягивания” выходного потенциала схемы к нулю, вводится дополнительный резистор RPD. Его величина выбирается достаточно малой, чтобы обеспечить желаемую постоянную времени RC при переключении выхода из “единицы” в “ноль” и, в то же время, достаточно большой, чтобы обеспечить необходимую величину уровня логической “единицы”. Этот способ подходит также и для выходов P-МОП-схем с открытыми стоками.

Другим способом в полностью МОП-системе является применение источника опорного напряжения на основе обычного стабилитрона для формирования более отрицательного потенциала, питающего КМОП-схему (рис. 11).

В этой конфигурации используется источник питания P-МОП-схемы напряжением 17-24 В. Опорное напряжение выбирается таким образом, чтобы уменьшить напряжение питания КМОП-схем до минимального размаха выходного напряжения P-МОП-схемы. КМОП-схема может по-прежнему управлять P-МОП непосредственно, но теперь, P-МОП-схема может управлять КМОП без “подтягивающего” резистора. Другими ограничениями являются: питающее напряжение КМОП-схем, которое должно быть меньше 15 В, и необходимость обеспечения опорным источником достаточного тока для питания всех КМОП-схем в системе. Это решение вполне пригодно, если источник питания P-МОП-схемы должен быть больше 15 В, и потребляемый ток КМОП-схемами достаточно мал, чтобы его мог обеспечить простейший параметрический стабилизатор.

Если в системе используются ТТЛШ-схемы, то должны быть, по крайней мере, два источника питания. В таком случае, КМОП-схема может работать от однополярного источника и управлять P-МОП-схемой непосредственно (рис. 12).

N-КАНАЛЬНЫЕ МОП-СХЕМЫ

Согласование КМОП с N-МОП-схемами проще, хотя некоторые проблемы существуют. Во-первых, N-МОП-схемы требуют меньшего напряжения источника питания, обычно в диапазоне 5-12 В. Это позволяет согласовывать их с КМОП-схемами непосредственно. Во вторых, амплитуда выходного сигнала КМОП-схем находится в диапазоне практически от нуля до напряжения источника питания минус 1-2 В.

При более высоких значениях напряжения источника питания N-МОП и КМОП-схемы могут работать напрямую, поскольку выходной уровень логической единицы N-МОП-схемы будет отличаться от напряжения источника питания всего на 10-20%. Однако, при меньших значениях напряжения питания, напряжение уровня логической единицы будет меньше уже на 20-40%, поэтому необходимо включение “подтягивающего” резистора (рис. 13).

ТТЛ-, ТТЛШ-СХЕМЫ

При согласовании данных семейств с КМОП-схемами возникают два вопроса. Во-первых, достаточно ли напряжения уровня логической единицы биполярных семейств для непосредственного управления КМОП-схемами? ТТЛ- и ТТЛШ-схемы вполне способны управлять КМОП-схемами серии 74HCXX напрямую без дополнительных “подтягивающих” резисторов. Однако, КМОП-схемами серии CD4000 (К561, КР1561) они управлять не способны, поскольку характеристики последних не гарантируют работоспособность в случае непосредственного подключения без подтягивающих резисторов.

ТТЛШ-схемы способны непосредственно управлять КМОП-схемами во всем диапазоне рабочих температур. Стандартные ТТЛ-схемы способны непосредственно управлять КМОП-схемами в большей части температурного диапазона. Однако, ближе к нижней границе температурного диапазона, напряжение уровня логической единицы ТТЛ-схем уменьшается и рекомендуется введение “подтягивающего” резистора (рис. 14).

Согласно зависимости допустимых значений напряжений входных уровней от напряжения источника питания для КМОП-схем (см. рис. 4), если входное напряжение превышает значение VCC-1,5 В (при VCC=5 В), то выходное напряжение не превысит 0,5В. Следующий КМОП-элемент усилит это напряжение 0,5 В до соответствующего напряжения VCC или GND. Напряжение уровня логической “1” для стандартных ТТЛ-схем составляет минимум 2,4 В при выходном токе 400 мкА. Это наихудший случай, поскольку выходное напряжение ТТЛ-схемы будет только приближаться к этому значению при минимальной температуре, максимальном значении входного уровня “0” (0,8 В), максимальных токах утечки и минимальном напряжении питания (VCC=4,5 В).

При нормальных условиях (25°С, VIN=0,4 В, номинальных токах утечки в КМОП-схеме и напряжении источника питания VCC=5 В) уровень логической “1” будет скорее соответствовать VCC-2VD или VCC-1,2 В. При изменении одной только температуры, выходное напряжение будет изменяться по зависимости “два умножить -2 мВ на один градус температуры” или “-4 мВ на градус”. Напряжения VCC-1,2 В вполне достаточно для непосредственного управления КМОП-схемой без необходимости включения “подтягивающего” резистора.

Если при определенных условиях выходное напряжение ТТЛ-схемы уровня логической “1” может упасть ниже VCC-1,5 В необходимо использовать резистор для управления КМОП-схемой.
Вторым вопросом является, сможет ли КМОП-схема обеспечить достаточный выходной ток, чтобы обеспечить входное напряжение уровня логического “0” для ТТЛ-схемы? Для логической “1” такой проблемы не существует.

Для ТТЛШ-схемы входной ток достаточно мал, чтобы обеспечить непосредственное управление двумя такими входами. Для стандартной ТТЛ-схемы входной ток в десять раз превышает ток ТТЛШ-схемы и, следовательно, выходное напряжение КМОП-схемы, в таком случае, превысит максимально допустимое значение напряжения уровня логического “0” (0,8 В). Однако, внимательно изучая спецификацию выходной нагрузочной способности КМОП-схем, можно заметить, что двухвходовый элемент И-НЕ может управлять одним ТТЛ-входом, хотя и в крайнем случае. К примеру, выходное напряжение уровня логического “нуля” для приборов MM74C00 и MM74C02 во всем температурном диапазоне составляет 0,4 В при токе 360 мкА, при входном напряжении 4,0 В и напряжении питания 4,75 В. Обе схемы показаны на рис. 15.

Обе схемы имеют одинаковую нагрузочную способность, но их структуры различны. Это означает, что каждый из двух нижних транзисторов прибора MM74C02 может обеспечить тот же ток, что и два последовательно включенных транзистора MM74C00. Два транзистора MM74C02 вместе могут обеспечить вдвое больший ток при заданном выходном напряжении. Если допустить увеличение выходного напряжения логического “нуля” до значения 0,8 В, то прибор MM74C02 сможет обеспечить в четыре раза больший выходной ток, чем 360мкА, т.е. 1,44 мА, что близко к 1,6 мА. На самом деле, ток 1,6 мА — это максимальный входной ток для ТТЛ-входа, и большинство ТТЛ-схем работают при токе не более 1 мА. Также, ток 360 мкА — это минимальный выходной ток для КМОП-схем. Реальное значение находится в пределах 360-540 мкА (что соответствует входному току 2-3 ТТЛШ-входов). Ток 360мкА указан для входного напряжения 4 В. Для входного напряжения 5 В, выходной ток будет порядка 560 мкА во всем диапазоне температур, делая управление ТТЛ-входом еще проще. При комнатной температуре и входном напряжении 5 В, выход КМОП-схемы может обеспечить ток 800 мкА. Следовательно, двухвходовый элемент ИЛИ-НЕ обеспечит выходной ток 1,6 мА при напряжении 0,4 В, если на оба входа элемента ИЛИ-НЕ поступает напряжение 5 В.

Отсюда можно заключить, что один двухвходовый элемент ИЛИ-НЕ, входящий в состав прибора MM74C02, можно использовать для управления стандартным ТТЛ-входом вместо специального буфера. Однако это приведет к некоторому снижению помехоустойчивости в диапазоне температур.

Источники информации

Основной родовой признак ТТЛ - использование биполярных транзисторов, причем структуры только п-р-п. КМОП же, как следует из ее названия, осно­вана на полевых транзисторах с изолированным затвором структуры МОП, причем комплементарных, то есть обоих полярностей - и с w- и с /^-каналом. Схемотехника базовых логических элементов ТТЛ и КМОП приведена на рис. 15.1. На западе их еще называют вентилями - чем можно оправдать та­кое название, мы увидим в конце главы.

Входной многоэмиттерный транзистор ТТЛ мы уже рисовали в главе И - он может иметь сколько угодно (на практике - до восьми) эмиттеров, и эле­мент тогда будет иметь соответствующее число входов. Если любой из эмит­теров транзистора VT1 замкнуть на «землю», то транзистор откроется, а фа-зорасщепляющий транзистор VT2 (с его работой мы знакомы по рис. 6.8) - закроется. Соответственно, выходной транзистор VT3 откроется, а VT4 - закроется, на выходе будет высокий логический уровень, или уровень логи­ческой единицы. Если же все эмиттеры присоединены к высокому потенциа­лу (или просто «висят» в воздухе), то ситуация будет обратная - VT2 откро­ется током через переход база-коллектор VT1 (такое включение транзистора называется «инверсным»), и на выходе установится ноль за счет открытого транзистора VT4. Такой ТТЛ-элемент будет осуществлять функцию «И-НЕ» (логический ноль на выходе только при единицах на всех входах).

ТТЛ

Выходной каскад ТТЛ-элемента представляет собой некое подобие ком­плементарного («пушпульного») каскада класса В, знакомого нам по анало­говым усилителям (см. рис. 8.2). Однако воспроизведение р-п-р-транзисторов оказалось для ТТЛ-технологии слишком сложным, потому такой каскад носит еще название псевдокомплементарного- верхний транзистор VT3 работает в режиме эмиттерного повторителя, а нижний - в схеме с общим эмиттером.

Рис. 15.1. Схемы базовых элементов ТТЛ и КМОП

Кстати, заметим, что из-за недоступности p-w-p-транзисторов воспроизведе­ние схемы «ИЛИ» для ТТЛгтехнологии оказалось крепким орешком, и ее, схемотехника довольно существенно отличается от показанной на рис. 15.1 базовой схемы элемента «И-НЕ».

Заметки на полях

На заре транзисторной техники псевдокомплементарные каскады, подобные выходному каскаду ТТЛ, использовались - о ужас! - для усиления звука. Это построение дало основания для многочисленных попыток приспособить логи­ческие элементы, которые, в сущности, представляют собой усилитель с до­вольно большим (несколько десятков) коэффициентом усиления, для усиле­ния аналоговых сигналов. Излишне говорить, что результаты оказались довольно плачевными, даже с КМОП-элементом, который построен куда более симметрично.

Как видно из схемы, ТТЛ-элемент существенно несимметричен и по входам, и по выходам. По входу напряжение логического нуля должно быть доста­точно близко к «земле», при напряжении на эмиттере около 1,5 В (при стан­дартном для ТТЛ питании 5 В) входной транзистор уже запирается. Причем при подаче нуля нужно обеспечить отвод довольно значительного тока база-эмиттер- около 1,6 мА для стандартного элемента, отчего для элементов ТТЛ всегда оговаривается максимальное количество одновременно подсое­диненных к выходу других таких элементов (стандартно - не более десят­ка). В то же время логическую единицу на входы можно не подавать вовсе. Практически, однако, подавать ее следует - по правилам незадействованные входы ТТЛ должны быть присоединены к питанию через резисторы 1 кОм.

Еще хуже дела обстоят на выходе: напряжение логического нуля обеспечива­ется открытым транзистором и действительно довольно близко к нулю - даже при нагрузке в виде десятка входов других таких же элементов оно не превышает 0,5 В, а в нормах на сигнал ТТЛ оговорена величина не более 0,8 В. А вот напряжение логической единицы довольно далеко отстоит от питания и составляет при питании 5 В в лучшем случае (без нагрузки) от 3,5 до 4 В, практически же в нормах оговаривается величина 2,4 В.

Такое балансирование десятыми вольта (напряжение нуля 0,8 В, напряжение порога переключения от 1,2 до 2 В, напряжение единицы 2,4 В) приводит к тому, что все ТТЛ-микросхемы могут работать в довольно узком диапазоне напряжений питания - практически от 4,5 до 5,5 В, многие даже от 4,75 до 5,25 В, то есть 5 В ±5%. Максимально допустимое напряжение питания со­ставляет для разных ТТЛ-серий от 6 до 7 В, и при его превышении они обыч­но горят ясным пламенем. Низкий и несимметричный относительно питания порог срабатывания элемента приводит и к плохой помехоустойчивости.

Самым крупным (и даже более серьезным, чем остальные) недостатком ТТЛ является высокое потребление - до 2,5 мА на один такой элемент, это без учета вытекающих токов по входу и потребления нагрузки по выходу. Так что приходится только удивляться, почему микросхемы ТТЛ, содержащие много базовых элементов, вроде счетчиков или регистров, не требуют охла­ждающего радиатора. Сочетание низкой помехоустойчивости с высоким по­треблением - смесь довольно гремучая, и при разводке плат с ТТЛ-микросхемами приходится ставить по развязывающему конденсатору на ка­ждый корпус. Все перечисленное в совокупности давно бы заставило отка­заться от технологии ТТЛ вообще, однако у них до некоторого времени было одно неоспоримое преимущество: высокое быстродействие, которое для ба­зового элемента в виде, показанном на рис. 15.1, может достигать десятков мегагерц.

В дальнейшем развитие ТТЛ шло по линии уменьшения потребления и улучшения электрических характеристик, в основном за счет использования т. н. переходов Шоттки, на которых падение напряжения может составлять 0,2-0,3 В вместо обычных 0,6-0,7 В (технология ТТЛШ, обозначается бук­вой S в наименовании серии, отечественный аналог- серии 531 и 530). Ба­зовая технология, которая составляла основу широко распространенной в 1960-70-х годах серии 74 без дополнительных букв в обозначении (анало­ги- знаменитые отечественные серии 155 и 133), сейчас практически не используется. ТТЛ-микросхемы в настоящее время можно выбирать из вари­антов, представленных малопотребляющими сериями типа 74LSxx (серии 555 и 533) или быстродействующими типа 74Fxx (серия 1531). Причем по­требление последних практически равно потреблению старых базовых серий при более высоком (до 125 МГц) быстродействии, а для первых все наобо­рот- быстродействие сохранено на уровне базового, зато потребление пи­тания снижено раза в три-четыре.

КМОП

КМОП-элементы намного ближе к представлению о том, каким должен быть идеальный логический элемент. Для начала, как можно видеть из рис. 15.1, они практически симметричны, как по входу, так и по выходу. Открытый по­левой транзистор на выходе (либо /?-типа для логической единицы, либо «-типа для логического нуля) фактически представляет собой, как мы знаем.

просто сопротивление, которое для обычных КМОП-элементов может со­ставлять от 100 до 300 Ом (под «обычными» или «классическими» КМОП мы подразумеваем здесь серию 4000А или 4000В, см. далее). Для дополнитель­ной симметрии на выходе обычно ставят последовательно два инвертора, по­добных показанному на рис. 15.1 справа (жалко, что ли, транзисторов, если потребление не растет?). Поэтому на выходе не сказывается то, что в нижнем плече для схемы «И-НЕ» стоят два таких транзистора последовательно.

Для схемы «ИЛИ» такие транзисторы будут стоять в верхнем плече - она полностью симметрична схеме «И», что тоже плюс технологии КМОП по сравнению с ТТЛ. Обратите также внимание, что выходной каскад инвертора построен не по схеме «пушпульного» каскада, то есть это не потоковые по­вторители напряжения, а транзисторы в схеме с общим истоком, соединен­ные стоками, что позволяет получить дополнительный коэффициент усиле­ния по напряжению.

На практике особенности построения элемента приводят к тому, что в КМОП-микросхемах:

На ненагруженном выходе напряжение логической единицы практически равно напряжению питания, а напряжение логического нуля практически равно потенциалу «земли»;

Порог переключения близок к половине напряжения питания;

Входы практически не потребляют тока, так как представляют собой изо­лированные затворы МОП-транзисторов;

В статическом режиме весь элемент также не потребляет тока от источ­ника питания.

Из последнего положения вытекает, что схема любой степени сложности, построенная с помощью КМОП-элементов, в «застывшем» состоянии и даже при малых рабочих частотах, не превышающих десятка-другого килогерц, практически не потребляет энергии! Отсюда ясно, как стали возможными такие фокусы, как наручные часы, которые способны идти от малюсенькой батарейки годами, или sleep-режим микроконтроллеров, в котором они по­требляют от 1 до 50 мкА на все десятки тысяч составляющих их логических элементов.

Другое следствие вышеперечисленных особенностей - исключительная по­мехоустойчивость, достигающая половины напряжения питания. Но это еще не все преимущества. КМОП-микросхемы «классических» серий могут рабо­тать в диапазоне напряжений питания от 2 до 18 В, а современные быстро­действующие - от 2 до 7 В. Единственное, что при этом происходит- при

снижении питания довольно резко- в разы- падает быстродействие и ухудшаются некоторые другие характеристики.

Кроме того, выходные транзисторы КМОП, как и любые другие полевые транзисторы, при перегрузке (например, в режиме короткого замыкания) ра­ботают как источники тока - при напряжении питания 15 В этот ток соста­вит около 30 мА, при 5 В - около 5 мА. Причем это в принципе может быть долгосрочный режим работы таких элементов, единственное, что при этом надо проверить - не превышается ли значение суммарного допустимого то­ка через вывод питания, которое обычно составляет около 50 мА. То есть, возможно, придется ограничить число выходов, одновременно подключен­ных к низкоомной нагрузке. Естественно, о логических уровнях в таком ре­жиме уже речи не идет, только о втекающем или вытекающем токе.

И тут мы подходим к основному недостатку «классической» КМОП-технологии - низкому в сравнении ТТЛ быстродействию. Это обусловлено тем, что изолированный затвор МОП-транзистора представляет собой кон­денсатор довольно большой емкости- в базовом элементе до 10-15 пФ. В совокупности с выходным резистивным сопротивлением предыдущей схе­мы такой конденсатор образует фильтр низких частот. Обычно рассматрива­ют не просто частотные свойства, а время задержки распространения сигнала на один логический элемент. Задержка возникает из-за того, что фронт сиг­нала не строго вертикальный, а наклонный, и напряжение на выходе еще только начнет нарастать (или снижаться), когда напряжение на входе достиг­нет уже значительной величины (в идеале- половины напряжения пита­ния). Время задержки могло достигать у ранних серий КМОП величины 200-250 НС (сравните - у базовой серии ТТЛ всего 7,5 не). На практике при напряжении питания 5 В максимальная рабочая частота «классического» КМОП не превышает 1-3 МГц- попробуйте соорудить на логических эле­ментах генератор прямоугольных сигналов по любой из схем, которые будут разобраны в главе 16, и вы увидите, что уже при частоте 1 МГц форма сигна­ла будет скорее напоминать синусоиду, чем прямоугольник.

Другим следствием наличия высокой входной емкости является то, что при переключении возникает импульс тока перезарядки этой емкости, то есть чем выше рабочая частота, тем больше потребляет микросхема, и считается, что при максимальных рабочих частотах ее потребление может сравниться с по­треблением ТТЛ (по крайней мере, ТТЛ серии 74LS). Дело еще усугубляется тем, что из-за затянутых фронтов импульсов элемент достаточно длительное время находится в активном состоянии, когда оба выходных транзистора приоткрыты (то есть возникает так называемый эффект «сквозного тока»).

Это же затягивание фронтов в сочетании с высокоомным входом приводит к снижению помехоустойчивости при перею1ючении - если на фронте сигна­ла «сидит» высокочастотная помеха, то это может приводить к многократ­ным переключениям выхода, как это было у компаратора (см. главу 13). По этой причине в спецификациях на микросхемы часто указывают желатель­ную максимальную длительность фронтов управляющего сигнала.

Однако в современных КМОП, в отличие от «классических», большинство недостатков, связанных с низким быстродействием, удалось преодолеть (правда, за счет снижения допустимого диапазона питания). Подробнее о се­риях КМОП рассказано далее, а пока несколько еще несколько слов об осо­бенностях этих микросхем.

Незадействованные входы элемента КМОП нужно обязательно подключать куда-нибудь - либо к земле, либо к питанию (резисторов при этом не требу­ется, так как вход тока не потребляет), либо объединять с соседним вхо­дом - иначе наводки на столь высокоомном входе полностью нарушат рабо­ту схемы. Причем в целях снижения потребления следует делать это и по отношению к незадействованным элементам в том же корпусе (но не ко всем незадействованным выводам, конечно). «Голый» вход КМОП из-за своей вы-сокоомности может быть также причиной повышенной «смертности» чипов при воздействии статического электричества, однако на практике входы все­гда шунтируют диодами, как показано на рис. 11.4. Допустимый ток через эти диоды также оговаривается в спецификациях.

КМОП(комплементарная структура металл-оксид-полупроводник)- технология построения электронных схем. В более общем случае - КМДП (со структурой металл-диэлектрик-полупроводник). Отличительной особенностью схем КМОП по сравнению с биполярными технологиями (ТТЛ, ЭСЛ и др.) является очень малое энергопотребление в статическом режиме (в большинстве случаев можно считать, что энергия потребляется только во время переключения состояний)

Подавляющее большинство современных логических микросхем, в том числе процессоров, используют схемотехнику КМОП. В технологии КМОП используются полевые транзисторы с изолированным затвором с каналами разной проводимости.

В устройствах на микросхемах КМОП вполне применимы меры по борьбе с дребезгом, известные из опыта работы с микросхемами ТТЛ, например, включение статического триггера на двух элементах И-НЕ или ИЛИ-НЕ. Однако чрезвычайно высокое входное сопротивление микросхем КМОП (порядка сотен и тысяч мегаом) и относительно высокое выходное сопротивление (сотни ом - один килоом) позволяет упростить цепи подавления дребезга, исключив резисторы. Вариантом схемы является устройство, собранное всего лишь на одном неинвертирующем логическом элементе.

Здесь следует сказать несколько слов о неинвертирующих логических элементах серий КМОП. Большинство логических элементов этих серий являются инвертирующими. Как указывалось выше, микросхемы, содержащие в своем обозначении буквы «ПУ», служат для согласования микросхем КМОП с микросхемами ТТЛ. По этой причине их выходные токи при подаче на их выходы напряжения питания или соединении выходов с общим проводом в устройстве по схемам могут достигать многих десятков миллиампер, что отрицательно сказывается на надежности устройств и может служить мощным источником помех. Большое входное сопротивление микросхем КМОП позволяет в некоторых случаях обойтись вообще без активных элементов для подавления дребезга.



Наиболее перспективны серии, выполненные на комплементарных МОП-транзисторах (КМОП) (К176, К564 и др.). В них отсутствуют нагрузочные резисторы, а МОП-транзисторы с разной электропроводностью каналов выполняют роль ключей. При напряжении на затворах, большем порогового, для транзисторов с каналом определенного типа соответствующий транзистор отперт, а другой заперт. При другом значении большем порогового для транзисторов с электропроводностью противоположного типа отпертый и запертый транзисторы меняются местами. Такие структуры успешно работают при изменении в широких пределах напряжения источника питания (от 3 до 15 В), что недостижимо для логических элементов, в состав которых входят резисторы. В статическом режиме при большом сопротивлении нагрузки логические элементы КМОП практически не потребляют мощности.

Для них также характерны: стабильность уровней входного сигнала и малое его отличие от напряжений источника питания; высокое входное и небольшое выходное сопротивления; хорошая помехоустойчивость; легкость согласования с микросхемами других серий.

Логические элементы КМОП, выполняющие функцию 3 И-НЕ. В нем использованы транзисторы с индуцированным каналом. Транзисторы VT1-VT3 имеют канал -типа и открыты при напряжении затворов, близких к нулю. Транзисторы имеют канал -типа и открыты при напряжениях затворов, больших порогового значения.

При нулевом входном сигнале хотя бы на одном из входов логического элемента один из транзисторов открыт и выходное напряжение равное Е. И только в том случае, если на всех входах есть сигнал логической единицы (обычно равный Е), все транзисторы VT1 - закрыты, а ярусно включенные транзисторы открыты. Выходное напряжение равно потенциалу общей шины (логический 0). Таким образом, сочетание ярусного включения транзисторов с каналами, имеющими один тип электропроводности, и параллельного соединения транзисторов с каналами другого типа электропроводности позволили реализовать функцию И-НЕ.

Если группы ярусно и параллельно включенных транзисторов поменять местами, то будет реализован элемент, выполняющий функцию. Он работает аналогично предыдущему. Транзисторы открыты в том случае, если на их затворах логическая 1, и заперты при входных сигналах логического 0.

Из рассмотренных схем видно, что в статическом режиме один из транзисторов, включенных последовательно, всегда закрыт, а другой открыт. Так как закрытый транзистор имеет большое сопротивление, то ток в цепи определяется только малыми значениями токов утечек и микросхема практически не потребляет электрическую мощность.

В качестве базового инвертора, устанавливаемого на входе ЛЭ, обычно используется цепь. Для предотвращения пробоя пленки оксида под затворами МОП-транзисторов схему инвертора обычно дополняют диодами, выполняющими защитные функции. Постоянная времени этих компонентов около 10 не. Поэтому их введение существенно не меняет динамические характеристики логических элементов. При попадании в цепь входа статических напряжений той или иной полярности соответствующие диоды открываются и закорачивают на цепь источника питания источник статического заряда. Резистор, который вместе с барьерными емкостями диодов образует интегрирующую цепь, уменьшает скорость увеличения напряжения на затворе до значения, при котором диоды VD2, VD3 успевают открыться.

Если источник напряжения имеет малое внутреннее сопротивление, то через диод при потечет большой прямой ток. Поэтому при включении аппаратуры с подобными логическими элементами напряжение питания должно подаваться раньше входного сигнала, а при выключении - наоборот. В тех случаях, когда допустимо некоторое снижение быстродействия, в цепь входа можно включать резисторы, ограничивающие входной ток на уровне.

В ряде микросхем для увеличения крутизны передаточной функции и повышения нагрузочной способности к выходу инвертора логического элемента подключают один или два дополнительных инвертора. Транзисторы дополнительного инвертора имеют повышенную мощность. За счет них обеспечивается уменьшение сопротивлений каналов открытых выходных транзисторов инвертора с кОм до кОм. Эти значения выходных сопротивлений позволяют не вводить в выходные цепи токоограничивающие резисторы, защищающие от короткого замыкания на выходе.

В логических элементах КМОП предельно просто реализуют элементы с тремя устойчивыми состояниями. Для этого последовательно с транзисторами инвертора включают два комплементарных транзистора,управляемых инверсными сигналами. Если при подаче сигналов транзисторы закрыты, то выходное сопротивление инвертора имеет большое значение (инвертор находится в третьем высокоимпедансном состоянии).

Третье состояние имеется у отдельных микросхем, например у логических элементов типа, а также у сложных функциональных узлов серий КМОП.

Согласование логических элементов ТТЛ с логическими элементами КМОП можно выполнить несколькими способами:

1) питать логические элементы КМОП малыми напряжениями, при которых сигналы логических элементов ТТЛ переключают транзисторы логических элементов КМОП;

2) использовать логические элементы ТТЛ с открытым коллектором, в цепь выхода которых включен резистор, подключенный к дополнительному источнику напряжения;

3) применять микросхемы преобразователей уровня при согласовании серий КМОП с сериями ТТЛ и при согласовании серий ТТЛ с сериями КМОП).

При необходимости увеличить выходную мощность допускается параллельное соединение нескольких микросхем. Для подавления помех по цепи питания между шинами питания включают электролитический конденсатор емкостью и параллельно ему керамические конденсаторы емкостью на корпус. Последние подключают непосредственно к выходам микросхем. Емкость нагрузки, как правило, не должна превышать. При большем значении емкости нагрузки последовательно с выходом устанавливают дополнительный резистор, ограничивающий ток ее переразрядки. При наличии выбросов напряжения во входном сигнале последовательно с входом ЛЭ можно включить ограничительный резистор номиналом до 10 кОм. Неиспользованные входы ЛЭ следует обязательно подключать к шинам источника питания или соединять параллельно с подключенными входами. В противном случае возможны пробои диэлектрика под затвором и нарушение работоспособности вследствие сильного влияния помех.

Допускается кратковременное замыкание накоротко выходных зажимов микросхем при малом напряжении питания.

При хранении и монтаже следует опасаться статического электричества. Поэтому при хранении выводы электрически замыкают между собой. Монтаж их проводится при выключенном напряжении питания, причем обязательно использование браслетов, с помощью которых тело электромонтажников соединяется с землей.

Логические элементы КМОП-серий широко применяются при построении экономичных цифровых устройств малого и среднего быстродействия. В дальнейшем по мере усовершенствования технологии их изготовления они могут составить конкуренцию для логических элементов ТТЛ при создании быстродействующих устройств.

Обычно при конструировании пробников и калибраторов используют генераторы коротких импульсов, вырабатывающие сигнал с широким и равномерным спектром. Такой сигнал позволяет быстро проверять каскады радиоаппаратуры, как низкочастотные (НЧ), так и высокочастотные (ВЧ). Причем чем меньше длительность импульсов, тем лучше - спектр получается шире и равномернее.

Как правило, подобные генераторы состоят из двух основных узлов: собственно генератор прямоугольных импульсов и формирователь коротких импульсов. Между тем можно обойтись без специального формирователя, поскольку он уже имеется в логическом элементе микросхемы структуры КМОП.

Рассмотрим схему

Рисунок 4- RC- генератор

На рисунке 4 показан известный RC-генератор, работающий в данном случае на частоте около 1000 Гц (она зависит от номиналов деталей R1, С1). Низкочастотный сигнал прямоугольной формы поступает с выхода элемента DD1.2 (вывод 4) через цепочку R2C3 на переменный резистор R4 - им плавно регулируют амплитуду сигнала, подаваемого на проверяемый узел.

Выход же высокочастотного сигнала (коротких импульсов) выполнен несколько необычно - сигнал снимают с переменного резистора R3, включенного в цепь питания микросхемы. Перемещением движка этого резистора плавно регулируют уровень выходного высокочастотного сигнала.

Рассмотрим принцип работы такого формирователя по упрощенной схеме логического элемента структуры КМОП, показанного на рисунке 5.

Рисунок 5-упрощенная схема логического элемента структуры КМОП

Его основа - два последовательно включенных полевых транзистора с изолированным затвором и разным типом проводимости каналов. Если последовательно с транзисторами включить резистор R1, а на вход элемента подавать прямоугольные импульсы U1, произойдет следующее (рис. 3). Из-за того, что длительность фронта импульса не может быть бесконечно малой, а также из-за инерционности транзисторов, в момент действия фронта наступит такой момент, когда оба транзистора окажутся в открытом состоянии. Через них потечет так называемый сквозной ток, значение которого может составлять от единиц до десятков миллиампер в зависимости от типа микросхемы и напряжения источника питания. На резисторе будут формироваться короткие импульсы напряжения U2. Причем как в момент действия фронта, так и спада.

Иначе говоря, произойдет удвоение частоты исходных импульсов.

Сопротивление резистора не должно быть большим во избежание нарушения режима работы элементов микросхемы. Это означает, что к высокочастотному выходу можно подключать низкоомную нагрузку сопротивлением 50...75 Ом.

У рассмотренного генератора максимальная амплитуда импульсов на высокочастотном выходе составляет 100...150мВ, а потребляемый от источника питания ток не превышает 1,6 мА. Генератор рассчитан на использование при проверке усилителей ЗЧ, трехпрограммных громкоговорителей, радиоприемников на диапазонах ДВ и СВ.

структуры КМОП

Полевой транзистор - полупроводниковый прибор, через который протекает поток основных носителей зарядов, регулируемый поперечным электрическим полем, которое создаётся напряжением, приложенным между затвором и стоком или между затвором и истоком.

Так как принцип действия полевых транзисторов основан на перемещении основных носителей заряда одного типа (электронами или дырками), такие приборы ещё называют униполярными, тем самым противопоставляя их биполярным.

Полевые транзисторы классифицируют на приборы с управляющим p-n-переходом и с изолированным затвором, так называемые МДП («металл-диэлектрик-полупроводник»)-транзисторы, которые также называют МОП («металл-оксид-полупроводник»)-транзисторами, причём последние подразделяют на транзисторы со встроенным каналом и приборы с индуцированным каналом.

К основным параметрам полевых транзисторов причисляют: входное сопротивление, внутреннее сопротивление транзистора, также называемое выходным, крутизну стокозатворной характеристики, напряжение отсечки и некоторые другие.

Полевой транзистор с управляющим p-n-переходом - это полевой транзистор, в котором пластина из полупроводника, например n-типа, имеет на противоположных концах электроды (сток и исток), с помощью которых она включена в управляемую цепь. Управляющая цепь подключается к третьему электроду (затвору) и образуется областью с другим типом проводимости, в данном случае p-типом.

Источник питания, включенный во входную цепь, создаёт на единственном p-n-переходе обратное напряжение. Во входную цепь также включается и источник усиливаемых колебаний. При изменении входного напряжения изменяется обратное напряжение на p-n-переходе, в связи с чем меняется толщина обедненного слоя (n-канал), то есть площадь поперечного сечения области, через которую проходит поток основных носителей заряда. Эта область называется каналом.

Отличительной особенностью структуры КМОП по сравнению с другими МОП-структурами (N-МОП, P-МОП) является наличие как n-, так и p-канальных полевых транзисторов; как следствие, КМОП-схемы обладают более высокой скоростью действия и меньшим энергопотреблением, однако при этом характеризуются более сложным технологическим процессом изготовления и меньшей плотностью упаковки.

Параметры современных КМОП-микросхем (комплементарных МОП-микросхем) приближаются к идеальным. Во-первых, типовое значение статической рассеиваемой мощности КМОП-микросхемы, которая возникает из-за токов утечки, составляет порядка 10 нВт на один вентиль. Активная же (или динамическая) рассе-ваемая мощность зависит от напряжения источника питания, частоты переключения, выходной нагрузки и времени нарастания входного сигнала, но ее типовое значение для одного вентиля при частоте 1 МГц и нагрузке емкостью 50пФ не превышает 10мВт.

Во-вторых, хотя время задержки распространения сигнала в КМОП-вентилях и не равно нулю, но достаточно мало. В зависимости от напряжения источника питания задержка распространения сигнала для типового элемента находится в диапазоне от 4 до 8 не.

В-третьих, времена нарастания и спада контролируемы и представляют собой скорее линейные, чем ступенчатые функции. Обычно они имеют на 20-40% большие значения, чем время задержки распространения сигнала.

И, наконец, типовое значение помехоустойчивости составляет приблизительно 45% от амплитуды выходного сигнала.

Еще одним немаловажным фактором, свидетельствующим в пользу КМОП-микросхем, является их малая стоимость, особенно при использовании в портативном оборудовании, питающемся от маломощных батарей.

Источники питания, в системах, построенных на КМОП-микросхемах, могут быть маломощными, и, как следствие, недорогими. Благодаря малой потребляемой мощности, подсистема питания может быть проще, а значит дешевле. В радиаторах и вентиляторах нет необходимости, благодаря низкой рассеиваемой мощности. Непрерывное совершенствование технологических процессов, а также увеличение объемов производства и расширение ассортимента выпускаемых КМОП-микросхем приводят к снижению их стоимости.

Существует множество серий логических микросхем КМОП-структуры. Первой из них была серия К176, далее - К561 (CD4000AN) и КР1561 (CD4000BN), но наибольшее развитие функциональные ряды получили в сериях КР1554 (74АСхх), КР1564 (74HCxx) и КР1594 (74ACTxx).

Функциональные ряды современных КМОП-микросхем серий КР1554, КР1564 и КР1594 содержат полнофункциональные эквиваленты микросхем ТТЛШ-серий КР1533 (74ALS) и К555 (74LS), которые полностью совпадают как по выполняемым функциям, так и по разводке выводов А.Л. Одинец, г. Минск, E-mail: [email protected] (цоколевке). Современные КМОП-микросхемы по сравнению с их прототипами, сериями К176 и К561, потребляют значительно меньшую динамическую мощность и многократно превосходят их по быстродействию.

Для упрощения схемотехнических решений разработаны КМОП-серии как с входным пороговым напряжением ТТЛ-уровней (КР1594 и некоторые другие), так и КМОП-уровней (КР1554, КР1564 и некоторые другие). Диапазон рабочих температур для микросхем общего применения находится в пределах -4О...+85°С и -55... + 125°С - для микросхем специального применения. В таблице 1 приведено сравнение входных и выходных характеристик КМОП и ТТЛШ-микросхем.

Характеристики КМОП-микросхем

Цель данного раздела заключается в том, чтобы дать разработчику цифровых систем необходимые сведения о том, как работают цифровые микросхемы структуры КМОП и как ведут себя при воздействии различных управляющих сигналов. Достаточно много было написано о конструкции и технологии производства микросхем КМОП, поэтому сегодня рассмотрим только их схемотехнические особенности.

Таблица 1. Сравнение электрических параметров КМОП и ТТЛШ-схем

Основной КМОП-схемой является инвертор, показанный на рис. 1. Он состоит из двух полевых транзисторов, работающих в режиме обогащения: с каналом Р-типа (верхний) и каналом N-типа (нижний). Для обозначения выводов питания приняты: VDD или Vcc- для положительного вывода и Vss или GND - для отрицательного. Обозначения VDD и Vcc позаимствованы из обычных МОП-схем и символизируют источники питания истока и стока транзисторов. Они не относятся непосредственно к схемам КМОП, поскольку выводами питания являются истоки обоих комплементарных транзисторов. Обозначения Vss или GND позаимствованы от ТТЛ-схем, и эта терминология сохранилась и для КМОП-микросхем. Далее будут указываться обозначения VCC и GND.


Рис. 1. Простейший КМОП-инвертор

Логическими уровнями в КМОП-системе являются Vcc (логическая "1") и GND (логический "0"). Поскольку ток, протекающий во "включенном" МОП-транзисторе, практически не создает на нем падения напряжения, а входное сопротивление КМОП-вентиля очень велико (входная характеристика МОП-транзистора в основном емкостная и выглядит подобно его вольтамперной характеристике сопротивлением 1012Ом, зашунтированного конденсатором емкостью 5пФ), то и логические уровни в КМОП-системе будут практически равны напряжению источника питания.

Предлагаем рассмотреть характеристические кривые МОП-транзисторов для того, чтобы получить представление о том, как будут изменяться времена нарастания и спада, задержки распространения сигнала и рассеиваемая мощность с изменением напряжения источника питания и емкости нагрузки.

На рис. 2 показаны характерные кривые N-каналь-ного и Р-канального полевых транзисторов, работающих в режиме обогащения.

Из этих характеристик следует ряд важных выводов. Рассмотрим кривую для N-канального транзистора с напряжением Затвор-Исток, равным VGS=15B. Следует заметить, что для постоянного управляющего напряжения VGS, транзистор ведет себя, как источник тока при значениях VDS (напряжение Сток-Исток) больших, чем VGS-VT (Ут-пороговое напряжение МОП-транзистора). При значениях VDS, меньших VGS-VT, транзистор ведет себя в основном подобно резистору.

Следует также заметить, что при меньших значениях VGS кривые имеют аналогичный характер, за тем исключением, что величина 1Ю (ток Сток-Исток) значительно меньше, и, в действительности, 1Ш возрастает пропорционально квадрату VGS. Р-канальный транзистор имеет практически одинаковые, но комплементарные (дополняющие) характеристики.

В случае управления емкостной нагрузкой с помощью КМОП-элементов начальное изменение напряжения, приложенного к нагрузке, будет иметь линейный характер, благодаря "токовой" характеристике на начальном участке, получаемой округлением преобладающей резистивной характеристики, когда значение VDS мало отличается от нуля. Применительно к простейшему КМОП-инвертору, показанному на рис. 1, по мере уменьшения напряжения VDS до нуля выходное напряжение V0UT будет стремиться кУссили GND, в зависимости от того, какой транзистор открыт: Р-канальный или N-канальный.

Если увеличивать Vcc, и, следовательно, VGS, инвертор должен развивать на емкости большую амплитуду напряжения. Однако для одного и того же приращения напряжения нагрузочная способность 1Ю резко возрастает как квадрат VGS, и поэтому времена нарастания и задержки распространения сигнала, показанные на рис. 3, уменьшаются.

Таким образом, можно видеть, что для данной конструкции, и, следовательно, фиксированного значения емкости нагрузки, увеличение напряжения источника питания повысит быстродействие системы. Увеличение Vcc не только повысит быстродействие, но также и рассеиваемую инвертором динамическую мощность, имеющую две составляющие. Во-первых, это мощность, расходуемая на перезарядку емкости нагрузки. Эта составляющая рассеиваемой мощности пропорциональна величине емкости нагрузки, частоте переключения инвертора и квадрату падения напряжения на нагрузке.


Рис. 2. Зависимость выходного тока Ids от выходного напряжения для трех разных значений питающего напряжения Voo и начального смещения Затвор-Исток Vos

Вторая составляющая рассеиваемой инвертором мощности обусловлена тем, что каждый раз, когда схема переключается из одного состояния в другое, при VCC>2VT кратковременно возникает сквозной tokIsw, протекающий от Vcc к GND через два одновременно частично открытых выходных транзистора.

Поскольку пороговые напряжения транзисторов не изменяются с ростом Vcc, то диапазон входного напряжения, в пределах которого верхний и нижний транзисторы одновременно находятся в проводящем состоянии, увеличивается с ростом Vcc. В то же время большее значение Vcc обеспечивает большие значения управляющих напряжений VGS, которые также приводят к увеличению тока Isw. Однако если бы время нарастания входного сигнала равнялось нулю, то через выходные транзисторы не было сквозного тока. Очевидно, что времена нарастания и спада фронтов входного сигнала должны иметь минимальное значение для уменьшения рассеиваемой мощности.

Рассмотрим, как зависят передаточные характеристики инвертора от питающего напряжения Vcc(pnc. 5). Условимся считать, что оба транзистора имеют идентичные, но комплементарные (взаимодополняющиеся)характеристики и пороговые напряжения. Если Vcc меньше порогового напряжения 2VT, ни один из транзисторов не может быть включен, и схема находится в закрытом состоянии. На рис. 5а показана ситуация, когда напряжение источника питания в точности соответствует пороговому напряжению. В таком случае схема должна работать со 100% гистерезисом. Однако, это не совсем гистерезис, поскольку оба выходных транзистора закрыты, и выходное напряжение поддерживается на емкостях затворов, следующих по цепи схем. Если Vcc находится в пределах одного-двух пороговых напряжений (рис. 56), происходит уменьшение величины "гистерезиса" по мере приближения Vcc кзначению, эквивалентному 2VT (рис. 5в). При напряжении Vcc, эквивалентном двум пороговым напряжениям "гистерезис" отсутствует, также нет и сквозного тока через транзисторы в моменты переключений. Когда значение Vcc превышает два пороговых напряжения, кривые передаточной характеристики начинают закругляться (рис. 5г). Когда Vm проходит через область, где оба транзистора открыты, протекающие в каналах транзисторов токи создают падения напряжений, дающие закругления характеристик.

Рассматривая КМОП-систему на предмет устойчивости к шуму, необходимо иметь ввиду, по крайней мере, две характеристики: помехоустойчивость и запас помехоустойчивости.


Рис. З. Измерение времен нарастания и спада, а также задержек распространения сигнала в КМОП-системе

Современные КМОП-схемы имеют типичное значение помехоустойчивости, равное 0,45Vcc. Это означает, что ложный входной сигнал, отличающийся от Vcc или GND на величину, равную 0,45Vcc, или меньшую, не будет распространяться в системе, как ошибочный логический уровень. Обычно такой сигнал не изменяет выходное состояние логического элемента. В триггере, например, ложный входной синхронизирующий импульс амплитудой 0,45Vcc не приведет к изменению его состояния.

Это не означает, что на выходе схемы вообще не появится никакого сигнала. На самом деле в результате воздействия сигнала помехи на выходе инвертора появится выходной сигнал, но он будет ослаблен по амплитуде. По мере его распространения в цифровой системе, сигнал будет ослаблен последующими схемами еще больше, пока совсем не исчезнет.


Рис. 4. Гарантированный запас помехоустойчивости КМОП-схемы в диапазоне температур как функция напряжения питания V

Производитель КМОП-микросхем также гарантирует наличие запаса помехоустойчивости в 1В во всем диапазоне питающих напряжений и температур и для любой комбинации входов. Это всего лишь отклонение характеристики помехоустойчивости. Другими словами, из данной характеристики следует, что для того, чтобы выходной сигнал схемы, выраженный в вольтах, находился в пределах 0,1 Vcc от значения соответствующего логического уровня ("нуля" или "единицы"), входной сигнал не должен превышать значение 0,1 Vcc плюс 1В выше уровня "земли" или ниже уровня "питания". Графически данная ситуация показана на рис. 4.

Для стандартных ТТЛ-схем, например, запас помехоустойчивости составляет 0,4В (рис. 6).

Анализ особенностей применения КМОП-микросхем


Рис.5 Передаточные характеристики для разных значений питающего напряжения Vcc

В данном разделе рассмотрены различные ситуации, возникающие при разработке цифровых систем с использованием КМОП-микросхем: неиспользуемые входы, параллельное включение элементов для увеличения нагрузочной способности, разводка шин данных, согласование с логическими элементами других семейств.


Рис. 6. Гарантированные значения диапазона напряжений логических уровней для ТТЛ-схем в диапазоне температур как функция напряжения питания V

Неиспользуемые выводы или, проще говоря, неиспользуемые входы не должны оставаться неподключенными. Из-за очень большого входного сопротивления (1012 Ом) плавающий вход может дрейфовать между логическими "нулем" и "единицей", создавая непредсказуемое поведение выхода схемы и связанные с этим проблемы в системе. Все неиспользуемые входы должны быть подключены к шине питания, "общему" проводу или другому используемому входу. Выбор решения не случаен, поскольку надо учитывать возможное влияние на выходную нагрузочную способность схемы. Рассмотрим для примера че-тырехвходовый элемент 4И-НЕ, используемый как двухвходовый логический вентиль 2И-НЕ. Его внутренняя структура показана на рис. 7.

Пусть входы А и В будут неиспользуемыми входами. Если неиспользуемые входы подключены к фиксированному высокому логическому уровню, то входы А и В - к шине питания, чтобы разрешить работу остальных входов. Это приведет к включению нижних А и В транзисторов и выключению соответствующих верхних А и В. В таком случае могут быть включены одновременно не более двух верхних транзисторов. Однако если входы А и В подключены к входу С, входная емкость утроится, но каждый раз, когда на вход С поступает уровень логического "нуля", верхние транзисторы А, В и С включаются, утраивая значение максимального выходного тока уровня логической "единицы". Если на вход D поступает также уровень логического "нуля", все четыре верхних транзистора включены. Таким образом, подключение неиспользуемых входов элемента И-НЕ к шине питания (ИЛИ-НЕ к "общему" проводу) приведет к их включению, но подключение неиспользуемых входов к другим используемым входам гарантирует увеличение выходного вытекающего тока уровня логической "единицы", в случае элемента И-НЕ (или выходного втекающего тока уровня логического "нуля" в случае элемента ИЛИ-НЕ).

Для последовательно включенных транзисторов увеличения выходного тока не происходит. Учитывая это обстоятельство, многовходовый логический элемент может использоваться для непосредственного управления мощной нагрузкой, к примеру, обмоткой реле или лампой накаливания.

В зависимости от типа логического элемента объединение входов гарантирует увеличение нагрузочной способности для вытекающего или втекающего токов, но не двух одновременно. Для того чтобы гарантировать увеличение двух выходных токов, необходимо параллельно включить несколько логических элементов (рис. 8). В таком случае увеличение нагрузочной способности достигается за счет параллельного включения нескольких цепочек транзисторов (рис. 7), что увеличивает соответствующий выходной ток.


Рис. 7. Четырехвходовый логический элемент 4И-НЕ, входящий в состав микросхемы КР1561ЛА1

Для разводки шин данных существуют два основных способа. Первый способ - параллельное соединение обычных буферных КМОП-элементов (например, К561ЛН2). И второй, наиболее предпочтительный, способ - соединение элементов с тремя выходными состояниями.

Статья предоставлена редакцией журнала Электроника . Другие статьи журнала "Электроника" можно прочитать

Логические элементы КМОП

Эквивалентные схемы элементов, представленных выше, можно получить, используя только PMOS-транзисторы. Однако наибольший интерес представляет совместное применение PMOS и NMOS-транзисторов. Такая технология наиболее популярна сегодня и называется CMOS-технологией. Она обеспечивает максимальное быстродействие работы элементов при низком энергопотреблении по сравнению со всеми другими технологиями.

В NMOS-цепях логические функции реализовались комбинацией соединений NMOS-транзисторов, объединенных с токоограничивающим элементом.

Т.к. все элементы, построенные на NMOS-транзисторах реализуют отрицательные функции (НЕ, ИЛИ-НЕ, И-НЕ), то их можно условно представить так, как показано на блок-схеме рисунка 1.9.

Рисунок 1.9 - Структура NMOS-схемы

При этом все транзисторные цепи объединены в блок PDN (Pull-down Network) – блок отрицательной логики. Для реализации прямых логических функций необходимо соединение двух отрицательных элементов, что снижает быстродействие всего элемента в целом. Концепция CMOS-цепей основана на реализации прямых функций (И, ИЛИ) на PMOS-транзисторах таким образом, что блоки прямой логики (PUN – Pull-up Network) и блоки отрицательной логики (PDN - Pull-down Network) являются дополнениями друг друга. Тогда логическая схема, реализующая типичный логический элемент, будет иметь вид, представленный на рисунке 1.10.

Рисунок 1.10 - Структура CMOS-схемы

Для любой комбинации входных сигналов PDN устанавливает уровень логического нуля на выходе V f , или PUN устанавливает на этом выходе уровень логической единицы. PDN и PUN имеют равное количество транзисторов, которые размещены так, что эти два блока работают параллельно. Там, где PDN включает NMOS-транзисторы, соединенные последовательно, PUN строится на PMOS-транзисторах, соединенных параллельно, и наоборот.

Самый простой пример CMOS-схемы - инвертор, показан на рисунке 1.11.

Рисунок 1.11 - Реализация CMOS-инвертора

Когда сигнал V x =0V, транзистор T2 закрыт, а транзистор T1 открыт. Следовательно, V f =5V, и так как T2 закрыт, ток через транзисторы не течет. Когда V x =5V, то T2 открыт, а T1 закрыт. Таким образом, V f =0V, и тока в цепи по прежнему не будет, т.к. транзистор T1 закрыт. Это свойство справедливо для всех CMOS-цепей – логические элементы практически не потребляют ток в статическом режиме. Ток в таких цепях будет протекать только во время переключения элементов (вот почему, с ростом частоты работы устройств, построенных по этой технологии, возрастает и энергопотребление). Вследствие этого, CMOS-схемы стали наиболее популярной технологией при реализации цифровых логических устройств.

Рисунок 1.12 представляет принципиальную электрическую схему логического элемента И-НЕ CMOS. Реализация этого элемента подобна NMOS-схеме, представленной на рисунке 1.5 за исключением того, что токоограничивающий резистор был заменен блоком PUN, состоящим из двух PMOS-транзисторов, соединенных параллельно. Таблица истинности на рисунке показывает состояние каждого из этих четырех транзисторов для каждой логической комбинации вводов x 1 и x 2 . Легко проверить, что данная схема реализует логическую функцию И-НЕ. В статическом состоянии отсутствует путь для протекания тока от V DD к Gnd.

Рисунок 1.12 - CMOS-реализация логического элемента И-НЕ

Схема на рисунке 1.12 может быть получена исходя из логического выражения, которое определяет логическую функцию И-НЕ, . Это выражение определяет состояния, при которых f = 1; следовательно, оно определяет поведение блока PUN. Так как этот блок состоит из PMOS-транзисторов, которые открываются при подаче на их входы логического нуля, входная переменная x i открывает транзистор, если x i =0. По правилу де Моргана мы имеем:

Таким образом f = 1 , когда либо вход x 1 , либо вход x 2 имеют значение логического нуля, что означает что PUN должен иметь два PMOS-транзистора, соединенных параллельно. Блок PDN должен дополнять функцию f, которая имеет вид:

f = x 1 x 2

Функция f = 1 , когда оба входа x 1 и x 2 равны 1, поэтому блок PDN должен иметь два NMOS-транзистора, соединенных последовательно.

Схема для CMOS-реализации элемента ИЛИ-НЕ может быть получена из логического выражения.