Способ обнаружения оптических и оптико-электронных средств наблюдения и устройство для его осуществления. Способ оптико-механического сканирования Оптико электронный способ сканирования

Матрица является важнейшей частью любого сканера. Матрица трансформирует изменения цвета и яркости принимаемого светового потока в аналоговые электрические сигналы, которые будут понятны лишь единственному ее электронному другу – аналого-цифровому преобразователю (АЦП). С этой точки зрения, АЦП можно сравнить с гидом-переводчиком, неизменным ее компаньоном. Только он как никто другой понимает матрицу, ведь никакие процессоры или контроллеры не разберут ее аналоговые сигналы без предварительного толкования преобразователем. Только он способен обеспечить работой всех своих цифровых коллег, воспринимающих лишь один язык – язык нулей и единиц.

Световой поток, падая на поверхность матрицы, буквально "вышибает" электроны из ее чувствительных ячеек. И чем ярче свет, тем больше электронов окажется в накопителях матрицы, тем больше будет их сила, когда они непрерывным потоком ринутся к выходу. Однако сила тока электронов настолько несоизмеримо мала, что вряд ли их "услышит" даже самый чувствительный АЦП.

Именно поэтому на выходе из матрицы их ждет усилитель, который сравним с огромным рупором, превращающим, образно говоря, даже комариный писк в вой громогласной сирены. Усиленный сигнал (пока еще аналоговый) "взвесит" преобразователь, и присвоит каждому электрону цифровое значение, согласно его силе тока.

Большинство современных сканеров для дома и офиса базируются на матрицах двух типов: на CCD (Charge Coupled Device) или на CIS (Contact Image Sensor). Корпус CIS-сканера плоский, в сравнении с аналогичным CCD-аппаратом (его высота обычно составляет порядка 40-50 мм).

CCD-сканер обладает большей глубиной резкости, нежели его CIS-собрат. Достигается это за счет применения в его конструкции объектива и системы зеркал.

На рисунке, для простоты восприятия, нарисовано лишь одно зеркало, тогда как у типового сканера их не менее трех-четырех

Сканеры с CCD-матрицей распространены гораздо больше, чем CIS-аппараты. Объяснить это можно тем, что сканеры в большинстве случаев приобретаются не только для оцифровки листовых текстовых документов, но и для сканирования фотографий и цветных изображений. Погрешность разброса уровней цветовых оттенков, различаемых стандартными CCD-сканерами составляет порядка ±20%, тогда как у CIS-аппаратов эта погрешность составляет уже ±40%.

CIS-матрица состоит из светодиодной линейки, которая освещает поверхность сканируемого оригинала, самофокусирующихся микролинз и непосредственно самих сенсоров. Конструкция матрицы очень компактна, таким образом, сканер, в котором используется контактный сенсор, всегда будет намного тоньше своего CCD-собрата. К тому же, такие аппараты славятся низким энергопотреблением; они практически нечувствительны к механическим воздействиям. Однако CIS-сканеры несколько ограничены в применении: аппараты, как правило, не приспособлены к работе со слайд-модулями и автоподатчиками документов.

Из-за особенностей технологии CIS-матрица обладает сравнительно небольшой глубиной резкости. Для сравнения, у CCD-сканеров глубина резкости составляет ±30 мм, у CIS – ±3 мм. Другими словами, положив на планшет такого сканера толстую книгу, получишь скан с размытой полосой посередине, т.е. в том месте, где оригинал не соприкасается со стеклом.

У CCD-аппарата вся картина будет резкой, поскольку в его конструкции есть система зеркал и фокусирующая линза. В свою очередь, именно достаточно громоздкая оптическая система и не позволяет CCD-сканеру достичь столь же компактных размеров, как у CIS-собрата.

В плане разрешающей способности CIS-сканеры также не конкурент CCD. Уже сейчас некоторые модели CCD-сканеров для дома и офиса обладают оптическим разрешением порядка 3200 dpi, тогда как у CIS-аппаратов оптическое разрешение ограничено пока что 1200 dpi.

Сканеры с CIS-матрицей нашли свое применение там, где требуется оцифровывать не книги, а листовые оригиналы. Тот факт, что эти сканеры целиком получают питание по шине USB и не нуждаются в дополнительном источнике питания, пришелся как нельзя кстати владельцам портативных компьютеров.

CCD-матрица представляется "большой микросхемой" со стеклянным окошком. Именно сюда и фокусируется отраженный от оригинала свет. Матрица не прекращает работать все то время, пока лафет со сканирующей кареткой, приводимый шаговым электродвигателем, совершает путь от начала планшета, до его конца. Замечу, что общая дистанция движения лафета по направлению "Y" называется частотой сэмплирования или механическим разрешением сканера (об этом мы поговорим чуть позже). За один шаг матрица целиком захватывает горизонтальную линию планшета, которая называется линией растра. По истечении времени, достаточного для обработки одной такой линии, лафет сканирующего блока перемещается на небольшой шаг, и наступает очередь для сканирования следующей линии, и т.д.

Самый важный элемент сканера – CCD-матрица

Вид сбоку на CCD-матрицу

На виде сбоку можно заметить два обычных винта, которые выполняют "деликатную" роль". С их помощью на этапе сборки сканера производилась точная юстировка матрицы (обратите также внимание на П-образные прорези в печатной плате на виде сверху), чтобы падающий на нее отраженный свет от зеркал ложился бы равномерно по всей ее поверхности. Кстати, в случае перекоса одного из элементов оптической системы воссозданное компьютером изображение окажется "полосатым".

На увеличенной фотографии CCD-матрицы достаточно хорошо видно, что CCD-матрица оснащена собственным RGB-фильтром. Именно он и представляет собой главный элемент системы разделения цветов, о чем многие говорят, но мало кто представляет, как на самом деле это работает. Обычно, многие обозреватели ограничиваются стандартной формулировкой: "стандартный планшетный сканер использует источник света, систему разделения цветов и прибор с зарядовой связью (CCD) для сбора оптической информации о сканируемом объекте". На самом деле, свет можно разделить на его цветовые составляющие, а затем сфокусировать на фильтрах матрицы. Столь же немаловажным элементом системы разделения цветов является объектив сканера.

Корпус

Корпус сканера должен обладать достаточной жесткостью, чтобы исключить возможные перекосы конструкции. Безусловно, лучше всего, если основа сканера представляет собой металлическое шасси. Однако корпуса большинства выпускаемых сегодня сканеров для дома и офиса, в целях снижения стоимости, полностью сделаны из пластмассы. В этом случае, необходимую прочность конструкции придают ребра жесткости, которые можно сравнить с нервюрами и лонжеронами самолета.

Оптическая система сканера не терпит пыли, поэтому корпус аппарата должен быть герметичным, без каких-либо щелей (даже технологических).

Края планшета должны иметь пологий спуск – это облегчает задачу по быстрому извлечению оригинала со стекла. Кроме того, между стеклом и планшетом не должно быть никакого зазора, который препятствовал бы извлечению оригинала.

Блок управления

Все сканеры управляются с персонального компьютера, к которому они подключены, а необходимые настройки перед сканированием задаются в пользовательском окне управляющей программы. По этой причине, сканерам для дома и офиса совсем не обязательно иметь собственный блок управления. Однако многие производители идут навстречу самым неподготовленным пользователям, и устанавливают (обычно на лицевую панель) несколько кнопок "быстрого сканирования".

Кнопки быстрого сканирования – элемент, без
которого можно обойтись

Изобретение относится к технике получения изображения контролируемых объектов с помощью оптико-электронных систем с оптико-механической разверткой. Цель изобретения - улучшение качества передачи изображения путем увеличения числа строк разложения в кадре и повышение быстродействия. Изобретение позволяет повысить число строк в кадре при малом числе граней зеркального многогранника. На основе способа может быть создано малогабаритное сканирующее устройство с телевизионной частотой кадров и повышенным числом строк в кадре. Способ заключается в том, что осуществляют развертку одновременно М-параллельных элементарных строк, расположенных вплотную друг к другу, вторую кадровую развертку осуществляют непрерывной с угловой скоростью к2 =pMd э F к в пределах угла 2 первую кадровую развертку производят с шагом 2=M(p-s-1/N)d э а отношение углов устанавливают из условия , при этом число активных строк в кадре определяют из соотношения: z= M, где (m-1) - целое число крайних в растре М-строчных подкадров, во время которых производится обратный ход второй кадровой развертки, m= 1,2,3. ..; d э - угловая ширина строки; s - целое число пассивных перемежающихся полей в кадре, во время которых осуществляется обратный ход второй кадровой развертки, s=0,1,2...; с - КПД строчной развертки; к - угол обзора по кадру. Устройство, реализующее данный способ, содержит зеркальное N-гранное зеркало 1 с разным наклоном граней к его оси вращения, плоское зеркало 2, объектив 3 и М-элементный приемник 4 излучения. Пирамида 1 осуществляет строчную развертку и дискретную с шагом 2= =M(p-s-1/N)d э и частотой pF k первую кадровую развертку N-подкадров по М-элементарных строк, плоское зеркало 2 осуществляет вторую кадровую развертку с угловой скоростью w к2 = pMd э F k частотой F k кадров.

Изобретение относится к технике получения изображения контролируемых объектов с помощью оптико-электронных систем с оптико-механической разверткой. Цель изобретения улучшение качества передачи изображения путем увеличения числа строк разложения в кадре и повышение быстродействия. На чертеже представлена оптическая схема устройства, реализующего предложенный способ. Устройство для осуществления предложенного способа содержит зеркальное N-гранное зеркало 1 с разным наклоном граней к его оси вращения, плоское зеркало 2, объектив 3 и М-элементный приемник 4 излучения. Грани N-гранного зеркала 1 наклонены к оси вращения в соответствии с формулой к = o +k, где o наименьший из углов наклона граней к оси, k=0,1,2,3.N-1, шаг в угловом расположении многогранников. Чувствительные элементы приемника 4 излучения расположены в виде линейки, проекция которой в плоскость предметов перпендикулярна к направлению строчной развертки. Устройство работает следующим образом. Поток излучения от объекта, отразившись от зеркальной грани N-гранного зеркала 1, попадает на плоское зеркало 2 второй кадровой развертки. После отражения от зеркала 2 этот поток фокусируется объективом 3 на чувствительные элементы приемника 4 излучения, являющегося преобразователем изменений потока излучения в электрический сигнал. Предложенный способ оптико-механического сканирования обеспечивает Z= M cтрок разложения в кадре. По сравнению с аналогом число Z строк увеличивается примерно в (p-s) раз без увеличения числа граней N многогранного зеркала, а по сравнению с прототипом число Z строк увеличивается примерно в М раз. При этом обеспечивается достаточный промежуток времени для обратного хода второй кадровой развертки. Упрощается также осуществление второй кадровой развертки, так как она является непрерывной, а не шаговой. При заданном числе Z строк, варьируя величины M, p, s и m, можно определить оптимальное число подкадров в перемещающихся полях, которое осуществляется при минимальных габаритах и массе сканирующего устройства. Повышение быстродействия по сравнению с прототипом заключается в уменьшении, примерно в М раз, числа p перемещающихся полей в кадре (во столько же раз уменьшается число оборотов N-гранного зеркала). Повышение быстродействия достигается также за счет упрощения реализации второй кадровой развертки, ввиду ее непрерывного характера на рабочем участке и достаточного промежутка времени для обратного хода, для которого используется время s-пассивных перемещающихся полей в кадре, время m-1 крайних в растре подкадров, а также промежуток между двумя последовательными во времени активными участками строчной развертки. По сравнению с аналогом, примерно в N раз уменьшается амплитуда угла отклонения по кадру и в N раз уменьшается угловая скорость качания плоского зеркала. На основе предложенного решения может быть создано малогабаритное сканирующее оптико-механическое устройство с телевизионной частотой кадров и повышенным числом строк в кадре.

Формула изобретения

Способ оптико-механического сканирования, заключающийся в том, что осуществляют строчную развертку кадра с частотой pNF k , где р целое число перемежающихся полей в кадре, N количество подкадров в каждом поле, F k кадровая частота, дискретную первую кадровую развертку с частотой pF k , числом (N-1) шагов и шагом 2, а также вторую кадровую развертку с частотой F k в пределах угла 2, обеспечивающего заполнение строками кадра, отличающийся тем, что, с целью улучшения качества передачи изображения путем увеличения числа строк разложения в кадре и повышения быстродействия, осуществляют развертку одновременно М-параллельных элементарных строк, расположенных вплотную друг к другу, вторую кадровую развертку осуществляют непрерывно с угловой скоростью w k2 = pMd э F k в пределах угла 2 первую кадровую развертку производят с шагом 2 = M(p-s-1/N), а отношение углов устанавливают из условия при этом число активных строк в кадре определяют из соотношения Z M где (m 1) целое число крайних в растре М-строчных подкадров, во время которых производится обратный ход второй кадровой развертки, m 1,2,3, d э угловая ширина строки; s целое число пассивных перемежающихся полей в кадре, во время которых осуществляется обратный ход второй кадровой развертки, s 0,1,2, c КПД строчной развертки; к угол обзора по кадру.

Изобретение относится к области приборов, предназначенных для преобразования электромагнитного излучения в электрический сигнал, несущий информацию об изображении, при размещении этих приборов на подвижном основании

Изобретение относится к области формирования потока видеоданных вращающимся секторным фотоприемником. Способ основан на формировании сигналов от фоточувствительных элементов, установленных по площади вращающегося сенсора, их последующей организации в ядра пространственного дифференцирования, выходные сигналы которых подвергаются аналого-цифровому преобразованию и их дальнейшей цифровой обработке. Фоточувствительные элементы устанавливают последовательно на равных расстояниях между собой на дугах с дискретными радиусами от Rmin до Rmax на площади вращающегося сенсора, имеющему форму усеченного сектора круга, который обращен большей стороной к внешнему диаметру вращения. Фототоки от фоточувствительных элементов усиливают по постоянному току и ограничивают по полосе частот в зависимости от чувствительности фотоэлементов и частоты вращения сенсора. Собственные шумы минимизируют и корректируют амплитудно-частотные характеристики каналов передачи сигналов каждого фоточувствительного элемента с последующим формированием ядер пространственного дифференцирования, сигналы с которых подвергают аналогово-цифровому преобразованию и последующей цифровой обработке. Технический результат - повышение качества изображения. 2 н.п. ф-лы, 6 ил.

Изобретение относится к технике получения изображения контролируемых объектов с помощью оптико-электронных систем с оптико-механической разверткой

Система координат оптико-механического сканера.

Изображение строки в оптико-механическом сканере формируется за счет вращения зеркала, а строки – за счет перемещения носителя съемочной системы. Таким образом, каждый пиксель изображения имеет свои элементы внешнего ориентирования.

Ө – угол поля зрения сканера.

Началом системы координат сканера является точка S – точка пересечения оси вращения зеркала и главной оптической оси объектива. Ось x z совпадает с биссектрисой угла поля зрения съемочной системы. Ось y дополняет систему до правой.


Система координат сканерного изображения задается также как и для оптико-электронного сканера, т.е. ось y с совпадает c одной из строк изображения, начало системы координат о находится в середине строки, а ось x с – дополняет систему до правой.

По измеренным координатам точки изображенияx с y с можно получить время формирования изображения данного пикселя, а следовательно и элементы внешнего ориентирования сканера в этот момент.

Направление на точку местности М (рис.10) в системе координат сканера определяет единичный вектор r m , координаты которого можно определить следующим образом:

(18)

- размер кадра в пикселях вдоль оси y .

Определение координат точек местности по изображениям, полученным с помощью оптико-механического сканера выполняется аналогично тому, как это делалось для изображений, полученных оптико-электронным сканером.

Принцип действия лазерно-локационных съемочных систем

Лазерно-локационная съемочная система по принципу действия напоминает оптико-механический сканер, только вместо диафрагмы имеется лазер, с помощью которого сканируется (облучается) поверхность земли (рис.11). Таким образом, эта съемочная система относится к активным системам. Лазерный луч с определенной частотой посылается в сторону поверхности земли, который возвращается в съемочную систему и фиксируется в приемнике излучения в виде интенсивности отраженного сигнала. Кроме того, фиксируется время прохождения лазерного луча от лазера до поверхности земли и обратно до приемника излучений, что позволяет определить расстояние D до данной точки земли. Фиксируя угол поворота зеркала φ можно определить координаты точки поверхности земли в системе координат сканера Sxyz , а зная элементы внешнего ориентирования сканера в этот момент, можно вычислить координаты этой точки в системе координат объекта OXYZ . Таким образом, результатом работы лазерного сканера является трехмерная модель снимаемого объекта в виде облака точек с известными координатами XYZ и интенсивностью отраженного сигнала.

Система координат лазерного сканера задается следующим образом (рис.11). Начало системы S совпадает с точкой пересечения оси вращения зеркала и оптической осью системы. Ось x совпадает с осью вращения зеркала. Ось z проходит через центр проекции S и совпадает с биссектрисой угла поля зрения сканера Ө . Ось у дополняет систему до правой. Положительное направление оси x совпадает с направлением полета.

Координаты вектора SM в системе координат сканера определяют как:

(19)

Если известны элементы внешнего ориентирования , лазерного сканера в момент измерения наклонного расстояния D , то координаты точки М в системе координат объекта можно определить по известным формулам:

(20)

Элементы внешнего ориентирования , лазерного сканера во время съемки определяются с помощью навигационного комплекса в составе дифференциальной GPS- системы и инерциальной системы.

Принцип формирования радиолокационных изображений.

Системы координат.

На рис.12 показан принцип радиолокационной съемки. Короткий импульс от передатчика, расположенного на носителе (самолете или спутнике), излучается в вертикальной плоскости с помощью направленной антенны. При достижении поверхности земли волна отражается. Часть отраженной энергии возвращается к приемнику, установленному на том же месте, что и передатчик. Принятая энергия квантуется. В результате получаются сигналы, пропорциональные принятой в данный момент энергии, зависящей от отражающей способности определенного участка местности. Одновременно измеряются наклонные дальности от передатчика до каждого из элементарных участков местности. Эти элементарные участки местности определяют разрешение съемочной системы. Таким образом, плотность пикселя радиолокационного изображения зависит от интенсивности отраженного радиосигнала от соответствующей точки объекта, а положение пикселя вдоль строки пропорционально наклонной дальности до данной точки. Строки изображения формируются за счет движения носителя.

Если расстояния до точек объекта равны между собой (D 1 и D 2 на рис. 13), то эти разные точки объекта изобразятся в одной точке на снимке. Диапазон измеряемых расстояний и соответственно полоса обзора определяются параметрами съемочной системы и лежат в пределах D o и D к начальной и конечной измеряемых дальностей.

Чтобы увеличить захват местности (полосу обзора), нужно увеличить время от начала посыла импульса до их приема.

Система координат радиолокационного изображения задается следующим образом. Ось y c совпадает с одной из строк изображения. Начало системы координат о совпадает с точкой соответствующей начальной дальности D o , которая фиксируется в момент съемки. Ось x c дополняет систему до правой.

Таким образом, измерив координатуy c любой точки изображения можно узнать наклонную дальность до этой точки.

где k – масштабный коэффициент, который определяется в результате калибровки системы.

Система координат самой радиолокационной системы задается следующим образом (рис.15).

Начало системы координат совпадает с точкой излучения радиоимпульса. Оси y,z лежат в плоскости излучения импульсов. Ось x дополняет систему до правой.

Плоскость излучения радиоимпульсов может быть произвольно ориентирована в пространстве

15.4-16+isp_pages.doc


  1. Термоэлектрическое охлаждение

I


Пр-к I
Термоэлектрический эффект Пелтье состоит в поглощении или выделении тепла на спае двух различных металлов или полупроводников, когда по этим проводникам протекает электрический ток. Если Е 1 и Е 2 термоэдс первого и второго спаев, то количество тепла, получаемого на спае при температуре Т(К) выражается формулой: Q=(Е 1 - Е 2)xTxI.

Q

Один каскад конструкции на основе Bi 2 Te 3 позволяет получить температуру

(-30)С, два каскада (-75), шесть (-100)


  1. ^ Сканирующие системы

Для преобразования многомерного оптического сигнала в одномерный электрический, адекватную информацию о распределении параметров оптического сигнала, в ОЭП используется сканирование – процесс последовательной, непрерывной или дискретной, выборки значений оптического сигнала. Наиболее часто в ОЭП выполняется преобразование пространственного распределения потока излучения в видеосигнал. Поэтому процесс сканирования в этом случае есть последовательный просмотр сравнительно большого поля обзора малым мгновенным полем.

Важной функцией сканирования является повышение помехозащищенности ОЭП. Действительно, применение малого мгновенного поля зрения при обзоре большого пространства, содержащего малоразмерный объект на фоне помех, безусловно более предпочтительно, чем выполнение той же операции прибором с большим полем зрения.

Сканирующие системы могут быть классифицированы различным образом:


  • по способу разложения поля обзора (одноэлементное, параллельное, последовательное, комбинирование).

  • по физической сущности явлений, лежащих в основе работы сканирующей системы (механические, оптико-механические, фотоэлектронные, ультразвуковые и т.д.)

  • по пространственному признаку (одномерные, двумерные).
При одноэлементном сканировании малое мгновенное поле зрения может быть просмотрено, как показано ниже на рисунке, по самым различным траекториям.

При параллельном сканировании все поле OYLX просматривается одновременно по горизонтальным строкам, например, путем перемещения линейки ФП, ориентированной перпендикулярно направлению сканирования.

При последовательном сканировании линейка ФП ориентирована параллельно направлению сканирования каждую точку пространства просматривают все элементы. Сигналы от них поступают на линию задержки и в сумматор. В этом случае возможно не только осреднение сигнала, но и получение большого разрешения в (n) раз при усложнении электронной схемы и повышении стоимости ОЭП, которые могут быть несопоставимы с достижимым преимуществом.

При параллельно-последовательном сканировании просмотр поля зрения обеспечивается матрицей.


  1. Траектории сканирования при регулярном поиске

В оптико-электронных приборах используются различные траектории сканирования. Вид конкретной траектории определяет прежде всего форму контролируемой области поля обзора (форму растра).

Круглая форма поля образуется осесимметричными траекториями, которые создаются за счет двух составляющих сканирования. Одной из них является вращательное движение с постоянной скоростью, второй – как вращательные, так и колебательные движения.

Прямоугольная форма поля создается двумя колебательными перемещениями, хотя в некоторых случаях используются сочетания вращательного и поступательного движения.

Осесимметрические траектории сканирования могут быть разделены на ряд классов в зависимости от типа слагающих движений и соотношения между их скоростями. При этом различают спиральную и розеточную траектории сканирования.

Траектории сканирования при колебательно-вращательном движении сканирующего поля.

Архимедова спираль образуется, когда за время одного колебания вдоль некоторой оси ОУ последняя совершает несколько оборотов вокруг неподвижной точки О (рис.45).


А-шаг спирали.

Для осмотра поля обзора без (2r) пропусков размер мгновенного поля зрения должен быть равен (а).

Если при колебательно-вращательном движении сканирующего поля за время одного оборота совершается несколько колебаний, то создается розеточная траектория (рис.46, 47,48)





y y

Розеточная траектория характеризуется числом лепестков N, которое определяется угловой скоростью вращения , линейной скоростью и амплитудоколебания r

,

где

В зависимости от соотношения между r, радиусом поля обзора R, а также направления и начала сканирующего колебания изменяется характер заполнения поля линиями сканирования изменяется.

Траектории сканирования при вращательно-вращательном движении достаточно наглядно представлены на рис. 49-51.

Траектории сканировании при колебательных перемещениях.

Колебательные перемещения сканирующего поля в двух взаимно перпендикулярных направлениях позволяют осуществить так называемую построчную и прогрессивную траекторию сканирования. В этом случае в процессе развертки сканирующее поле (СП) перемещается слева направо и одновременно смещается на ширину строки вниз. Пройдя одну строку, СП быстро перемещается влево и затем процесс повторяется до заполнения кадра –поля обзора. Для получения равномерного движения СП вдоль строки или кадра перемещения его в исходное положение необходимо обеспечить пилообразный закон движения (рис.52). В заключении приведём рис.53, который иллюстрирует некоторые специальные траектории сканирования.


  1. Типы сканирующих устройств

Обычно различают ОЭП с фотоэлектронным сканированием, сканирование электронным лучом, сканирование световым лучом, оптико-механическое сканирование.

Сканирование электронным лучом (СЭЛ)

СЭЛ осуществляется в телевизионных передающих трубках (иконоскоп, супериконоскоп, ортикон, диссектор, видикон и др.).

Большинство современных передающих трубок являются фотоэлектрическими приемниками излучения с внешним фотоэффектом,обладающим достаточной чувствительностью в области длин волн до ~1,2 мкм.

В ряде случаев в качестве фотокатода в трубках используются фоторезистор, т.е.явление внутреннего фотоэффекта, что сдвигает область чувствительности до 2-2,5 мкм.

Рис.47. Розеточная траектория сканирования при колебательно-вращательном движении сканирующего поля

Рис. 48.Траектория сканирования при колебательно-вращательном движении сканирующего поля для rа- спиральная, б- розеточная

Рис.49 Спиральная а) и розеточная б) траектории сканирования при

Вращательно-вращательном движении сканирующего поля при 2r=R

Рис.50 Спиральная траектория для случая 2r

Рис. 51. Розеточная траектория для случая 2r



h

a
О l X


а)

б )

T пр t обр.

Рис. 52. Построчная или прогрессивная траектория сканирования

Рис.53. Некоторые специальные траетории сканирования: а- гусеница: б – следящая развертка

Наибольшее распространение в автоматических ОЭП получили диссектор и видикон, соответственно системы мгновенного действия с накоплением.

В системах мгновенного действия энергия излучения каждой точки обозреваемого поля преобразуется в сигнал только в течение времени прохождения через неё сканирующего луча. Это время существенно меньше времени обзора всего поля, т.е. здесь не используется возможность накопления энергии.

В системах c накоплением осуществляется суммирование энергии излучаемой данной точкой поля в течении всего времени обзора, что позволяет повысить их чувствительность по сравнению с системами мгновенного действия.

Пояснить работы системы с накоплением удобно на примере устройства иконоскопа.

Фотокатод телевизионной трубки (мишень) можно представить в виде большого количества отдельных, изолированных друг от друга фотоэлементов, соединенных последовательно с источником э.д.с. [(см. рис. 54), R– сопротивление нагрузки, С – распределенная емкость фотокатода].

Под действием излучения одной из точек i поля обзора происходит заряд конденсатора С i фототоком I 3 в течение времени работы ключа К- времени экспозиции.

Системы с накоплением относительно сложны в эксплуатации, требуют стабилизации источников питания и боятся сильных засветок. В связи с этим, несмотря на меньшую чувствительность, в ОЭП широко используются диссекторы.

Диссектор

Его принцип действия заключаетсяв следующем. Полупрозрачный фотокатод (рис.55), на котором проектируется изображение светящегося объекта, испускает внутрь трубки фотоэлектроны в количестве, пропорциональном его освещенности. Образовавшееся электронное изображение переносится с фотокатода к электронному умножителю с помощью электрического и магнитного поля.

Для получения сигналов от всех элементов изображения производится развертка с помощью магнитной системы (5)/ 4- ускоряющее поле/.

Диссекторы выпускаются с различными типами фотокатодов, обеспечивающих чувствительность от УФ до ближней ИК области длин волн.

Видикон (рис.56)

На полупрозрачную сигнальную пластину (металлическую) 1 нанесен слой полупроводника 2. Фотоизображение считывается электронным лучом. Нормальное падение последнего обеспечивается сеткой вблизи сигнальной пластины. Электронный луч, перемещаясь по мишени, оставляет на ней электроны, приводя потенциал участка полупроводника к потенциалу катода. Чем меньше освещенность участка мишени, тем больше сопротивление полупроводника, тем меньше, следовательно, необходимо электронов для компенсации изменения заряда, т.е. считывания рельефа изображения.

Рис.54. Схемы передающей телевизионной трубки с накоплением:

а - принципиальная: б – эквивалентная

Рис.55. Диссектор

Рис.56. Видикон

Сканирование световым лучом

По принципу действия к системам с электронным сканированием близки устройства со сканированием световым лучом. Пример такого устройства –термоэлектронный преобразователь изображения – термикон (рис.57)

Приемная поверхность термикона состоит, в том числе, из очень тонкой ИК чувствительной пленки. С обратной стороны последней наносится специальный фотоэлектрический слой, эффективность которого зависит от температуры. На фотослой проецируется изображение яркого светящегося пятна, движущегося по экрану электронно-лучевой трубки по заданному закону. В зависимости от положения светящегося пятна на фотослое и распределения температуры на поверхности П количество эмитируемых электронов и фототок в цепи кольцевого коллектора изменяется на 2-3% на каждый градус изменения температуры. Изменение фототока усиливается и управляетэлектроннолучевая трубка И2.

Область применения (расширяющаяся) – в МДП структурах. Максимальное разрешение близко 50 линий на кадр при  1.


  1. Оптико-механическое сканирование.

В оптико – механических сканирующих устройствах процесс сканирования осуществляется за счет изменения направления оптической оси ОЭс. При этом общее поле обзора последовательно анализируется мгновенным полем зрения оптической системы. Общая классификация таких устройств приведена на рис.58.

Сканирование может производится за счет движения всей оптической системы прибора или её элементов – зеркал, призм, клиньев, линз, диафрагм. Оптико-механические системы, в которых сканирование осуществляется диафрагмой (щелью) , движущейся в фокальной плоскости иногда называют экранирующими. Широко известный пример – диск Нипкова. Своеобразные методы сканирования используются в системах с волоконной оптикой. Сканирование может осуществляться также путем изменения коэффициента преломления или других оптических свойств материалов, входящих в систему. Сканирование движения всей системы осуществляется в тех случаях, когда возможно использовать перемещение платформы, на которой размещается ОЭС. Для обзора более широкой полосы на местности в таких системах часто используется сканирование по строке. (рис.59).


  • Сканирование зеркалами: различают сканирование в пространстве предметов (зеркало размещается перед объективом, рис.60) и сканирование в пространстве изображений (используется широкоугольный объектив, обеспечивающий высокое качество изображения по всему полю обзора, зеркало за ним, рис. 61).
Наряду с простым зеркалом в сканирующей системе может использоваться система зеркал, зеркальные призмы, пирамиды и т.д. (рис.62-64). В качестве исполнительных механизмов применяются шаговые двигатели, кулачковые механизмы и т.д.

Рис.57. Принципиальная схема термикона.

^ СКАНИРОВАНИЕ В ПРОСТРАНСТВЕ ПРДМЕТОВ

ОПТИКО-МЕХАНИЧЕСКИЕ СКАНИРУЮЩИЕ УСТРОЙСТВА

СКАНИРОВАНИЕ В ПРОСТРАНСТВЕ ИЗОБРАЖЕНИЙ

^ СКАНИРОВАНИЕ ЗА СЧЕТ ДВИЖЕНИЯ ВСЕЙ ОПТИЧЕСКОЙ СИСТЕМЫ

СКАНИРОВАНИЕ ПОДВИЖНЫМИ ЭЛЕМЕНТАМИ ОПТИЧЕСКОЙ СИСТЕМЫ

^ СКАНИРОВАНИЕ ЩЕЛЬЮ, ДВИЖУЩЕЙСЯ В ПЛОСКОСТИ ИЗОБРАЖЕНИЯ

СКАНИРОВАНИЕ ЗА СЧЕТ ИЗМЕНЕНИЯ ОПТИЧЕСКИХ СВОЙСТВ ЭЛЕМЕНТОВ, ВХОДЯЩИХ В СИСТЕМУ

^ СКАНИРОВАНИЕ В СИСТЕМАХ С ВОЛОКОННОЙ ОПТИКОЙ

Рис. 58. Классификация оптико-механических

Сканирующих устройств

Рис. 59. Однострочное сканирование с движущейся платформы.

Рис. 60.Сканирование в пространстве предметов:


поле зрения; 7 – поле обзора

Рис. 61. Сканирование в пространстве изображений:


  1. сканирующее зеркало; 2 – объектив;3 – диафрагма;
4 – конденсор; 5 – приемник излучения;6 – мгновенное

поле зрения; 7 – поле обзора

Эффективность ОЭП, предназначенных для обзора пространства с неподвижного носителя может быть существенно повышена за счет применения черезстрочной развертки сканирующего луча (рис.65) линейки многоэлементного приемника. Достигаемый результат – уменьшение числа элементов приемника и уменьшение полосы частот коммутационно-усилительного тракта, причем это уменьшение равно m раз, где m = N (числу граней призмы). Недостаток – возможность пропуска цели, именно поэтому ОЭС (платформа) должна быть неподвижна.


  • Сканирование отверсием в непрозрачном экране - наиболее простой способ сканирования. Классический пример диск Нипкова. Пример этих устройств показан на рис. 66,67. Отверстие в диске Д (рис.66) расположено таким образом, что изображение, ограниченное диафрагмой ДП последовательно анализируется по строкам так, что когда одно отверстие выходит за пределы окна диафрагмы ДП, другое выходит прочерчивая следующую строку. Одна из последних конструкций с указанным механизмом сканирования – тепловизор “Янтарь” (70-е годы, поле обзора 5х4, мгновенное поле зрения 5, частота кадров 25 Гц), которым удалось убеспечить минимально обнаруживаемую разность температур =0,2 – 0,3С.
Зенитный теплопеленгатор - одна из таких (её исллюстрирует рис. 67) проста по конструкции и эффективна. Зеркало (D~1500 мм, f~640 мм) создает изображение точечной цели в плоскости непрозрачной диафрагмы с вырезом, вращаемой двигателем М 2 (М 1 – модулятор). Сигнал запитывает неоновую лампочку Л, которая вращается с частотой диафрагмы М 2 в пределах окружности, удобной для восприятия оператором. Легко видеть, что при условии точной ориентации приемного зеркала на цель, лампочка очерчивает полный круг и вспыхивает в определенном секторена краткие моменты времени при прочих условиях

  • Сканирование путем управления оптическими свойствами элементов, входящих в систему. Управление осуществляется магнитным или электрическим полем. Известно, например, что такие материалы, как нитробензол, кварц, некоторые кристаллы изменяют показатель преломления n при воздействии электрического поля. Для сканирования можно использовать систему фильтров как на рис.68, выполненных из чередующихся слоев некоторых материалов, например, сульфида цинка и креолита. Такие фильтры пропускают только монохроматическое излучение, длина волны которых в четыре раза больше толщины l фильтра. Если изготовить фильтр в виде клина и направить на него монохроматическое излучение, то последнее пройдет только в той части, где толщина соответствует четверти длины волны (при условии n = /4 ). Введя второй фильтр, развернутый на 90, обеспечим возможность прохождения только той части излучения, которая соответствует участкам фильтров с толщиной 1/4. Подводя к фильтрам напряжение, можно перемещать линии равной толщины и т.о. обеспечить сканирование изображения.
(На рис.68 – ГКР – генератор кадровой и строчной разверток; КФГ, КФВ – клиновые фильтры горизонтальной и вертикальной развертки).

Рис.62. Типы сканирующих зеркал: а - вращающееся двустороннее(двугранное) зеркало; б – зеркало, вращающееся вокруг оси, неперпендикулярной к нему; в – «крест» из зерал 1 и 2; г – зеркало, качающееся в двух плоскостях; д – система из двух вращающихся зеркал; е – два зеркала, вращающихся или качающихся вокруг взаимно перпендикулярных осей; ж – вращающаяся зеркальная N – гранная призма; з – вращающаяся зеркальная N – гранная пирамида.

Рис.63. Сканирующее зеркало в виде многогранной призмы:

Об – объектив; Пр –приемник из М элементов;

З – зеркало с N гранями; НП – направление полета

Рис. 64. Основные принципы сканирования плоскопараллельной пластинкой (призмой): а – ход лучей; б – призма, эквивалентная пластинке толщиной ; в – поле обзора и поворот пластинки при неподвижном приемнике (диафрагме поля).

Рис. 65. Схема сканирования и расположения чувствительных слоев

многоэлементного приемника при чересстрочной развертке.

Рис.66. Система механичесого телевидения с диском Нипкова:

а – приемник излучения большой площади;

б – небольшой приемник и конденсор;

в – сканирующий диск

Рис. 67. Сканирование щелью в зенитном теплопеленгаторе

Рис. 68. Сканирующее устройство с клинообразными фильтрами.

СКАНИРУЮЩИЕ ОПТИКО - ЭЛЕКТРОННЫЕ СЪЁМОЧНЫЕ СИСТЕМЫ (СКАНЕРЫ)

Сканирующие съёмочные системы (сканеры) отличаются от других прежде всего принципом построения изображения, которое строится построчным сканированием (просматриванием) местности.

В сканирующих системах применяют различные типы приёмников электромагнитного излучения: тепловые (теплоэлектрические) и фотонные (фотоэлектрические). Тепловые работают на основе преобразования тепловой энергии в электрический сигнал, в фотонных системах уровень сигнала определяется количеством поглощённых фотонов. Наибольшее применение получили сканеры, приёмниками в которых служат линейки ПЗС (приборы с зарядной смесью). Различные типы сенсоров имеют различную спектральную чувствительность и охватывают спектральный интервал от видимой зоны до дальней инфракрасной зоны. Выбор приёмника излучения и его спектральной чувствительности зависит от спектрального интервала съёмки.

Конструктивно сканер состоит из оптической системы, фотоэлектронных преобразователей, устройства приёма и регистрации изображения. С помощью сканеров формируется изображение, состоящее из множества отдельных, последовательно получаемых элементов изображения - пикселей в пределах полос (строк, сканов). Размер пиксела определяет детальность (разрешение на местности) изображения.

Сканирование местности осуществляется в одном направлении за счёт движения самолёта (спутника) вперёд, а в другом (перпендикулярном линии полёта) - за счёт вращения или колебания призмы (зеркала). Колебательное перемещение призмы (зеркала) в сочетании с движением самолёта (спутника) обеспечивает непрерывный последовательный охват определённой полосы местности, размер которой зависит от апертуры (действующего отверстия оптической системы объектива) сканера и высоты полёта самолёта или спутника. Ширина снимаемой полосы местности определяется углом сканирования сканера, а линейное разрешение на местности (ширина скана, размер пиксела) - мгновенным углом зрения. У обзорных сканеров угол сканирования достигает, у высокоинформативных (детальных) - и меньше. Соответственно этому и мгновенный угол зрения устанавливают от нескольких градусов до десятых долей минуты. Угол сканирования и мгновенный угол зрения, соответственно полоса съёмки и разрешение на местности, - взаимозависимые величины. Чем выше разрешение, тем уже полоса съёмки. Так, при съёмке из космоса при разрешении 1-2 км. Снимают полосу местности в несколько тысяч километров, а при разрешении 20-50 м ширина полосы съёмки не превышает 100-200км.

Оптико - механические сканеры бывают одно - и многоканальные (2 и более). Обычно для съёмки земной поверхности применяют сканеры, работающие в видимом и ИК диапазонах (0,5 - 12 мкм). Результат регистрации излучения при съёмке методом оптико - механического сканирования представляет собой матрицу многомерных векторов. Каждый вектор отображает определённую элементарную площадку (пиксель) на Земле, а каждая его компонента соответствует одному из спектральных каналов.

При съёмке в видимом и ближнем ИК - диапазонах (0,4 - 3 мкм) применяют фотоэлектрические, а в среднем и дальнем ИК - диапазонах (3 -12 мкм) - термоэлектрические приёмники излучения. К фотоэлектрическим приёмникам относят электронные приборы, действие которых основано на внешнем (электровакуумные фотоэлементы, фотоэлектронные умножители) и внутреннем (полупроводниковые фотосопротивления, фотодиоды и др.) фотоэффектах. Термоэлектрические приёмники основаны на термоэлектронной эмиссии, они реагируют на поглощённое излучение через нагревание чувствительного элемента, что позволяют регистрировать ИК - тепловое излучение в широком спектральном диапазоне. К числу термоэлектрических приёмников относятся болометры, радиационные термоэлементы (термопары) и др. Тепловую съёмку осуществляют сканирующими радиометрами в ночное и дневное время суток.

В сканерах устанавливают несколько сенсоров, позволяющих получать изображение одновременно в различных спектральных каналах. Информацию, полученную в процессе сканерной съёмки, передают в виде цифрового изображения по радиоканалу на приёмный пункт или записывают на борту на магнитный носитель. Материалы съёмки потребителям передаются в виде записи на магнитном носителе, например на СД - дисках, с последующей визуализацией на местах обработки снимков.

По своим геометрическим свойствам и разрешению на местности сканерные снимки, которые получались съёмочными системами первых поколений, уступали фотоснимкам. Однако высокая чувствительность приёмников излучения сканеров позволяет выполнять съёмку в узких (несколько десятков нанометров) спектральных интервалах, в пределах которых различия между некоторыми природными объектами более чётко выражены. В цифровых данных, полученных с помощью сканеров отсутствуют «шумы» которые неминуемо появляются при фотосъемке и фотолабораторной обработке съёмочных материалов.