Файловая система нтфс. Microsoft Windows и файловые системы

При установке Windows XP вам будет предложено отформатировать существующий раздел, на который устанавливается ОС, в файловую систему NTFS. Необходимо разобраться, что это такое.

NTFS - единственная файловая система в Windows, которая позволяет назначать права доступа к различным файлам. Устанавливая пользователям определенные разрешения для файлов и каталогов, пользователь может защищать конфиденциальную информацию от несанкционированного доступа.

Основными целями NTFS являются:

NTFS начала использоваться вместе с Windows NT 3.1 в 1993 году. Вот основные ее технологические достижения:

  1. Работа с большими дисками. NTFS имеет размер кластера 512 байт, но его можно менять до 64К.
  2. Устойчивость. NTFS содержит две копии аналога FAT, которые называются MFT (Master File Table. Если оригинал MFT повреждён в случае аппаратной ошибки, то система при следующей загрузке использует копию MFT, и автоматически создаёт новый оригинал, уже с учётом повреждений. NTFS использует систему транзакций при записи файлов на диск.
  3. Защищенность. NTFS рассматривает файлы, как объекты. Каждый файловый объект обладает свойствами, такими как его имя, дата создания, дата последнего обновления, архивный статус. Файловый объект также содержит набор методов, которые позволяют с ним работать, такие как open, close, read и write.
  4. Компрессия данных. NTFS позволяет компрессировать отдельные каталоги и файлы. Это позволяет экономить пространство на диске, например можно сжимать большие графические файлы формата BMP, или текстовые файлы.
  5. Поддержка формата ISO Unicode. Формат Unicode использует 16bit для кодировки каждого символа. Простой пользователь может называть файлы на любом языке - система это будет поддерживать, не требуя изменить кодовую страницу, как это делал DOS и W9x.

Основные свойства файловой системы NTFS:

  1. NTFS обладает характеристиками защищенности, позволяет контролировать доступ к данным и привилегии владельца для обеспечения целостности важных данных. Папки и файлы NTFS могут иметь назначенные им права доступа.
  2. NTFS имеет возможность введения квот. Это свойство, как правило, необходимо системным администраторам, больших компаний, где работают большое количество пользователей, которые не следят за актуальностью информации, и которые хранят ненужные файлы, тем самым занимая дисковое пространство. Так как администратор не может проследить за всем этим, он может ввести квоту на использование диска определенному пользователю. Если пользователь превысит выданную ему квоту, в журнал событий будет внесена соответствующая запись. Чтобы включить квоты на диске нужно:
  • чтобы диск был в формате NTFS
  • в свойствах папки Tools-Folder Options-View убрать флажок Simple File Sharing.
  • в появившейся вкладке Quota необходимо установить флажок на Enable quota managment (Активизировать управление квотами). Это будет установлена мягкое квотирование, которое выдаст предупреждение, что пользователь превысил квоту, но право на запись у него будет. Чтобы в случае превышения квоты пользователю было отказано в доступе к этому тому, необходимо установить флажок на Deny disk space to users exceeding quota limit (Запретить запись на диск пользователям, превысившим размер дискового пространства).

В название файловой системы NTFS входят слова «новая технология». NTFS содержит ряд значительных усовершенствований и изменений, существенно отличающих ее от других файловых систем. С точки зрения пользователей, файлы по-прежнему хранятся в каталогах (часто называемых «папками»). Однако в NTFS в отличие от FAT работа на дисках большого объема происходит намного эффективнее; имеются средства для ограничения в доступе к файлам и каталогам, введены механизмы, существенно повышающие надежность файловой системы, сняты многие ограничения на максимальное количество дисковых секторов и/или кластеров.

Основные возможности файловой системы NTFS:

    надежность. Высокопроизводительные компьютеры и системы совместного пользования (серверы) должны обладать повышенной надежностью, которая является ключевым элементом структуры и поведения NTFS. Одним из способов увеличения надежности является введение механизма транзакций, при котором осуществляется журналирование файловых операций;

    расширенная функциональность. NTFS проектировалась с учетом возможного расширения. В ней были воплощены многие дополнительные возможности – усовершенствованная отказоустойчивость, эмуляция других файловых систем, мощная модель безопасности, параллельная обработка потоков данных и создание файловых атрибутов, определяемых пользователем;

    поддержка POSIX. Поскольку правительство США требовало, чтобы все закупаемые им системы хотя бы в минимальной степени соответствовали стандарту POSIX, такая возможность была предусмотрена и в NTFS. К числу базовых средств файловой системы POSIX относится необязательное использование имен файлов с учетом регистра, хранение времени последнего обращения к файлу и механизм так называемых «жестких ссылок» – альтернативных имен, позволяющих ссылаться на один и тот же файл по двум и более именам;

    гибкость. Модель распределения дискового пространства в NTFS отличается чрезвычайной гибкостью. Размер кластера может изменяться от 512 байт до 64 Кбайт; он представляет собой число, кратное внутреннему кванту распределения дискового пространства. NTFS также поддерживает длинные имена файлов, набор символов Unicode и альтернативные имена формата 8.3 для совместимости с FAT.

NTFS превосходно справляется с обработкой больших массивов данных и достаточно хорошо проявляет себя и при работе с томами объемом от 300 - 400 Мбайт, и при работе с максимально возможными томами и файлами – 16 Эбайт (экзабайт 2 64 байт, или 16000 млрд. гигабайт). Количество файлов в корневом и некорневом каталогах не ограничено. Поскольку в основу структуры каталогов NTFS заложена эффективная структура данных, называемая «бинарным деревом». Время поиска файлов в NTFS (в отличие от систем на базе FAT) не связано линейной зависимостью с их количеством.

Система NTFS также обладает определенными средствами самовосстановления. NTFS поддерживает различные механизмы проверки целостности системы, включая ведение журналов транзакций, позволяющих воспроизвести файловые операции записи по специальному системному журналу.

Файловая система NTFS поддерживает объектную модель безопасности NT и рассматривает все тома, каталоги и файлы как самостоятельные объекты. NTFS обеспечивает безопасность на уровне файлов; это означает, что права доступа к томам, каталогам и файлам могут зависеть от учетной записи пользователя и тех групп, к которым он принадлежит. Каждый раз, когда пользователь обращается к объекту файловой системы, его права доступа проверяются по списку разрешений данного объекта. Если пользователь обладает достаточным уровнем прав, его запрос удовлетворяется; в противном случае запрос отклоняется. Эта модель безопасности применяется как при локальной регистрации пользователей на компьютерах с NT, так и при удаленных сетевых запросах.

Кроме того, система NTFS также обладает встроенными средствами сжатия, которые можно применять к отдельным файлам, целым каталогам и даже томам (и впоследствии отменять или назначать их по своему усмотрению).

Структура тома с файловой системой NTFS.

Одним из основных понятий, используемых при работе с NTFS, является понятие тома (volume). Возможно также создание отказоустойчивого тома, занимающего несколько разделов, то есть использование RAID-технологии. Как и многие другие системы, NTFS делит все полезное дисковое пространство тома на кластеры – блоки данных, адресуемые как единицы данных. NTFS поддерживает размеры кластеров от 512 байт до 64 Кбайт; стандартом же считается кластер размером 2 или 4 Кбайт.

Все дисковое пространство в NTFS делится на две неравные части. Первые 12% диска отводятся под так называемую MFT-зону – пространство, которое может занимать, увеличиваясь в размере, главный служебный метафайл MFT.

Запись каких-либо данных в эту область невозможна. MFT-зона всегда держится пустой – это делается для того, чтобы самый главный, служебный файл (MFT) по возможности не фрагментировался при своем росте. Остальные 88% тома представляют собой обычное пространство для хранения файлов.

MFT (master file table – общая таблица файлов) представляет собой централизованный каталог всех остальных файлов диска, в том числе и себя самого. MFT поделен на записи фиксированного размера в 1 Кбайт, и каждая запись соответствует какому-либо файлу (в общем смысле этого слова). Первые 16 файлов носят служебный характер и недоступны операционной системе - они называются метафайлами, причем самый первый метафайл – сам MFT. Эти первые 16 элементов MFT – единственная часть диска, имеющая строго фиксированное положение. Копия этих же 16 записей хранится в середине тома для надежности, поскольку они очень важны. Остальные части MFT-файла могут располагаться, как и любой другой файл, в произвольных местах диска – восстановить его положение можно с помощью его самого, «зацепившись» за самую основу – за первый элемент MFT.

Упомянутые первые 16 файлов NTFS (метафайлы) носят служебный характер; каждый из них отвечает за какой-либо аспект работы системы. Метафайлы находятся в корневом каталоге NTFS-тома. Все они начинаются с символа имени «$», хотя получить какую-либо информацию о них стандартными средствами сложно. В таблице приведены основные известные метафайлы и их назначение.

Таким образом, можно узнать, например, сколько операционная система тратит на каталогизацию тома, посмотрев размер файла $MFT.

Итак, все файлы тома упоминаются в MFT. В этой структуре хранится вся информация о файлах, за исключением собственно данных. Имя файла, размер, положение на диске отдельных фрагментов и т. д. - все это хранится в соответствующей записи. Если для информации не хватает одной записи MFT, то используется несколько записей, причем не обязательно идущих подряд. Файлы могут иметь не очень большой размер, тогда данные файла хранятся прямо в MFT, в оставшемся от основных данных месте в пределах одной записи MFT. Файлы, занимающие сотни байт, обычно не имеют своего «физического» воплощения в основной файловой области – все данные такого файла хранятся в одном месте, в MFT.

Файл в томе с NTFS идентифицируется так называемой файловой ссылкой, которая представляется как 64-разрядное число. Файловая ссылка состоит из номера файла, который соответствует позиции его файловой записи в MFT, и номера последовательности. Последний увеличивается всякий раз, когда данная позиция в MFT используется повторно, что позволяет файловой системе NTFS выполнять внутренние проверки целостности.

Каждый файл в NTFS представлен с помощью потоков, то есть у него нет как таковых «просто данных», а есть «потоки». Для правильного понимания потока достаточно указать, что один из потоков и носит привычный нам смысл – данные файла. Но большинство атрибутов файла - это тоже потоки. Таким образом, получается, что базовая сущность у файла только одна - номер в MFT, а все остальное, включая и его потоки, - опционально. Данный подход может эффективно использоваться - например, файлу можно «прилепить» еще один поток, записав в него любые данные. В Windows 2000 таким образом записана информация об авторе и содержании файла (одна из закладок в свойствах файла, просматриваемых, например, из проводника). Интересно, что эти дополнительные потоки не видны стандартными средствами работы с файлами: наблюдаемый размер файла – это лишь размер основного потока, который содержит традиционные данные. Можно, к примеру, иметь файл нулевой длины, при стирании которого освободится 1 Гбайт свободного места - просто потому, что какая-нибудь хитрая программа или технология «прилепила» к нему дополнительный поток (альтернативные данные) такого большого размера. Но на самом деле в настоящее время потоки практически не используются, так что опасаться подобных ситуаций не следует, хотя гипотетически они возможны. Просто необходимо иметь в виду, что файл в NTFS – это более глубокое понятие, чем можно себе представить, просматривая каталоги диска.

Стандартные же атрибуты для файлов и каталогов в томе NTFS имеют фиксированные имена и коды типа:

Системный атрибут

Описание атрибут

Стандартная информация о файле

Традиционные атрибуты Read Only, Hidden, Archive, System, отметки времени, включая время создания или последней модификации, число каталогов, ссылающихся на файл

Список атрибутов

Список атрибутов, из которых состоит файл, и файловая ссылка на файловую запись и MFT, в которой расположен каждый из атрибутов. Последний используется, если файлу необходимо более одной записи в MFT

Имя файла

Имя фаула в символах Unicode. Файл может иметь

несколько атрибутов – имен файла, подобно тому как это имеет место в POSIX-системах. Это случается, когда имеется связь POSIX с данным файлом или если у файла есть автоматически сгенерированное имя в формате 8.3

Дескриптор защиты

Структура данных защиты (ACL), предохраняющая файл от несанкционированного доступа. Атрибут «дескриптор защиты» определяет, кто владелец файла и кто имеет доступ к нему

Собственно данные файла, его содержимое. В NTFS у файла по умолчанию есть один безымянный атрибут данных; и он может иметь дополнительные именованные атрибуты данных. У каталога нет атрибута данных по умолчанию, но он может иметь необязательные именованные атрибуты данных

Корень индекса, размещение индекса, битовая карта (только для каталогов)

Атрибуты, используемые для индексов имен файлов в больших каталогах

Расширенные атрибуты NTFS

Атрибуты, используемые для реализации расширенных атрибутов HPFS для подсистемы OS/2 и OS/2-клиентов файл-серверов Windows NT

Атрибуты файла в записях MFT расположены в порядке возрастания числовых значений кодов типа, причем некоторые типы атрибутов могут встречаться в записи более одного раза: например, если у файла есть несколько атрибутов данных или несколько имен. Обязательными для каждого файла в томе NTFS являются атрибут стандартной информации, атрибут имени файла, атрибут дескриптора защиты и атрибут данных. Остальные атрибуты могут встречаться при необходимости.

Имя файла в NTFS, в отличие от файловых систем FAT и HPFS, может содержать любые символы, включая полный набор национальных алфавитов, так как данные представлены в Unicode – 16-битном представлении, которое дает 65535 разных символов. Максимальная длина имени файла в NTFS - 255 символов.

Большой вклад в эффективность файловой системы вносит организация каталога. Каталог в NTFS представляет собой специальный файл, хранящий ссылки на другие файлы и каталоги, создавая иерархическое строение данных на диске. Файл каталога поделен на блоки, каждый из которых содержит имя файла, базовые атрибуты и ссылку на элемент MFT, который уже предоставляет полную информацию об элементе каталога. Главный каталог диска – корневой – ничем не отличается от обычных каталогов, кроме специальной ссылки на него из начала метафайла MFT.

Внутренняя структура каталога представляет собой бинарное дерево. Бинарное дерево каталога располагает имена файлов таким образом, чтобы поиск файла осуществлялся с помощью получения двухзначных ответов на вопросы о положении файла. Бинарное дерево способно дать ответ на вопрос: в какой группе, относительно данного элемента, находится искомое имя – выше или ниже? С такого вопроса к среднему элементу начинается поиск, и каждый ответ сужает зону поиска в среднем в два раза. Если представить, что файлы отсортированы по алфавиту, то ответ на вопрос осуществляется очевидным способом – сравнением начальных букв. Область поиска, суженная в два раза, начинает исследоваться аналогичным образом, начиная опять же со среднего элемента. При этом добавлять файл в каталог в виде дерева не намного труднее, чем в линейный каталог системы FAT. Это сопоставимые по времени операции. Для того чтобы добавить новый файл в каталог, нужно сначала убедиться, что файла с таким именем там еще нет. Поэтому в системе FAT с линейной организацией записей каталога у нас появляются трудности не только с поиском файла. И это с лихвой компенсирует саму простоту добавления файла в каталог.

Возможности файловой системы NTFS по ограничению доступа к файлам и каталогам.

NTFS рассматривает каталоги (папки) и файлы как разнотипные объекты и ведет отдельные (хотя и перекрывающиеся) списки прав доступа для каждого типа. Ниже перечислены праваNTFS, назначаемые папкам (соответствующие права для файлов приведены ниже):

нет доступа (no access) (None)(нет);

полный доступ (full control) (All)(All) (все) (все);

право чтения (read) (RX)(RX) (чтение)(чтение);

право добавления (add) (WX)(not specified) (запись/выполнение не указано);

право добавления и чтения (add&read) (RWX)(RX) (чтение/запись/выполнение) (чтение/выполнение);

право просмотра (list) (RX)(not specified) (чтение/выполнение)(не указано);

право изменения (change) (RWXD))(RWXD) (чтение/запись/ выполнение/ удаление) (чтение/запись/выполнение/удаление).

В выражениях в скобках, указанные после имени права доступа: первое выражение относится к самой папке, а второе - ко всем файлам, которые могут быть созданы внутри нее. Например, при полном доступе для папки разрешаются любые действия, однако пользователь с полным доступом к папке также будет обладать полным правом доступа ко всем созданным в ней файлам (если только права доступа к файлу не были изменены его владельцем или администратором). Другими словами, в NTFS файлы и папки по умолчанию наследуют права доступа, установленные для их родительской папки, однако эти права могут быть изменены любым пользователем, которому разрешено изменять права доступа для соответствующих объектов NTFS.

Файлы в NTFS могут обладать следующими правами:

полный доступ (full control) (All) (все);

нет доступа (no access) (None) (нет);

право изменения (change) (RWXD) (чтение/запись/выполнение/удаление);

право чтения (read) (RX) (чтение/выполнение).

Для прав доступа NTFS, как и для прав общих каталогов, действует принцип поглощения. Исключение составляет право «нет доступа», отменяющее действие всех остальных прав.

При сетевом подключении пользователей права NTFS могут вступить в конфликт с правами общих каталогов. В такой ситуации применяется право доступа с наиболее жесткими ограничениями. У многих возникают проблемы с пониманием получаемых при сетевом доступе ограничений. Однако здесь можно легко разобраться, если помнить, что при доступе к каталогам и файлам, располагающихся на томах NTFS задействуются два последовательных механизма.

Сначала осуществляется доступ к файлам, который был определен сетевыми механизмами. Это право «нет доступа» - «no access», право на «чтение» - «read», право «изменение» - «change» и «полный доступ» - «full control». После этого вступают в силу ограничения на файлы и каталоги, определенные свойствами NTFS. То есть итоговые права на папки и файлы определяются максимальными ограничениями, которые были заданы в каждом из механизмов.

Помимо перечисленных прав имеется еще так называемый специальный доступ. Если выбрать это право доступа, то на самом деле появляется возможность выбирать несколько прав одновременно из следующего перечня:

полный доступ (full control) (All);

чтение (read) (R);

запись (write) (W);

выполнение (execute) (X);

удаление (delete) (D);

изменение разрешений (change permissions) (P);

изменение владельца (take ownership) (O).

В принципе можно было бы выбирать любые совокупности перечисленных разрешений, однако на практике это, не работает. Например, нельзя указать право Х (исполнение) без права R (чтение), хотя в других системах управления файлами такое право обеспечивается. Оно позволяет выполнять программу, файл которой помечен таким атрибутом, но не дает возможности ее скопировать. Многие другие комбинации специальных разрешений тоже не работают должным образом и это надо обязательно иметь в виду. Лучше пользоваться штатными правами на файлы и каталоги, которые были перечислены выше.

Рассмотрим теперь, что происходит с правами на защищенные файлы в NTFS при их перемещении. Папки более высокого уровня в NTFS обычно обладают теми же правами, что и находящиеся в них файлы и папки. Например, если создается папка внутри другой папки, для которой администраторы обладают правом полного доступа, а операторы архива – правом чтения, то новая папка унаследует эти права. То же относится и к файлам, копируемым из другой папки или перемещаемым из другого раздела NTFS.

Если папка или файл перемещается в другую папку того же раздела NTFS, то атрибуты безопасности не наследуются от нового объекта-контейнера. Например, если из папки с правами чтения для группы everyone файл перемещается в папку того же раздела с полным доступом для той же группы, то для перемещенного файла будет сохранено исходное право чтения. Дело в том, что при перемещении файлов в границах одного раздела NTFS изменяется только указатель местонахождения объекта, а все остальные атрибуты (включая атрибуты безопасности) остаются без изменений.

Три следующих важных правила помогут определить состояние прав доступа при перемещении или копировании объектов NTFS:

    при перемещении файлов в границах раздела NTFS сохраняются исходные права доступа;

    при выполнении других операций (создании или копировании файлов, а также их перемещении между разделами NTFS) наследуются права доступа родительской папки;

    при перемещении файлов из раздела NTFS в раздел FAT все права NTFS теряются.

Операционные системы Microsoft семейства Windows NT нельзя представить без файловой системы NTFS - одной из самых сложных и удачных из существующих на данный момент файловых систем. Данная статья расскажет вам, в чем особенности и недостатки этой системы, на каких принципах основана организация информации, и как поддерживать систему в стабильном состоянии, какие возможности предлагает NTFS и как их можно использовать обычному пользователю.
Часть 1. Физическая структура NTFS

Начнем с общих фактов. Раздел NTFS, теоретически, может быть почти какого угодно размера. Предел, конечно, есть, но я даже не буду указывать его, так как его с запасом хватит на последующие сто лет развития вычислительной техники - при любых темпах роста. Как обстоит с этим дело на практике? Почти так же. Максимальный размер раздела NTFS в данный момент ограничен лишь размерами жестких дисков. NT4, правда, будет испытывать проблемы при попытке установки на раздел, если хоть какая-нибудь его часть отступает более чем на 8 Гб от физического начала диска, но эта проблема касается лишь загрузочного раздела.

Лирическое отступление. Метод инсталляции NT4.0 на пустой диск довольно оригинален и может навести на неправильные мысли о возможностях NTFS. Если вы укажете программе установки, что желаете отформатировать диск в NTFS, максимальный размер, который она вам предложит, будет всего 4 Гб. Почему так мало, если размер раздела NTFS на самом деле практически неограничен? Дело в том, что установочная секция просто не знает этой файловой системы:) Программа установки форматирует этот диск в обычный FAT, максимальный размер которого в NT составляет 4 Гбайт (с использованием не совсем стандартного огромного кластера 64 Кбайта), и на этот FAT устанавливает NT. А вот уже в процессе первой загрузки самой операционной системы (еще в установочной фазе) производится быстрое преобразование раздела в NTFS; так что пользователь ничего и не замечает, кроме странного «ограничения» на размер NTFS при установке. :)

Структура раздела - общий взгляд

Как и любая другая система, NTFS делит все полезное место на кластеры - блоки данных, используемые единовременно. NTFS поддерживает почти любые размеры кластеров - от 512 байт до 64 Кбайт, неким стандартом же считается кластер размером 4 Кбайт. Никаких аномалий кластерной структуры NTFS не имеет, поэтому на эту, в общем-то, довольно банальную тему, сказать особо нечего.

Диск NTFS условно делится на две части. Первые 12% диска отводятся под так называемую MFT зону - пространство, в которое растет метафайл MFT (об этом ниже). Запись каких-либо данных в эту область невозможна. MFT-зона всегда держится пустой - это делается для того, чтобы самый главный, служебный файл (MFT) не фрагментировался при своем росте. Остальные 88% диска представляют собой обычное пространство для хранения файлов.

Свободное место диска, однако, включает в себя всё физически свободное место - незаполненные куски MFT-зоны туда тоже включаются. Механизм использования MFT-зоны таков: когда файлы уже нельзя записывать в обычное пространство, MFT-зона просто сокращается (в текущих версиях операционных систем ровно в два раза), освобождая таким образом место для записи файлов. При освобождении места в обычной области MFT зона может снова расширится. При этом не исключена ситуация, когда в этой зоне остались и обычные файлы: никакой аномалии тут нет. Что ж, система старалась оставить её свободной, но ничего не получилось. Жизнь продолжается… Метафайл MFT все-таки может фрагментироваться, хоть это и было бы нежелательно.

MFT и его структура

Файловая система NTFS представляет собой выдающееся достижение структуризации: каждый элемент системы представляет собой файл - даже служебная информация. Самый главный файл на NTFS называется MFT, или Master File Table - общая таблица файлов. Именно он размещается в MFT зоне и представляет собой централизованный каталог всех остальных файлов диска, и, как не парадоксально, себя самого. MFT поделен на записи фиксированного размера (обычно 1 Кбайт), и каждая запись соответствует какому либо файлу (в общем смысле этого слова). Первые 16 файлов носят служебный характер и недоступны операционной системе - они называются метафайлами, причем самый первый метафайл - сам MFT. Эти первые 16 элементов MFT - единственная часть диска, имеющая фиксированное положение. Интересно, что вторая копия первых трех записей, для надежности - они очень важны - хранится ровно посередине диска. Остальной MFT-файл может располагаться, как и любой другой файл, в произвольных местах диска - восстановить его положение можно с помощью его самого, «зацепившись» за самую основу - за первый элемент MFT.

Метафайлы

Первые 16 файлов NTFS (метафайлы) носят служебный характер. Каждый из них отвечает за какой-либо аспект работы системы. Преимущество настолько модульного подхода заключается в поразительной гибкости - например, на FAT-е физическое повреждение в самой области FAT фатально для функционирования всего диска, а NTFS может сместить, даже фрагментировать по диску, все свои служебные области, обойдя любые неисправности поверхности - кроме первых 16 элементов MFT.

Метафайлы находятся корневом каталоге NTFS диска - они начинаются с символа имени «$», хотя получить какую-либо информацию о них стандартными средствами сложно. Любопытно, что и для этих файлов указан вполне реальный размер - можно узнать, например, сколько операционная система тратит на каталогизацию всего вашего диска, посмотрев размер файла $MFT. В следующей таблице приведены используемые в данный момент метафайлы и их назначение.

$MFT сам MFT
$MFTmirr копия первых 16 записей MFT, размещенная посередине диска
$LogFile файл поддержки журналирования (см. ниже)
$Volume служебная информация - метка тома, версия файловой системы, т. д.
$AttrDef список стандартных атрибутов файлов на томе
$. корневой каталог
$Bitmap карта свободного места тома
$Boot загрузочный сектор (если раздел загрузочный)
$Quota файл, в котором записаны права пользователей на использование дискового пространства (начал работать лишь в NT5)
$Upcase файл - таблица соответствия заглавных и прописных букв в имен файлов на текущем томе. Нужен в основном потому, что в NTFS имена файлов записываются в Unicode, что составляет 65 тысяч различных символов, искать большие и малые эквиваленты которых очень нетривиально.

Файлы и потоки

Итак, у системы есть файлы - и ничего кроме файлов. Что включает в себя это понятие на NTFS?

  • Прежде всего, обязательный элемент - запись в MFT, ведь, как было сказано ранее, все файлы диска упоминаются в MFT. В этом месте хранится вся информация о файле, за исключением собственно данных. Имя файла, размер, положение на диске отдельных фрагментов, и т. д. Если для информации не хватает одной записи MFT, то используются несколько, причем не обязательно подряд.
  • Опциональный элемент - потоки данных файла. Может показаться странным определение «опциональный», но, тем не менее, ничего странного тут нет. Во-первых, файл может не иметь данных - в таком случае на него не расходуется свободное место самого диска. Во-вторых, файл может иметь не очень большой размер. Тогда идет в ход довольно удачное решение: данные файла хранятся прямо в MFT, в оставшемся от основных данных месте в пределах одной записи MFT. Файлы, занимающие сотни байт, обычно не имеют своего «физического» воплощения в основной файловой области - все данные такого файла хранятся в одном месте - в MFT.

Довольно интересно обстоит дело и с данными файла. Каждый файл на NTFS, в общем-то, имеет несколько абстрактное строение - у него нет как таковых данных, а есть потоки (streams). Один из потоков и носит привычный нам смысл - данные файла. Но большинство атрибутов файла - тоже потоки! Таким образом, получается, что базовая сущность у файла только одна - номер в MFT, а всё остальное опционально. Данная абстракция может использоваться для создания довольно удобных вещей - например, файлу можно «прилепить» еще один поток, записав в него любые данные - например, информацию об авторе и содержании файла, как это сделано в Windows 2000 (самая правая закладка в свойствах файла, просматриваемых из проводника). Интересно, что эти дополнительные потоки не видны стандартными средствами: наблюдаемый размер файла - это лишь размер основного потока, который содержит традиционные данные. Можно, к примеру, иметь файл нулевой длинны, при стирании которого освободится 1 Гбайт свободного места - просто потому, что какая-нибудь хитрая программа или технология прилепила в нему дополнительный поток (альтернативные данные) гигабайтового размера. Но на самом деле в текущий момент потоки практически не используются, так что опасаться подобных ситуаций не следует, хотя гипотетически они возможны. Просто имейте в виду, что файл на NTFS - это более глубокое и глобальное понятие, чем можно себе вообразить просто просматривая каталоги диска. Ну и напоследок: имя файла может содержать любые символы, включая полый набор национальных алфавитов, так как данные представлены в Unicode - 16-битном представлении, которое дает 65535 разных символов. Максимальная длина имени файла - 255 символов.

Каталоги

Каталог на NTFS представляет собой специфический файл, хранящий ссылки на другие файлы и каталоги, создавая иерархическое строение данных на диске. Файл каталога поделен на блоки, каждый из которых содержит имя файла, базовые атрибуты и ссылку на элемент MFT, который уже предоставляет полную информацию об элементе каталога. Внутренняя структура каталога представляет собой бинарное дерево. Вот что это означает: для поиска файла с данным именем в линейном каталоге, таком, например, как у FAT-а, операционной системе приходится просматривать все элементы каталога, пока она не найдет нужный. Бинарное же дерево располагает имена файлов таким образом, чтобы поиск файла осуществлялся более быстрым способом - с помощью получения двухзначных ответов на вопросы о положении файла. Вопрос, на который бинарное дерево способно дать ответ, таков: в какой группе, относительно данного элемента, находится искомое имя - выше или ниже? Мы начинаем с такого вопроса к среднему элементу, и каждый ответ сужает зону поиска в среднем в два раза. Файлы, скажем, просто отсортированы по алфавиту, и ответ на вопрос осуществляется очевидным способом - сравнением начальных букв. Область поиска, суженная в два раза, начинает исследоваться аналогичным образом, начиная опять же со среднего элемента.

Вывод - для поиска одного файла среди 1000, например, FAT придется осуществить в среднем 500 сравнений (наиболее вероятно, что файл будет найден на середине поиска), а системе на основе дерева - всего около 12-ти (2^10 = 1024). Экономия времени поиска налицо. Не стоит, однако думать, что в традиционных системах (FAT) всё так запущено: во-первых, поддержание списка файлов в виде бинарного дерева довольно трудоемко, а во-вторых - даже FAT в исполнении современной системы (Windows2000 или Windows98) использует сходную оптимизацию поиска. Это просто еще один факт в вашу копилку знаний. Хочется также развеять распространенное заблуждение (которое я сам разделял совсем еще недавно) о том, что добавлять файл в каталог в виде дерева труднее, чем в линейный каталог: это достаточно сравнимые по времени операции - дело в том, что для того, чтобы добавить файл в каталог, нужно сначала убедится, что файла с таким именем там еще нет:) - и вот тут-то в линейной системе у нас будут трудности с поиском файла, описанные выше, которые с лихвой компенсируют саму простоту добавления файла в каталог.

Какую информацию можно получить, просто прочитав файл каталога? Ровно то, что выдает команда dir. Для выполнения простейшей навигации по диску не нужно лазить в MFT за каждым файлом, надо лишь читать самую общую информацию о файлах из файлов каталогов. Главный каталог диска - корневой - ничем не отличается об обычных каталогов, кроме специальной ссылки на него из начала метафайла MFT.

Журналирование

NTFS - отказоустойчивая система, которая вполне может привести себя в корректное состояние при практически любых реальных сбоях. Любая современная файловая система основана на таком понятии, как транзакция - действие, совершаемое целиком и корректно или не совершаемое вообще. У NTFS просто не бывает промежуточных (ошибочных или некорректных) состояний - квант изменения данных не может быть поделен на до и после сбоя, принося разрушения и путаницу - он либо совершен, либо отменен.

Пример 1: осуществляется запись данных на диск. Вдруг выясняется, что в то место, куда мы только что решили записать очередную порцию данных, писать не удалось - физическое повреждение поверхности. Поведение NTFS в этом случае довольно логично: транзакция записи откатывается целиком - система осознает, что запись не произведена. Место помечается как сбойное, а данные записываются в другое место - начинается новая транзакция.

Пример 2: более сложный случай - идет запись данных на диск. Вдруг, бах - отключается питание и система перезагружается. На какой фазе остановилась запись, где есть данные, а где чушь? На помощь приходит другой механизм системы - журнал транзакций. Дело в том, что система, осознав свое желание писать на диск, пометила в метафайле $LogFile это свое состояние. При перезагрузке это файл изучается на предмет наличия незавершенных транзакций, которые были прерваны аварией и результат которых непредсказуем - все эти транзакции отменяются: место, в которое осуществлялась запись, помечается снова как свободное, индексы и элементы MFT приводятся в с состояние, в котором они были до сбоя, и система в целом остается стабильна. Ну а если ошибка произошла при записи в журнал? Тоже ничего страшного: транзакция либо еще и не начиналась (идет только попытка записать намерения её произвести), либо уже закончилась - то есть идет попытка записать, что транзакция на самом деле уже выполнена. В последнем случае при следующей загрузке система сама вполне разберется, что на самом деле всё и так записано корректно, и не обратит внимания на «незаконченную» транзакцию.

И все-таки помните, что журналирование - не абсолютная панацея, а лишь средство существенно сократить число ошибок и сбоев системы. Вряд ли рядовой пользователь NTFS хоть когда-нибудь заметит ошибку системы или вынужден будет запускать chkdsk - опыт показывает, что NTFS восстанавливается в полностью корректное состояние даже при сбоях в очень загруженные дисковой активностью моменты. Вы можете даже оптимизировать диск и в самый разгар этого процесса нажать reset - вероятность потерь данных даже в этом случае будет очень низка. Важно понимать, однако, что система восстановления NTFS гарантирует корректность файловой системы , а не ваших данных. Если вы производили запись на диск и получили аварию - ваши данные могут и не записаться. Чудес не бывает.

Сжатие

Файлы NTFS имеют один довольно полезный атрибут - «сжатый». Дело в том, что NTFS имеет встроенную поддержку сжатия дисков - то, для чего раньше приходилось использовать Stacker или DoubleSpace. Любой файл или каталог в индивидуальном порядке может хранится на диске в сжатом виде - этот процесс совершенно прозрачен для приложений. Сжатие файлов имеет очень высокую скорость и только одно большое отрицательное свойство - огромная виртуальная фрагментация сжатых файлов, которая, правда, никому особо не мешает. Сжатие осуществляется блоками по 16 кластеров и использует так называемые «виртуальные кластеры» - опять же предельно гибкое решение, позволяющее добиться интересных эффектов - например, половина файла может быть сжата, а половина - нет. Это достигается благодаря тому, что хранение информации о компрессированности определенных фрагментов очень похоже на обычную фрагментацию файлов: например, типичная запись физической раскладки для реального, несжатого, файла:

кластеры файла с 1 по 43-й хранятся в кластерах диска начиная с 400-го

кластеры файла с 44 по 52-й хранятся в кластерах диска начиная с 8530-го…

Физическая раскладка типичного сжатого файла:

кластеры файла с 1 по 9-й хранятся в кластерах диска начиная с 400-го

кластеры файла с 10 по 16-й нигде не хранятся

кластеры файла с 17 по 18-й хранятся в кластерах диска начиная с 409-го

кластеры файла с 19 по 36-й нигде не хранятся


Видно, что сжатый файл имеет «виртуальные» кластеры, реальной информации в которых нет. Как только система видит такие виртуальные кластеры, она тут же понимает, что данные предыдущего блока, кратного 16-ти, должны быть разжаты, а получившиеся данные как раз заполнят виртуальные кластеры - вот, по сути, и весь алгоритм.

Безопасность

NTFS содержит множество средств разграничения прав объектов - есть мнение, что это самая совершенная файловая система из всех ныне существующих. В теории это, без сомнения, так, но в текущих реализациях, к сожалению, система прав достаточно далека от идеала и представляет собой хоть и жесткий, но не всегда логичный набор характеристик. Права, назначаемые любому объекту и однозначно соблюдаемые системой, эволюционируют - крупные изменения и дополнения прав осуществлялись уже несколько раз и к Windows 2000 все-таки они пришли к достаточно разумному набору.

Права файловой системы NTFS неразрывно связаны с самой системой - то есть они, вообще говоря, необязательны к соблюдению другой системой, если ей дать физический доступ к диску. Для предотвращения физического доступа в Windows2000 (NT5) всё же ввели стандартную возможность - об этом см. ниже. Система прав в своем текущем состоянии достаточно сложна, и я сомневаюсь, что смогу сказать широкому читателю что-нибудь интересное и полезное ему в обычной жизни. Если вас интересует эта тема - вы найдете множество книг по сетевой архитектуре NT, в которых это описано более чем подробно.

На этом описание строение файловой системы можно закончить, осталось описать лишь некоторое количество просто практичных или оригинальных вещей.

Hard Links

Эта штука была в NTFS с незапамятных времен, но использовалась очень редко - и тем не менее: Hard Link - это когда один и тот же файл имеет два имени (несколько указателей файла-каталога или разных каталогов указывают на одну и ту же MFT запись). Допустим, один и тот же файл имеет имена 1.txt и 2.txt: если пользователь сотрет файл 1, останется файл 2. Если сотрет 2 - останется файл 1, то есть оба имени, с момента создания, совершенно равноправны. Файл физически стирается лишь тогда, когда будет удалено его последнее имя.

Symbolic Links (NT5)

Гораздо более практичная возможность, позволяющая делать виртуальные каталоги - ровно так же, как и виртуальные диски командой subst в DOSе. Применения достаточно разнообразны: во-первых, упрощение системы каталогов. Если вам не нравится каталог Documents and settingsAdministratorDocuments, вы можете прилинковать его в корневой каталог - система будет по прежнему общаться с каталогом с дремучим путем, а вы - с гораздо более коротким именем, полностью ему эквивалентным. Для создания таких связей можно воспользоваться программой junction (junction.zip , 15 Кб), которую написал известный специалист Mark Russinovich. Программа работает только в NT5 (Windows 2000), как и сама возможность.

Для удаления связи можно воспользоваться стандартной командой rd.
ВНИМАНИЕ: Попытка уделения связи с помощью проводника или других файловых менеджеров, не понимающих виртуальную природу каталога (например, FAR), приведет к удалению данных, на которые ссылается ссылка! Будьте осторожны.

Шифрование (NT5)

Полезная возможность для людей, которые беспокоятся за свои секреты - каждый файл или каталог может также быть зашифрован, что не даст возможность прочесть его другой инсталляцией NT. В сочетании со стандартным и практически непрошибаемым паролем на загрузку самой системы, эта возможность обеспечивает достаточную для большинства применений безопасность избранных вами важных данных.Часть 2. Особенности дефрагментации NTFS

Вернемся к одному достаточно интересному и важному моменту - фрагментации и дефрагментации NTFS. Дело в том, что ситуация, сложившаяся с этими двумя понятиями в настоящий момент, никак не может быть названа удовлетворительной. В самом начале утверждалось, что NTFS не подвержена фрагментации файлов. Это оказалось не совсем так, и утверждение сменили - NTFS препятствует фрагментации. Оказалось, что и это не совсем так. То есть она, конечно, препятствует, но толк от этого близок к нулю… Сейчас уже понятно, что NTFS - система, которая как никакая другая предрасположена к фрагментации, что бы ни утверждалось официально. Единственное что - логически она не очень от этого страдает. Все внутренние структуры построены таким образом, что фрагментация не мешает быстро находить фрагменты данных. Но от физического последствия фрагментации - лишних движений головок - она, конечно, не спасает. И поэтому - вперед и с песней.

К истокам проблемы

Как известно, система сильнее всего фрагментирует файлы когда свободное место кончается, когда приходится использовать мелкие дырки, оставшиеся от других файлов. Тут возникает первое свойство NTFS, которое прямо способствует серьезной фрагментации.

Диск NTFS поделен на две зоны. В начала диска идет MFT зона - зона, куда растет MFT, Master File Table. Зона занимает минимум 12% диска, и запись данных в эту зону невозможна. Это сделано для того, чтобы не фрагментировался хотя бы MFT. Но когда весь остальной диск заполняется - зона сокращается ровно в два раза:). И так далее. Таким образом мы имеем не один заход окончания диска, а несколько. В результате если NTFS работает при диске, заполненном на около 90% - фрагментация растет как бешенная.

Попутное следствие - диск, заполненный более чем на 88%, дефрагментировать почти невозможно - даже API дефрагментации не может перемещать данные в MFT зону. Может оказаться так, что у нас не будет свободного места для маневра.

Далее. NTFS работает себе и работает, и всё таки фрагментируется - даже в том случае, если свободное место далеко от истощения. Этому способствует странный алгоритм нахождения свободного места для записи файлов - второе серьезное упущение. Алгоритм действий при любой записи такой: берется какой-то определенный объем диска и заполняется файлом до упора. Причем по очень интересному алгоритму: сначала заполняются большие дырки, потом маленькие. Т.е. типичное распределение фрагментов файла по размеру на фрагментированной NTFS выглядит так (размеры фрагментов):

16 - 16 - 16 - 16 - 16 - [скачек назад] - 15 - 15 - 15 - [назад] - 14 - 14 - 14 .... 1 - 1 - 1 -1 - 1...

Так процесс идет до самых мелких дырок в 1 кластер, несмотря на то, что на диске наверняка есть и гораздо более большие куски свободного места.

Вспомните сжатые файлы - при активной перезаписи больших объемов сжатой информации на NTFS образуется гигантское количество «дырок» из-за перераспределения на диске сжатых объемов - если какой-либо участок файла стал сжиматься лучше или хуже, его приходится либо изымать из непрерывной цепочки и размещать в другом месте, либо стягивать в объеме, оставляя за собой дырку.

Смысл в сего этого вступления в пояснении того простого факта, что никак нельзя сказать, что NTFS препятствует фрагментации файлов. Наоборот, она с радостью их фрагментирует. Фрагментация NTFS через пол года работы доведет до искреннего удивления любого человека, знакомого с работой файловой системой. Поэтому приходится запускать дефрагментатор. Но на этом все наши проблемы не заканчиваются, а, увы, только начинаются.

Средства решения?

В NT существует стандартное API дефрагментации. Обладающее интересным ограничением для перемещения блоков файлов: за один раз можно перемещать не менее 16 кластеров (!), причем начинаться эти кластеры должны с позиции, кратной 16 кластерам в файле. В общем, операция осуществляется исключительно по 16 кластеров. Следствия:

  1. В дырку свободного места менее 16 кластеров нельзя ничего переместить (кроме сжатых файлов, но это неинтересные в данный момент тонкости).
  2. Файл, будучи перемещенный в другое место, оставляет после себя (на новом месте) «временно занятое место», дополняющее его по размеру до кратности 16 кластерам.
  3. При попытке как-то неправильно (»не кратно 16») переместить файл результат часто непредсказуем. Что-то округляется, что-то просто не перемещается… Тем не менее, всё место действия щедро рассыпается «временно занятым местом».

«Временно занятое место» служит для облегчения восстановления системы в случае аппаратного сбоя и освобождается через некоторое время, обычно где-то пол минуты.

Тем не менее, логично было бы использовать это API, раз он есть. Его и используют. Поэтому процесс стандартной дефрагментации, с поправками на ограниченность API, состоит из следующих фаз (не обязательно в этом порядке):

  • Вынимание файлов из MFT зоны. Не специально - просто обратно туда их положить не представляется возможным:) Безобидная фаза, и даже в чем то полезная.
  • Дефрагментация файлов. Безусловно, полезный процесс, несколько, правда, осложняемый ограничениями кратности перемещений - файлы часто приходится перекладывать сильнее, чем это было бы логично сделать по уму.
  • Дефрагментация MFT, виртуалки (pagefile.sys) и каталогов. Возможна через API только в Windows2000, иначе - при перезагрузке, отдельным процессом, как в старом Diskeeper-е.
  • Складывание файлов ближе к началу - так называемая дефрагментация свободного места. Вот это - воистину страшный процесс.

Допустим, мы хотим положить файлы подряд в начало диска. Кладем один файл. Он оставляет хвост занятости дополнения до кратности 16. Кладем следующий - после хвоста, естественно. Через некоторое время, по освобождению хвоста, имеем дырку Таким образом, имеется два примерно равнозначных варианта. Первый - часто оптимизировать диск таким дефрагментатором, смиряясь при этом с дикой фрагментацией заново созданных файлов. Второй вариант - вообще ничего не трогать, и смириться с равномерной, но гораздо более слабой фрагментацией всех файлов на диске.

Пока есть всего один дефрагментатор, который игнорирует API дефрагментации и работает как-то более напрямую - Norton Speeddisk 5.0 для NT. Когда его пытаются сравнить со всеми остальными - Diskeeper, O&O defrag, т. д. - не упоминают этого главного, самого принципиального, отличия. Просто потому, что эта проблема тщательно скрывается, по крайней мере уж точно не афишируется на каждом шагу. Speeddisk - единственная на сегодняшний день программа, которая может оптимизировать диск полностью, не создавая маленьких незаполненных фрагментов свободного места. Стоит добавить также, что при помощи стандартного API невозможно дефрагментировать тома NTFS с кластером более 4 Кбайт, а SpeedDisk и это может.

К сожалению, в Windows 2000 поместили дефрагментатор, который работает через API, и, соответственно, плодит дырки Как некоторый вывод из всего этого: все остальные дефрагментаторы при одноразовом применении просто вредны. Если вы запускали его хоть раз - нужно запускать его потом хотя бы раз в месяц, чтобы избавится от фрагментации новоприбывающих файлов. В этом основная суть сложности дефрагментации NTFS теми средствами, которые сложились исторически.Часть 3. Что выбрать?

Любая из представленных ныне файловых систем уходит своими корнями в глубокое прошлое - еще к 80-м годам. Да, NTFS, как это не странно - очень старая система! Дело в том, что долгое время персональные компьютеры пользовались лишь операционной системой DOS, которой и обязана своим появлением FAT. Но параллельно разрабатывались и тихо существовали системы, нацеленные на будущее. Две таких системы, получившие всё же широкое признание - NTFS, созданная для операционной системы Windows NT 3.1 еще в незапамятные времена, и HPFS - верная спутница OS/2.

Внедрение новых систем шло трудно - еще в 95м году, с выходом Windows95, ни у кого не было и мыслей о том, что что-то нужно менять - FAT получил второе дыхание посредством налепленной сверху заплатки «длинные имена», реализация которых там хоть и близка к идеально возможной без изменения системы, но всё же довольно бестолкова. Но в последующие годы необходимость перемен назрела окончательно, поскольку естественные ограничения FAT стали давать о себе знать. FAT32, появившаяся в Windows 95 OSR2, просто сдвинула рамки - не изменив сути системы, которая просто не дает возможности организовать эффективную работу с большим количеством данных.

HPFS (High Performance File System), активно применяемая до сих пор пользователями OS/2, показала себя достаточно удачной системой, но и она имела существенные недостатки - полное отсутствие средств автоматической восстанавливаемости, излишнюю сложность организации данных и невысокую гибкость.

NTFS же долго не могла завоевать персональные компьютеры из-за того, что для организации эффективной работы с её структурами данных требовались значительные объемы памяти. Системы с 4 или 8 Мбайт (стандарт 95-96 годов) были просто неспособны получить хоть какой-либо плюс от NTFS, поэтому за ней закрепилась не очень правильная репутация медленной и громоздкой системы. На самом деле это не соответствует действительности - современные компьютерные системы с памятью более 64 Мб получают просто огромный прирост производительности от использования NTFS.

В данной таблице сведены воедино все существенные плюсы и минусы распространенных в наше время систем, таких как FAT32, FAT и NTFS. Вряд ли разумно обсуждать другие системы, так как в настоящее время 97% пользователей делают выбор между Windows98, Windows NT4.0 и Windows 2000 (NT5.0), а других вариантов там просто нет.

Системы, её поддерживающие DOS, Windows9Х, NT всех версий Windows98, NT5 NT4, NT5
Максимальный размер тома 2 Гбайт практически неограничен практически неограничен
Макс. число файлов на томе примерно 65 тысяч практически не ограничено практически не ограничено
Имя файла с поддержкой длинных имен - 255 символов, системный набор символов 255 символов, любые символы любых алфавитов (65 тысяч разных начертаний)
Возможные атрибуты файла Базовый набор Базовый набор всё, что придет в голову производителям программного обеспечения
Безопасность нет нет да (начиная с NT5.0 встроена возможность физически шифровать данные)
Сжатие нет нет да
Устойчивость к сбоям средняя (система слишком проста и поэтому ломаться особо нечему:)) плохая (средства оптимизации по скорости привели к появлению слабых по надежности мест) полная - автоматическое восстановление системы при любых сбоях (не считая физические ошибки записи, когда пишется одно, а на самом деле записывается другое)
Экономичность минимальная (огромные размеры кластеров на больших дисках) улучшена за счет уменьшения размеров кластеров максимальна. Очень эффективная и разнообразная система хранения данных
Быстродействие высокое для малого числа файлов, но быстро уменьшается с появлением большого количества файлов в каталогах. результат - для слабо заполненных дисков - максимальное, для заполненных - плохое полностью аналогично FAT, но на дисках большого размера (десятки гигабайт) начинаются серьезные проблемы с общей организацией данных система не очень эффективна для малых и простых разделов (до 1 Гбайт), но работа с огромными массивами данных и внушительными каталогами организована как нельзя более эффективно и очень сильно превосходит по скорости другие системы

Хотелось бы сказать, что если ваша операционная система - NT (Windows 2000), то использовать какую-либо файловую систему, отличную от NTFS - значит существенно ограничивать свое удобство и гибкость работы самой операционной системы. NT, а особенно Windows 2000, составляет с NTFS как бы две части единого целого - множество полезных возможностей NT напрямую завязано на физическую и логическую структуру файловой системы, и использовать там FAT или FAT32 имеет смысл лишь для совместимости - если у вас стоит задача читать эти диски из каких-либо других систем.

Хотелось бы выразить искреннюю признательность Андрею Шабалину , без которого эта статья просто не была бы написана, а даже будучи написанной, содержала бы много досадных неточностей

Операционные системы Microsoft семейства Windows NT нельзя представить без файловой системы NTFS - одной из самых сложных и удачных из существующих на данный момент файловых систем. Данная статья расскажет вам, в чем особенности и недостатки этой системы, на каких принципах основана организация информации, и как поддерживать систему в стабильном состоянии, какие возможности предлагает NTFS и как их можно использовать обычному пользователю.

Часть 1. Физическая структура NTFS

Начнем с общих фактов. Раздел NTFS, теоретически, может быть почти какого угодно размера. Предел, конечно, есть, но я даже не буду указывать его, так как его с запасом хватит на последующие сто лет развития вычислительной техники - при любых темпах роста. Как обстоит с этим дело на практике? Почти так же. Максимальный размер раздела NTFS в данный момент ограничен лишь размерами жестких дисков. NT4, правда, будет испытывать проблемы при попытке установки на раздел, если хоть какая-нибудь его часть отступает более чем на 8 Гб от физического начала диска, но эта проблема касается лишь загрузочного раздела.

Лирическое отступление. Метод инсталляции NT4.0 на пустой диск довольно оригинален и может навести на неправильные мысли о возможностях NTFS. Если вы укажете программе установки, что желаете отформатировать диск в NTFS, максимальный размер, который она вам предложит, будет всего 4 Гб. Почему так мало, если размер раздела NTFS на самом деле практически неограничен? Дело в том, что установочная секция просто не знает этой файловой системы:) Программа установки форматирует этот диск в обычный FAT, максимальный размер которого в NT составляет 4 Гбайт (с использованием не совсем стандартного огромного кластера 64 Кбайта), и на этот FAT устанавливает NT. А вот уже в процессе первой загрузки самой операционной системы (еще в установочной фазе) производится быстрое преобразование раздела в NTFS; так что пользователь ничего и не замечает, кроме странного \"ограничения\" на размер NTFS при установке. :)

Структура раздела - общий взгляд

Как и любая другая система, NTFS делит все полезное место на кластеры - блоки данных, используемые единовременно. NTFS поддерживает почти любые размеры кластеров - от 512 байт до 64 Кбайт, неким стандартом же считается кластер размером 4 Кбайт. Никаких аномалий кластерной структуры NTFS не имеет, поэтому на эту, в общем-то, довольно банальную тему, сказать особо нечего.

Диск NTFS условно делится на две части. Первые 12% диска отводятся под так называемую MFT зону - пространство, в которое растет метафайл MFT (об этом ниже). Запись каких-либо данных в эту область невозможна. MFT-зона всегда держится пустой - это делается для того, чтобы самый главный, служебный файл (MFT) не фрагментировался при своем росте. Остальные 88% диска представляют собой обычное пространство для хранения файлов.

Свободное место диска, однако, включает в себя всё физически свободное место - незаполненные куски MFT-зоны туда тоже включаются. Механизм использования MFT-зоны таков: когда файлы уже нельзя записывать в обычное пространство, MFT-зона просто сокращается (в текущих версиях операционных систем ровно в два раза), освобождая таким образом место для записи файлов. При освобождении места в обычной области MFT зона может снова расширится. При этом не исключена ситуация, когда в этой зоне остались и обычные файлы: никакой аномалии тут нет. Что ж, система старалась оставить её свободной, но ничего не получилось. Жизнь продолжается... Метафайл MFT все-таки может фрагментироваться, хоть это и было бы нежелательно.

MFT и его структура

Файловая система NTFS представляет собой выдающееся достижение структуризации: каждый элемент системы представляет собой файл - даже служебная информация. Самый главный файл на NTFS называется MFT, или Master File Table - общая таблица файлов. Именно он размещается в MFT зоне и представляет собой централизованный каталог всех остальных файлов диска, и, как не парадоксально, себя самого. MFT поделен на записи фиксированного размера (обычно 1 Кбайт), и каждая запись соответствует какому либо файлу (в общем смысле этого слова). Первые 16 файлов носят служебный характер и недоступны операционной системе - они называются метафайлами, причем самый первый метафайл - сам MFT. Эти первые 16 элементов MFT - единственная часть диска, имеющая фиксированное положение. Интересно, что вторая копия первых трех записей, для надежности - они очень важны - хранится ровно посередине диска. Остальной MFT-файл может располагаться, как и любой другой файл, в произвольных местах диска - восстановить его положение можно с помощью его самого, \"зацепившись\" за самую основу - за первый элемент MFT.

Метафайлы

Первые 16 файлов NTFS (метафайлы) носят служебный характер. Каждый из них отвечает за какой-либо аспект работы системы. Преимущество настолько модульного подхода заключается в поразительной гибкости - например, на FAT-е физическое повреждение в самой области FAT фатально для функционирования всего диска, а NTFS может сместить, даже фрагментировать по диску, все свои служебные области, обойдя любые неисправности поверхности - кроме первых 16 элементов MFT.

Метафайлы находятся корневом каталоге NTFS диска - они начинаются с символа имени \"$\", хотя получить какую-либо информацию о них стандартными средствами сложно. Любопытно, что и для этих файлов указан вполне реальный размер - можно узнать, например, сколько операционная система тратит на каталогизацию всего вашего диска, посмотрев размер файла $MFT. В следующей таблице приведены используемые в данный момент метафайлы и их назначение.

$MFT сам MFT
$MFTmirr копия первых 16 записей MFT, размещенная посередине диска
$LogFile файл поддержки журналирования (см. ниже)
$Volume служебная информация - метка тома, версия файловой системы, т.д.
$AttrDef список стандартных атрибутов файлов на томе
$. корневой каталог
$Bitmap карта свободного места тома
$Boot загрузочный сектор (если раздел загрузочный)
$Quota файл, в котором записаны права пользователей на использование дискового пространства (начал работать лишь в NT5)
$Upcase файл - таблица соответствия заглавных и прописных букв в имен файлов на текущем томе. Нужен в основном потому, что в NTFS имена файлов записываются в Unicode, что составляет 65 тысяч различных символов, искать большие и малые эквиваленты которых очень нетривиально.

Файлы и потоки

Итак, у системы есть файлы - и ничего кроме файлов. Что включает в себя это понятие на NTFS?

Прежде всего, обязательный элемент - запись в MFT, ведь, как было сказано ранее, все файлы диска упоминаются в MFT. В этом месте хранится вся информация о файле, за исключением собственно данных. Имя файла, размер, положение на диске отдельных фрагментов, и т.д. Если для информации не хватает одной записи MFT, то используются несколько, причем не обязательно подряд.

Опциональный элемент - потоки данных файла. Может показаться странным определение \"опциональный\", но, тем не менее, ничего странного тут нет. Во-первых, файл может не иметь данных - в таком случае на него не расходуется свободное место самого диска. Во-вторых, файл может иметь не очень большой размер. Тогда идет в ход довольно удачное решение: данные файла хранятся прямо в MFT, в оставшемся от основных данных месте в пределах одной записи MFT. Файлы, занимающие сотни байт, обычно не имеют своего \"физического\" воплощения в основной файловой области - все данные такого файла хранятся в одном месте - в MFT.

Довольно интересно обстоит дело и с данными файла. Каждый файл на NTFS, в общем-то, имеет несколько абстрактное строение - у него нет как таковых данных, а есть потоки (streams). Один из потоков и носит привычный нам смысл - данные файла. Но большинство атрибутов файла - тоже потоки! Таким образом, получается, что базовая сущность у файла только одна - номер в MFT, а всё остальное опционально. Данная абстракция может использоваться для создания довольно удобных вещей - например, файлу можно \"прилепить\" еще один поток, записав в него любые данные - например, информацию об авторе и содержании файла, как это сделано в Windows 2000 (самая правая закладка в свойствах файла, просматриваемых из проводника). Интересно, что эти дополнительные потоки не видны стандартными средствами: наблюдаемый размер файла - это лишь размер основного потока, который содержит традиционные данные. Можно, к примеру, иметь файл нулевой длинны, при стирании которого освободится 1 Гбайт свободного места - просто потому, что какая-нибудь хитрая программа или технология прилепила в нему дополнительный поток (альтернативные данные) гигабайтового размера. Но на самом деле в текущий момент потоки практически не используются, так что опасаться подобных ситуаций не следует, хотя гипотетически они возможны. Просто имейте в виду, что файл на NTFS - это более глубокое и глобальное понятие, чем можно себе вообразить просто просматривая каталоги диска. Ну и напоследок: имя файла может содержать любые символы, включая полый набор национальных алфавитов, так как данные представлены в Unicode - 16-битном представлении, которое дает 65535 разных символов. Максимальная длина имени файла - 255 символов.

Каталоги

Каталог на NTFS представляет собой специфический файл, хранящий ссылки на другие файлы и каталоги, создавая иерархическое строение данных на диске. Файл каталога поделен на блоки, каждый из которых содержит имя файла, базовые атрибуты и ссылку на элемент MFT, который уже предоставляет полную информацию об элементе каталога. Внутренняя структура каталога представляет собой бинарное дерево. Вот что это означает: для поиска файла с данным именем в линейном каталоге, таком, например, как у FAT-а, операционной системе приходится просматривать все элементы каталога, пока она не найдет нужный. Бинарное же дерево располагает имена файлов таким образом, чтобы поиск файла осуществлялся более быстрым способом - с помощью получения двухзначных ответов на вопросы о положении файла. Вопрос, на который бинарное дерево способно дать ответ, таков: в какой группе, относительно данного элемента, находится искомое имя - выше или ниже? Мы начинаем с такого вопроса к среднему элементу, и каждый ответ сужает зону поиска в среднем в два раза. Файлы, скажем, просто отсортированы по алфавиту, и ответ на вопрос осуществляется очевидным способом - сравнением начальных букв. Область поиска, суженная в два раза, начинает исследоваться аналогичным образом, начиная опять же со среднего элемента.

NTFS, FAT или exFAT это совершенно разные файловые системы, которые могут использоваться для хранения данных на различных носителях. Обе созданы в компании Microsoft и в основном используются для Windows, но поддержка в ядре Linux для них тоже есть.

Чаще всего NTFS используется для установки операционной системы Windows или разделов Windows для файлов, в то время как FAT часто применяется на флешках или других внешних накопителях. Также FAT может часто использоваться в качестве основной файловой системы для Android. В этой статье мы рассмотрим различия FAT и NTFS, подробно разберем чем они отличаются и зачем нужны.

Файловая система устанавливает основные правила того как будут организованны данные при записи на носитель, независимо от того, что это - жесткий диск или флеш накопитель. Файловая система описывает каким образом будут организованы папки.

Определенная часть данных под названием файл размещается в нужной области накопителя. Файловая система выполняет все необходимые вычисления, а также определяет минимальный неделимый размер блока данных, максимальный размер файла, следит за фрагментацией. Существует множество различных типов файловых систем, это, например, файловые системы для установки ОС, для внешних носителей, для оптических дисков, распределенные файловые системы. Но в этой статье мы только выполним сравнение fat и ntfs.

Что такое файловая система FAT?

Файловые системы fat32 и ntfs очень сильно отличаются. FAT расшифровывается как File Allocation Table. Это очень давняя файловая система в истории вычислительных систем. Ее история началась в 1977 году. Тогда была разработана 8 битная файловая система, которая использовалась в NCR 7200 на основе Intel 8080. Это был терминал ввода, который работал с гибкими дисками. Файловая система была написана сотрудником Microsoft, Марком Макдональдом после обсуждения ее концепции с Билом Гейтсом.

Затем файловая система FAT начала использоваться в операционной системе MDOS для платформы Z80. Спустя несколько лет были выпущены новые версии, такие как FAT12, FAT16 и FAT32.

FAT32 увеличила максимальный размер тома до 16 Тб, по сравнению с FAT16. Также был увеличен размер файла до 4 Гб. File Allocation Table 32 бит вышла в августе 1995 года для Windows 95. Но эта файловая система все еще не может использоваться для установки тяжелых приложений или хранения больших файлов. Поэтому Microsoft разработала новую файловую систему - NTFS, которая лишена таких недостатков.

FAT32 - это отличная файловая система для внешних носителей, если вам нужно передавать файлы размером не более чем 4 Гб. Она поддерживается множеством различных устройств, таких как фотоаппараты, камеры, музыкальные плееры. Все версии Windows и дистрибутивы Linux полностью поддерживают FAT32. Даже Apple MacOS ее поддерживает.

Что такое файловая система NTFS?

Для своих новых систем Microsoft разработала новую файловую систему - New Technology File System или NTFS. Она появилась в 1993 году, в Windows NT 3.1. NTFS сняла многие ограничения на размеры файлов и диска. Ее разработка началась еще в далеком 1980 году, в результате объединения Microsoft и IBM для создания новой файловой системы с улучшенной производительностью.

Но сотрудничество компаний продлилось недолго, и IBM выпустила HPFS, которая использовалась в OS/2, а в Microsoft создали NTFS 1.0. Максимальный размер одного файла в NTFS может достигать 16 экзабайт, а это значит, что в ней поместятся даже самые большие файлы.

NTFS 3.1 была выпущена для Windows XP и получила множество интересных улучшений, таких как поддержку уменьшения размера разделов, автоматическое восстановление и символические ссылки, а максимальный размер диска с файловой системой увеличен до 256 ТБ. Это несмотря на максимальный размер файла в 16 Эб.

Из других интересных функций, которые были добавлены позже можно отметить отложенную запись на диск, поддержка дефрагментации, настройка дисковых квот, отслеживание ссылок и шифрование на уровне файлов. При всем этом, NTFS сохраняет совместимость с прежними версиями.

Сейчас это журналируемая файловая система, все действия с файлами заносятся в специальный журнал, с помощью которого файловая система может быть очень быстро восстановлена при повреждениях. NTFS поддерживается в Windows XP и более поздних версиях. Если сравнивать fat или ntfs, то последняя в Linux поддерживается не полностью, возможна запись и восстановление при повреждениях, а в MacOS поддерживается только чтение.

Что такое файловая система exFAT?

Файловая система exFAT - это еще один проект Microsoft по улучшению старой файловой системы. Ее можно исполосовать там, где не подходит FAT32. Она намного легче за NTFS, но поддерживает файлы размером более 4 Гб, и тоже часто применяется на флешках и накопителях. При ее разработке Microsoft использовала свою технологию поиска имен файлов по хэшу, что очень сильно улучшает производительность.

Большинство стран признают патентное право США, поэтому любая реализация exFAT невозможна в любых системах с закрытым или открытым исходным кодом. Но Microsoft хочет чтобы эта файловая система свободно распространялась и использовалась. Поэтому была разработана версия exFAT на основе FUSE под названием fuse-exfat. Она дает полный доступ на чтение и запись. Также была создана реализация на уровне ядра Linux в Samsung, которая сейчас тоже есть в открытом доступе.

Эта файловая система тоже имеет максимальное ограничение на размер файла 16 ЭБ, но она намного легче и не имеет никаких дополнительных возможностей. Если говорить про совместимость, то она полностью поддерживается в Windows, MacOS, Android и Linux.

Различия FAT и Ntfs

А теперь рассмотрим основные различия FAT и NTFS в виде краткого резюме по каждой из файловых систем:

FAT32

  • Совместимость: Windows, Mac, Linux, игровые консоли, практически все устройства, имеющие USB порт;
  • Плюсы: кроссплатформенность, легкость;
  • Минусы: максимальный размер файла 4 ГБ и раздела 16 ГБ, не журналируемая;
  • Использование: внешние носители.

NTFS

  • Совместимость: Windows, Linux, Xbox One, и только чтение в Mac;
  • Плюсы: журналируемая, большие лимиты на размер раздела и файла, шифрование, автоматическое восстановление;
  • Минусы: ограниченная кроссплатформенность;
  • Использование: для установки Windows.

exFAT

  • Совместимость: Windows XP и выше, MacOS X 10.6.5, Linux (fuse), Android;
  • Плюсы: большой лимит на размер раздела и файла, легкая по сравнению с NTFS;
  • Минусы: Microsoft ограничивает ее использование лицензионным соглашением;
  • Использование: для внешних носителей и внешних жестких дисков.

Выводы

В этой статье мы выполнили сравнение fat и ntfs. Это очень разные файловые системы. Но понять какая файловая система лучше fat или ntfs сложно, с одной стороны NTFS имеет намного больше возможностей, но зато FAT более легкая и поддерживается везде, где это возможно. Для разделов данных в Linux, которые должны быть доступны в Windows лучше использовать FAT, а не NTFS, поскольку она поддерживается лучше. А по-вашему что лучше fat или ntfs для Linux?