Какие виды объектов файловой системы. Файловые системы. Типы файловых систем. Операции с файлами. Каталоги. Операции с каталогами. (5)

Мы привыкли к таким терминам, как “файл” и “папка” или “директория”. Но что это за механизм, который управляет файлами, проводит их аудит и контролирует их перемещение?

Образно, систему хранения файлов на диске можно сравнить с огромным и хаотично устроенным складским помещением, в который постоянно завозится новый товар. Имеется управляющий складом, который точно знает где расположен какой товар и как быстро к нему получить доступ. Такими управляющими в системе хранения файлов являются .

Разберемся, как работает файловая система, какие ее разновидности существуют и рассмотрим основные операции с файловой системой, влияющие на производительность системы.

Каждому файлу операционная система присваивает имя, которое подобно адресу идентифицирует его в системе. Данный путь представляет собой строку, в начале которой указывается логический диск, на котором хранится файл, а затем последовательно отображаются все папки по степени их вложенности.

Когда какой-либо программе требуется файл, она отправляет операционной системе запрос, который обрабатывается файловой системой Windows. По полученному пути система получает адрес места хранения файла (физическое расположение) и передает его программе, отправившей запрос.

Таким образом, файловая система имеет свою собственную базу данных, которая с одной стороны устанавливает соответствие между физическим адресом файла и его путем, с другой стороны хранит дополнительные атрибуты файла, такие как размер, дата создания, права доступа к файлу и другие.

В файловых системах FAT32 и NTFS, такой базой данных является Главная Файловая Таблица (MFT – Master File Table).

Что на самом деле происходит при перемещении, копировании и удалении файлов?

Как бы это не казалось странным, но не все операции с файлами и папками ведут к физическим изменениям на жестком диске. Некоторые операции только вносят изменения в MFT, а сам файл остается на том же месте.

Давайте подробно разберем процесс работы файловой системы при выполнении основных операций с файлами. Это поможет нам понять, как происходит “засорение” ОС, почему некоторые файлы загружаются очень долго, что нужно предпринять, чтобы повысить быстродействие операционной системы.

1. Перемещение файла : данная операция подразумевает смену одного пути на другой. Следовательно, необходимо изменить только запись в Главной Файловой Таблице, а сам файл физически перемещать нет необходимости. Он остается на прежнем месте в неизменном виде.

2. Копирование файла : данная операция подразумевает создание еще одной дополнительной реализации файла на новом месте. При этом происходит не только создание записи в MFT, но и появление еще одной реальной копии файла на новом месте.

3. Удаление файла : в данном случае файл сначала помещается в Корзину. После вызова функции “Очистить” Корзину, файловая система удаляет запись из MFT. При этом файл физически не удаляется, он остается на своем прежнем месте месте. И будет существовать, пока его не перезапишут. Эту особенность следует учитывать при удалении конфиденциальных файлов: лучше использовать для этого специальные программы.

Теперь становится понятно, почему операция перемещения происходит быстрее, чем операция копирования. Повторюсь, во втором случае требуется помимо внесения изменений в Главную Файловую Таблицу дополнительно создать еще и физическую копию файла.

Какие типы файловых систем существуют?

1. FAT16 (File Allocated Table 16) . Устаревшая файловая система, которая могла работать только с файлами размером не больше 2 Гб, поддерживала жесткие диски емкостью не более 4 Гб, и могла хранить и обрабатывать не более 65636 файлов. С развитием технологий и ростом потребностей пользователей данную файловую систему заменила NTFS.

2. FAT32 . С ростом объема данных, хранимых на носителях информации, была разработана и введена новая файловая система Windows, которая стала поддерживать файлы размером до 4 Гб и установила предельную емкость жесткого диска на планке 8 Тб. Как правило, в настоящее время FAT32 используется только на внешних носителях информации.

3. NTFS (New Technology File System) . Это стандартная файловая система, устанавливаемая на все современные компьютеры с операционной системой Windows. Максимальный размер файла, обрабатываемый данной файловой системой, 16 Тб; максимально поддерживаемый размер жесткого диска – 256 Тб.

Дополнительной функцией NTFS является журналирование своих действий. Первоначально все изменения заносятся в специально отведенную для это область, а лишь затем они прописываются в файловой таблице. Что позволяет предотвратить потерю данных, например при сбоях в питании.

4. HSF+ (Hierarchical File System+) . Стандартная файловая система для компьютеров с операционной системой MacOS. Аналогично NTFS, она поддерживает файлы большого объема и жесткие диски емкостью несколько сотен терабайт.

Чтобы поменять файловую систему, придется отформатировать раздел жесткого диска. Как правило, эта операция подразумевает полное удаление всей имеющейся информации на данном разделе.

как узнать тип файловой системы?

Самый простой способ: откройте “Проводник файлов” –> выберите интересующий вас раздел жесткого диска –> кликните по нему правой кнопкой мыши –> в появившемся меню выберите пункт “Свойства” –> в открывшемся окошке выберите вкладку “Общие”.

Обслуживание файловой системы Windows

Следует отметить, что файловая система не следит за “порядком” на жестком диске. ОС Windows устроена таким образом, что она сохраняет новые файлы в первой попавшейся незанятой ячейке. При этом если файл не помещается целиком в эту ячейку, то он делится на несколько частей (фрагментируется). Соответственно время доступа и открытия такого файла увеличивается, что сказывается на общей производительности системы.

Чтобы этого не допустить, и “навести порядок” в файловой системе, необходимо регулярно производить дефрагментацию разделов жесткого диска.

Для этого опять зайдите в свойства интересующего вас раздела жесткого диска (как это описано выше), перейдите на вкладку “Сервис” и нажмите на кнопку “Выполнить дефрагментацию”.

В открывшемся окошке можно настроить операцию автоматической дефрагментации дисков.

Чтобы осуществить дефрагментацию самостоятельно, укажите раздел жесткого диска, нажмите кнопку “Анализировать диск” –> а затем “Дефрагментация диска”.

Дождитесь завершения операции и закройте окошко.

Почему смартфон может не запускать программы с карты памяти? Чем ext4 принципиально отличается от ext3? Почему флешка проживет дольше, если отформатировать ее в NTFS, а не в FAT? В чем главная проблема F2FS? Ответы кроются в особенностях строения файловых систем. О них мы и поговорим.

Введение

Файловые системы определяют способ хранения данных. От них зависит, с какими ограничениями столкнется пользователь, насколько быстрыми будут операции чтения и записи и как долго накопитель проработает без сбоев. Особенно это касается бюджетных SSD и их младших братьев - флешек. Зная эти особенности, можно выжать из любой системы максимум и оптимизировать ее использование для конкретных задач.

Выбирать тип и параметры файловой системы приходится всякий раз, когда надо сделать что-то нетривиальное. Например, требуется ускорить наиболее частые файловые операции. На уровне файловой системы этого можно достичь разными способами: индексирование обеспечит быстрый поиск, а предварительное резервирование свободных блоков позволит упростить перезапись часто изменяющихся файлов. Предварительная оптимизация данных в оперативной памяти снизит количество требуемых операций ввода-вывода.

Увеличить срок безотказной эксплуатации помогают такие свойства современных файловых систем, как отложенная запись, дедупликация и другие продвинутые алгоритмы. Особенно актуальны они для дешевых SSD с чипами памяти TLC, флешек и карт памяти.

Отдельные оптимизации существуют для дисковых массивов разных уровней: например, файловая система может поддерживать упрощенное зеркалирование тома, мгновенное создание снимков или динамическое масштабирование без отключения тома.

Черный ящик

Пользователи в основном работают с той файловой системой, которая предлагается по умолчанию операционной системой. Они редко создают новые дисковые разделы и еще реже задумываются об их настройках - просто используют рекомендованные параметры или вообще покупают предварительно отформатированные носители.

У поклонников Windows все просто: NTFS на всех дисковых разделах и FAT32 (или та же NTFS) на флешках. Если же стоит NAS и в нем используется какая-то другая файловая система, то для большинства это остается за гранью восприятия. К нему просто подключаются по сети и качают файлы, как из черного ящика.

На мобильных гаджетах с Android чаще всего встречается ext4 во внутренней памяти и FAT32 на карточках microSD. Яблочникам же и вовсе без разницы, что у них за файловая система: HFS+, HFSX, APFS, WTFS… для них существуют только красивые значки папок и файлов, нарисованные лучшими дизайнерами. Богаче всего выбор у линуксоидов, но прикрутить поддержку неродных для операционки файловых систем можно и в Windows, и в macOS - об этом чуть позже.

Общие корни

Различных файловых систем создано свыше сотни, но актуальными можно назвать чуть больше десятка. Хотя все они разрабатывались для своих специфических применений, многие в итоге оказались родственными на концептуальном уровне. Они похожи, поскольку используют однотипную структуру представления (мета)данных - B-деревья («би-деревья»).

Как и любая иерархическая система, B-дерево начинается с корневой записи и далее ветвится вплоть до конечных элементов - отдельных записей о файлах и их атрибутах, или «листьев». Основной смысл создания такой логической структуры был в том, чтобы ускорить поиск объектов файловой системы на больших динамических массивах - вроде жестких дисков объемом в несколько терабайт или еще более внушительных RAID-массивов.

B-деревья требуют гораздо меньше обращений к диску, чем другие типы сбалансированных деревьев, при выполнении тех же операций. Достигается это за счет того, что конечные объекты в B-деревьях иерархически расположены на одной высоте, а скорость всех операций как раз пропорциональна высоте дерева.

Как и другие сбалансированные деревья, B-trees имеют одинаковую длину путей от корня до любого листа. Вместо роста ввысь они сильнее ветвятся и больше растут в ширину: все точки ветвления у B-дерева хранят множество ссылок на дочерние объекты, благодаря чему их легко отыскать за меньшее число обращений. Большое число указателей снижает количество самых длительных дисковых операций - позиционирования головок при чтении произвольных блоков.

Концепция B-деревьев была сформулирована еще в семидесятых годах и с тех пор подвергалась различным улучшениям. В том или ином виде она реализована в NTFS, BFS, XFS, JFS, ReiserFS и множестве СУБД. Все они - родственники с точки зрения базовых принципов организации данных. Отличия касаются деталей, зачастую довольно важных. Недостаток у родственных файловых систем тоже общий: все они создавались для работы именно с дисками еще до появления SSD.

Флеш-память как двигатель прогресса

Твердотельные накопители постепенно вытесняют дисковые, но пока вынуждены использовать чуждые им файловые системы, переданные по наследству. Они построены на массивах флеш-памяти, принципы работы которой отличаются от таковых у дисковых устройств. В частности, флеш-память должна стираться перед записью, а эта операция в чипах NAND не может выполняться на уровне отдельных ячеек. Она возможна только для крупных блоков целиком.

Связано это ограничение с тем, что в NAND-памяти все ячейки объединены в блоки, каждый из которых имеет только одно общее подключение к управляющей шине. Не будем вдаваться в детали страничной организации и расписывать полную иерархию. Важен сам принцип групповых операций с ячейками и тот факт, что размеры блоков флеш-памяти обычно больше, чем блоки, адресуемые в любой файловой системе. Поэтому все адреса и команды для накопителей с NAND flash надо транслировать через слой абстрагирования FTL (Flash Translation Layer).

Совместимость с логикой дисковых устройств и поддержку команд их нативных интерфейсов обеспечивают контроллеры флеш-памяти. Обычно FTL реализуется именно в их прошивке, но может (частично) выполняться и на хосте - например, компания Plextor пишет для своих SSD драйверы, ускоряющие запись.

Совсем без FTL не обойтись, поскольку даже запись одного бита в конкретную ячейку приводит к запуску целой серии операций: контроллер отыскивает блок, содержащий нужную ячейку; блок считывается полностью, записывается в кеш или на свободное место, затем стирается целиком, после чего перезаписывается обратно уже с необходимыми изменениями.

Такой подход напоминает армейские будни: чтобы отдать приказ одному солдату, сержант делает общее построение, вызывает бедолагу из строя и командует остальным разойтись. В редкой ныне NOR-памяти организация была спецназовская: каждая ячейка управлялась независимо (у каждого транзистора был индивидуальный контакт).

Задач у контроллеров все прибавляется, поскольку с каждым поколением флеш-памяти техпроцесс ее изготовления уменьшается ради повышения плотности и удешевления стоимости хранения данных. Вместе с технологическими нормами уменьшается и расчетный срок эксплуатации чипов.

Модули с одноуровневыми ячейками SLC имели заявленный ресурс в 100 тысяч циклов перезаписи и даже больше. Многие из них до сих пор работают в старых флешках и карточках CF. У MLC корпоративного класса (eMLC) ресурс заявлялся в пределах от 10 до 20 тысяч, в то время как у обычной MLC потребительского уровня он оценивается в 3–5 тысяч. Память этого типа активно теснит еще более дешевая TLC, у которой ресурс едва дотягивает до тысячи циклов. Удерживать срок жизни флеш-памяти на приемлемом уровне приходится за счет программных ухищрений, и новые файловые системы становятся одним из них.

Изначально производители предполагали, что файловая система неважна. Контроллер сам должен обслуживать недолговечный массив ячеек памяти любого типа, распределяя между ними нагрузку оптимальным образом. Для драйвера файловой системы он имитирует обычный диск, а сам выполняет низкоуровневые оптимизации при любом обращении. Однако на практике оптимизация у разных устройств разнится от волшебной до фиктивной.

В корпоративных SSD встроенный контроллер - это маленький компьютер. У него есть огромный буфер памяти (полгига и больше), и он поддерживает множество методов повышения эффективности работы с данными, что позволяет избегать лишних циклов перезаписи. Чип упорядочивает все блоки в кеше, выполняет отложенную запись, производит дедупликацию на лету, резервирует одни блоки и очищает в фоне другие. Все это волшебство происходит абсолютно незаметно для ОС, программ и пользователя. С таким SSD действительно непринципиально, какая файловая система используется. Внутренние оптимизации оказывают гораздо большее влияние на производительность и ресурс, чем внешние.

В бюджетные SSD (и тем более - флешки) ставят куда менее умные контроллеры. Кеш в них урезан или отсутствует, а продвинутые серверные технологии не применяются вовсе. В картах памяти контроллеры настолько примитивные, что часто утверждается, будто их нет вовсе. Поэтому для дешевых устройств с флеш-памятью остаются актуальными внешние методы балансировки нагрузки - в первую очередь при помощи специализированных файловых систем.

От JFFS к F2FS

Одной из первых попыток написать файловую систему, которая бы учитывала принципы организации флеш-памяти, была JFFS - Journaling Flash File System. Изначально эта разработка шведской фирмы Axis Communications была ориентирована на повышение эффективности памяти сетевых устройств, которые Axis выпускала в девяностых. Первая версия JFFS поддерживала только NOR-память, но уже во второй версии подружилась с NAND.

Сейчас JFFS2 имеет ограниченное применение. В основном она все так же используется в дистрибутивах Linux для встраиваемых систем. Ее можно найти в маршрутизаторах, IP-камерах, NAS и прочих завсегдатаях интернета вещей. В общем, везде, где требуется небольшой объем надежной памяти.

Дальнейшей попыткой развития JFFS2 стала LogFS, у которой индексные дескрипторы хранились в отдельном файле. Авторы этой идеи - сотрудник немецкого подразделения IBM Йорн Энгель и преподаватель Оснабрюкского университета Роберт Мертенс. Исходный код LogFS выложен на GitHub . Судя по тому, что последнее изменение в нем было сделано четыре года назад, LogFS так и не обрела популярность.

Зато эти попытки подстегнули появление другой специализированной файловой системы - F2FS. Ее разработали в корпорации Samsung, на долю которой приходится немалая часть производимой в мире флеш-памяти. В Samsung делают чипы NAND Flash для собственных устройств и по заказу других компаний, а также разрабатывают SSD с принципиально новыми интерфейсами вместо унаследованных дисковых. Создание специализированной файловой системы с оптимизацией для флеш-памяти было с точки зрения Samsung давно назревшей необходимостью.

Четыре года назад, в 2012 году, в Samsung создали F2FS (Flash Friendly File System). Ее идея хороша, но реализация оказалась сыроватой. Ключевая задача при создании F2FS была проста: снизить число операций перезаписи ячеек и распределить нагрузку на них максимально равномерно. Для этого требуется выполнять операции с несколькими ячейками в пределах того же блока одновременно, а не насиловать их по одной. Значит, нужна не мгновенная перезапись имеющихся блоков по первому запросу ОС, а кеширование команд и данных, дозапись новых блоков на свободное место и отложенное стирание ячеек.

Сегодня поддержка F2FS уже официально реализована в Linux (а значит, и в Android), но особых преимуществ на практике она пока не дает. Основная особенность этой файловой системы (отложенная перезапись) привела к преждевременным выводам о ее эффективности. Старый трюк с кешированием даже одурачивал ранние версии бенчмарков, где F2FS демонстрировала мнимое преимущество не на несколько процентов (как ожидалось) и даже не в разы, а на порядки. Просто драйвер F2FS рапортовал о выполнении операции, которую контроллер только планировал сделать. Впрочем, если реальный прирост производительности у F2FS и невелик, то износ ячеек определенно будет меньше, чем при использовании той же ext4. Те оптимизации, которые не сможет сделать дешевый контроллер, будут выполнены на уровне самой файловой системы.

Экстенты и битовые карты

Пока F2FS воспринимается как экзотика для гиков. Даже в собственных смартфонах Samsung все еще применяется ext4. Многие считают ее дальнейшим развитием ext3, но это не совсем так. Речь идет скорее о революции, чем о преодолении барьера в 2 Тбайт на файл и простом увеличении других количественных показателей.

Когда компьютеры были большими, а файлы - маленькими, адресация не представляла сложностей. Каждому файлу выделялось энное количество блоков, адреса которых заносились в таблицу соответствия. Так работала и файловая система ext3, остающаяся в строю до сих пор. А вот в ext4 появился принципиально другой способ адресации - экстенты.

Экстенты можно представить как расширения индексных дескрипторов в виде обособленных наборов блоков, которые адресуются целиком как непрерывные последовательности. Один экстент может содержать целый файл среднего размера, а для крупных файлов достаточно выделить десяток-другой экстентов. Это куда эффективнее, чем адресовать сотни тысяч мелких блоков по четыре килобайта.

Поменялся в ext4 и сам механизм записи. Теперь распределение блоков происходит сразу за один запрос. И не заранее, а непосредственно перед записью данных на диск. Отложенное многоблочное распределение позволяет избавиться от лишних операций, которыми грешила ext3: в ней блоки для нового файла выделялись сразу, даже если он целиком умещался в кеше и планировался к удалению как временный.


Диета с ограничением FAT

Помимо сбалансированных деревьев и их модификаций, есть и другие популярные логические структуры. Существуют файловые системы с принципиально другим типом организации - например, линейным. Как минимум одной из них ты наверняка часто пользуешься.

Загадка

Отгадай загадку: в двенадцать она начала полнеть, к шестнадцати была глуповатой толстушкой, а к тридцати двум стала жирной, так и оставшись простушкой. Кто она?

Правильно, это история про файловую систему FAT. Требования совместимости обеспечили ей дурную наследственность. На дискетах она была 12-разрядной, на жестких дисках - поначалу 16-битной, а до наших дней дошла уже как 32-разрядная. В каждой следующей версии увеличивалось число адресуемых блоков, но в самой сути ничего не менялось.

Популярная до сих пор файловая система FAT32 появилась аж двадцать лет назад. Сегодня она все так же примитивна и не поддерживает ни списки управления доступом, ни дисковые квоты, ни фоновое сжатие, ни другие современные технологии оптимизации работы с данными.

Зачем же FAT32 нужна в наши дни? Все так же исключительно для обеспечения совместимости. Производители справедливо полагают, что раздел с FAT32 сможет прочитать любая ОС. Поэтому именно его они создают на внешних жестких дисках, USB Flash и картах памяти.

Как освободить флеш-память смартфона

Карточки microSD(HC), используемые в смартфонах, по умолчанию отформатированы в FAT32. Это основное препятствие для установки на них приложений и переноса данных из внутренней памяти. Чтобы его преодолеть, нужно создать на карточке раздел с ext3 или ext4. На него можно перенести все файловые атрибуты (включая владельца и права доступа), поэтому любое приложение сможет работать так, словно запустилось из внутренней памяти.

Windows не умеет делать на флешках больше одного раздела, но для этого можно запустить Linux (хотя бы в виртуалке) или продвинутую утилиту для работы с логической разметкой - например, MiniTool Partition Wizard Free . Обнаружив на карточке дополнительный первичный раздел с ext3/ext4, приложение Link2SD и аналогичные ему предложат куда больше вариантов, чем в случае с одним разделом FAT32.


Как еще один аргумент в пользу выбора FAT32 часто называют отсутствие в ней журналирования, а значит, более быстрые операции записи и меньший износ ячеек памяти NAND Flash. На практике же использование FAT32 приводит к обратному и порождает множество других проблем.

Флешки и карты памяти как раз быстро умирают из-за того, что любое изменение в FAT32 вызывает перезапись одних и тех же секторов, где расположены две цепочки файловых таблиц. Сохранил веб-страничку целиком, и она перезаписалась раз сто - с каждым добавлением на флешку очередной мелкой гифки. Запустил портейбл-софт? Он насоздавал временных файлов и постоянно меняет их во время работы. Поэтому гораздо лучше использовать на флешках NTFS с ее устойчивой к сбоям таблицей $MFT. Мелкие файлы могут храниться прямо в главной файловой таблице, а ее расширения и копии записываются в разные области флеш-памяти. Вдобавок благодаря индексации на NTFS поиск выполняется быстрее.

INFO

Для FAT32 и NTFS теоретические ограничения по уровню вложенности не указаны, но на практике они одинаковые: в каталоге первого уровня можно создать только 7707 подкаталогов. Любители поиграть в матрешки оценят.

Другая проблема, с которой сталкивается большинство пользователей, - на раздел с FAT32 невозможно записать файл больше 4 Гбайт. Причина заключается в том, что в FAT32 размер файла описывается 32 битами в таблице размещения файлов, а 2^32 (минус единица, если быть точным) как раз дают четыре гига. Получается, что на свежекупленную флешку нельзя записать ни фильм в нормальном качестве, ни образ DVD.

Копирование больших файлов еще полбеды: при попытке сделать это ошибка хотя бы видна сразу. В других ситуациях FAT32 выступает в роли бомбы замедленного действия. Например, ты скопировал на флешку портейбл-софт и на первых порах пользуешься им без проблем. Спустя длительное время у одной из программ (допустим, бухгалтерской или почтовой) база данных раздувается, и… она просто перестает обновляться. Файл не может быть перезаписан, поскольку достиг лимита в 4 Гбайт.

Менее очевидная проблема заключается в том, что в FAT32 дата создания файла или каталога может быть задана с точностью до двух секунд. Этого недостаточно для многих криптографических приложений, использующих временные метки. Низкая точность атрибута «дата» - еще одна причина того, почему FAT32 не рассматривается как полноценная файловая система с точки зрения безопасности. Однако ее слабые стороны можно использовать и в своих целях. Например, если скопировать на том FAT32 любые файлы с раздела NTFS, то они очистятся от всех метаданных, а также унаследованных и специально заданных разрешений. FAT просто не поддерживает их.

exFAT

В отличие от FAT12/16/32, exFAT разрабатывалась специально для USB Flash и карт памяти большого (≥ 32 Гбайт) объема. Extended FAT устраняет упомянутый выше недостаток FAT32 - перезаписывание одних и тех же секторов при любом изменении. Как у 64-разрядной системы, у нее нет практически значимых лимитов на размер одного файла. Теоретически он может иметь длину в 2^64 байт (16 Эбайт), а карточки такого объема появятся нескоро.

Еще одно принципиальное отличие exFAT - поддержка списков контроля доступа (ACL). Это уже не та простушка из девяностых, однако внедрению exFAT мешает закрытость формата. Поддержка exFAT полноценно и легально реализована только в Windows (начиная с XP SP2) и OS X (начиная с 10.6.5). В Linux и *BSD она поддерживается либо с ограничениями, либо не вполне законно. Microsoft требует лицензировать использование exFAT, и в этой области много правовых споров.

Btrfs

Еще один яркий представитель файловых систем на основе B-деревьев называется Btrfs. Эта ФС появилась в 2007 году и изначально создавалась в Oracle с прицелом на работу с SSD и RAID. Например, ее можно динамически масштабировать: создавать новые индексные дескрипторы прямо в работающей системе или разделять том на подтома без выделения им свободного места.

Реализованный в Btrfs механизм копирования при записи и полная интеграция с модулем ядра Device mapper позволяют делать практически мгновенные снапшоты через виртуальные блочные устройства. Предварительное сжатие данных (zlib или lzo) и дедупликация ускоряют основные операции, заодно продлевая время жизни флеш-памяти. Особенно это заметно при работе с базами данных (достигается сжатие в 2–4 раза) и мелкими файлами (они записываются упорядоченно крупными блоками и могут храниться непосредственно в «листьях»).

Также Btrfs поддерживает режим полного журналирования (данных и метаданных), проверку тома без размонтирования и множество других современных фич. Код Btrfs опубликован под лицензией GPL. Эта файловая система поддерживается в Linux как стабильная начиная с версии ядра 4.3.1.

Бортовые журналы

Практически все более-менее современные файловые системы (ext3/ext4, NTFS, HFSX, Btrfs и другие) относят к общей группе журналируемых, поскольку они ведут учет вносимых изменений в отдельном логе (журнале) и сверяются с ним в случае сбоя при выполнении дисковых операций. Однако степень подробности ведения журналов и отказоустойчивость у этих файловых систем разные.

Еxt3 поддерживает три режима ведения журнала: с обратной связью, упорядоченный и полное журналирование. Первый режим подразумевает запись только общих изменений (метаданных), выполняемую асинхронно по отношению к изменениям самих данных. Во втором режиме выполняется та же запись метаданных, но строго перед внесением любых изменений. Третий режим эквивалентен полному журналированию (изменений как в метаданных, так и в самих файлах).

Целостность данных обеспечивает только последний вариант. Остальные два лишь ускоряют выявление ошибок в ходе проверки и гарантируют восстановление целостности самой файловой системы, но не содержимого файлов.

Журналирование в NTFS похоже на второй режим ведения лога в ext3. В журнал записываются только изменения в метаданных, а сами данные в случае сбоя могут быть утеряны. Такой метод ведения журнала в NTFS задумывался не как способ достижения максимальной надежности, а лишь как компромисс между быстродействием и отказоустойчивостью. Именно поэтому люди, привыкшие к работе с полностью журналируемыми системами, считают NTFS псевдожурналируемой.

Реализованный в NTFS подход в чем-то даже лучше используемого по умолчанию в ext3. В NTFS дополнительно периодически создаются контрольные точки, которые гарантируют выполнение всех отложенных ранее дисковых операций. Контрольные точки не имеют ничего общего с точками восстановления в \System Volume Infromation\ . Это просто служебные записи в логе.

Практика показывает, что такого частичного журналирования NTFS в большинстве случаев хватает для беспроблемной работы. Ведь даже при резком отключении питания дисковые устройства не обесточиваются мгновенно. Блок питания и многочисленные конденсаторы в самих накопителях обеспечивают как раз тот минимальный запас энергии, которого хватает на завершение текущей операции записи. Современным SSD при их быстродействии и экономичности такого же количества энергии обычно хватает и на выполнение отложенных операций. Попытка же перейти на полное журналирование снизила бы скорость большинства операций в разы.

Подключаем сторонние ФС в Windows

Использование файловых систем лимитировано их поддержкой на уровне ОС. Например, Windows не понимает ext2/3/4 и HFS+, а использовать их порой надо. Сделать это можно, добавив соответствующий драйвер.

WARNING

Большинство драйверов и плагинов для поддержки сторонних файловых систем имеют свои ограничения и не всегда работают стабильно. Они могут конфликтовать с другими драйверами, антивирусами и программами виртуализации.

Открытый драйвер для чтения и записи на разделы ext2/3 с частичной поддержкой ext4. В последней версии поддерживаются экстенты и разделы объемом до 16 Тбайт. Не поддерживаются LVM, списки контроля доступа и расширенные атрибуты.


Существует бесплатный плагин для Total Commander. Поддерживает чтение разделов ext2/3/4.


coLinux - открытый и бесплатный порт ядра Linux. Вместе с 32-битным драйвером он позволяет запускать Linux в среде Windows с 2000 по 7 без использования технологий виртуализации. Поддерживает только 32-битные версии. Разработка 64-битной модификации была отменена. сoLinux позволяет в том числе организовать из Windows доступ к разделам ext2/3/4. Поддержка проекта приостановлена в 2014 году.

Возможно, в Windows 10 уже есть встроенная поддержка характерных для Linux файловых систем, просто она скрыта. На эти мысли наводит драйвер уровня ядра Lxcore.sys и сервис LxssManager, который загружается как библиотека процессом Svchost.exe. Подробнее об этом смотри в докладе Алекса Ионеску «Ядро Линукс, скрытое внутри Windows 10», с которым он выступил на Black Hat 2016.


ExtFS for Windows - платный драйвер, выпускаемый компанией Paragon. Он работает в Windows с 7 по 10, поддерживает доступ к томам ext2/3/4 в режиме чтения и записи. Обеспечивает почти полную поддержку ext4 в Windows.

HFS+ for Windows 10 - еще один проприетарный драйвер производства Paragon Software. Несмотря на название, работает во всех версиях Windows начиная с XP. Предоставляет полный доступ к файловым системам HFS+/HFSX на дисках с любой разметкой (MBR/GPT).

WinBtrfs - ранняя разработка драйвера Btrfs для Windows. Уже в версии 0.6 поддерживает доступ к томам Btrfs как на чтение, так и на запись. Умеет обрабатывать жесткие и символьные ссылки, поддерживает альтернативные потоки данных, ACL, два вида компрессии и режим асинхронного чтения/записи. Пока WinBtrfs не умеет использовать mkfs.btrfs, btrfs-balance и другие утилиты для обслуживания этой файловой системы.

Возможности и ограничения файловых систем: сводная таблица

Фай-ло-вая сис-те-ма Мак-си-маль-ный раз-мер тома Пре-дель-ный раз-мер одного файла Дли-на собст-вен-ного имени файла Дли-на пол-но-го имени файла (вклю-чая путь от корня) Пре-дель-ное число файлов и/или ката-ло-гов Точ-ность ука-за-ния даты файла/ката-ло-га Права дос-ту-па Жёсткие ссылки Сим-воль-ные ссылки Мгно-вен-ные снимки (snap-shots) Сжа-тие дан-ных в фоне Шиф-ро-ва-ние дан-ных в фоне Деду-пли-ка-ция дан-ных
FAT16 2 ГБ секторами по 512 байт или 4 ГБ кластерами по 64 КБ 2 ГБ 255 байт с LFN
FAT32 8 ТБ секторами по 2 КБ 4 ГБ (2^32 — 1 байт) 255 байт с LFN до 32 подкаталогов с CDS 65460 10 мс (создание) / 2 с (изменение) нет нет нет нет нет нет нет
exFAT ≈ 128 ПБ (2^32-1 кластеров по 2^25-1 байт) теоретически / 512 ТБ из-за сторонних ограничений 16 ЭБ (2^64 — 1 байт) 2796202 в каталоге 10 мс ACL нет нет нет нет нет нет
NTFS 256 ТБ кластерами по 64 КБ или 16 ТБ кластерами по 4 КБ 16 ТБ (Win 7) / 256 ТБ (Win 8) 255 символов Unicode (UTF-16) 32760 символов Unicode, но не более 255 символов в каждом элементе 2^32-1 100 нс ACL да да да да да да
HFS+ 8 ЭБ (2^63 байт) 8 ЭБ 255 символов Unicode (UTF-16) отдельно не ограничивается 2^32-1 1 с Unix, ACL да да нет да да нет
APFS 8 ЭБ (2^63 байт) 8 ЭБ 255 символов Unicode (UTF-16) отдельно не ограничивается 2^63 1 нс Unix, ACL да да да да да да
Ext3 32 ТБ (теоретически) / 16 ТБ кластерами по 4 КБ (из-за ограничений утилит e2fs programs) 2 ТБ (теоретически) / 16 ГБ у старых программ 255 символов Unicode (UTF-16) отдельно не ограничивается 1 с Unix, ACL да да нет нет нет нет
Ext4 1 ЭБ (теоретически) / 16 ТБ кластерами по 4 КБ (из-за ограничений утилит e2fs programs) 16 ТБ 255 символов Unicode (UTF-16) отдельно не ограничивается 4 млрд. 1 нс POSIX да да нет нет да нет
F2FS 16 ТБ 3,94 ТБ 255 байт отдельно не ограничивается 1 нс POSIX, ACL да да нет нет да нет
BTRFS 16 ЭБ (2^64 — 1 байт) 16 ЭБ 255 символов ASCII 2^17 байт 1 нс POSIX, ACL да да да да да да

Материал к обзорной лекции № 33

для студентов специальности

«Программное обеспечение информационных технологий»

доцента кафедры ИВТ, к.т.н. Ливак Е.Н.

СИСТЕМЫ УПРАВЛЕНИЯ ФАЙЛАМИ

Основные понятия, факты

Назначение. Особенности файловыхсистем FAT , VFAT , FAT 32, HPFS , NTFS . Файловые системы ОС UNIX (s5, ufs), ОС Linux Ext2FS.Системные области диска (раздела, тома). Принципы размещения файлов и хранения информации о расположении файлов. Организация каталогов. Ограничение доступа к файлам и каталогам.

Навыки и умения

Использование знаний о структуре файловой системы для защиты и восстановления компьютерной информации (файлов и каталогов). Организация разграничения доступа к файлам.

Файловые системы. Структура файловой системы

Данные на диске хранятся в виде файлов. Файл - это именованная часть диска.

Для управления файлами предназначены системы управления файлами.

Возможность иметь дело с данными, хранящимися в файлах, на логическом уровне предоставляет файловая система. Именно файловая система определяет способ организации данных на каком-либо носителе данных.

Таким образом, файловая система - это набор спецификаций и соответствующее им программное обеспечение, которые отвечают за создание, уничтожение, организацию, чтение, запись, модификацию и перемещение файловой информации, а также за управление доступом к файлам и за управлением ресурсами, которые используются файлами.

Система управления файлами является основной подсистемой в абсолютном большинстве современных ОС.

С помощью системы управления файлами

· связываются по данным все системные обрабатывающие программы;

· решаются проблемы централизованного распределения дискового пространства и управления данными;

· предоставляются возможности пользователю по выполнению операций над файлами (создание и т.п.), по обмену данными между файлами и различными устройствами, по защите файлов от несанкционированного доступа.

В некоторых ОС может быть несколько систем управления файлами, что обеспечивает им возможность работать с несколькими файловыми системами.

Постараемся различать файловую систему и систему управления файлами.

Термин «файловая система» определяет принципы доступа к данным, организованным в файлы.

Термин «система управления файлами» относится к конкретной реализации файловой системы, т.е. это комплекс программных модулей, обеспечивающих работу с файлами в конкретной ОС.

Итак, для работы с файлами, организованными в соответствии с некоторой файловой системой, для каждой ОС должна быть разработана соответствующая система управления файлами. Эта система УФ будет работать только в той ОС, для которой она создана.

Для семейства ОС Windows в основном используются файловые системы: VFAT , FAT 32, NTFS .

Рассмотрим структуру этих файловых систем.

В файловой системе FAT дисковое пространство любого логического диска делится на две области:

· системную область и

· область данных.

Системная область создается и инициализируется при форматировании, а впоследствии обновляется при манипулировании файловой структурой.

Системная область состоит из следующих компонентов:

· загрузочного сектора, содержащего загрузочную запись (boot record );

· зарезервированных секторов (их может и не быть);

· таблицыразмещенияфайлов (FAT, File Allocation Table);

· корневогокаталога (Root directory, ROOT).

Эти компоненты расположены на диске друг за другом.

Область данных содержит файлы и каталоги, подчиненные корневому.

Область данных разбивают на так называемые кластеры. Кластер - это один или несколько смежных секторов области данных. С другой стороны, кластер - это минимальная адресуемая единица дисковой памяти, выделяемая файлу. Т.е. файл или каталог занимает целое число кластеров. Для создания и записи на диск нового файла операционная системаотводит для него несколько свободных кластеров диска. Эти кластеры не обязательно должны следовать друг за другом. Для каждого файла хранится список всех номеров кластеров, которые предоставлены данному файлу.

Разбиение области данных на кластеры вместо использования секторов позволяет:

· уменьшить размер таблицы FAT ;

· уменьшить фрагментацию файлов;

· сокращается длина цепочек файла Þ ускоряется доступ к файлу.

Однако слишком большой размер кластера ведет к неэффективному использованию области данных, особенно в случае большого количества маленьких файлов (ведь на каждый файл теряется в среднем полкластера).

В современных файловых системах (FAT 32, HPFS , NTFS ) эта проблема решается за счет ограничения размера кластера (максимум 4 Кбайта)

Картой области данных являетсяТ аблица размещения файлов (File Allocation Table - FAT) Каждый элемент таблицы FAT (12, 16 или 32 бит) соответствует одному кластеру диска и характеризует его состояние: свободен, занят или является сбойным кластером (bad cluster).

· Если кластер распределен какому-либо файлу (т.е., занят), то соответствующий элемент FAT содержит номер следующего кластера файла;

· последний кластер файла отмечается числом в диапазоне FF8h - FFFh (FFF8h - FFFFh);

· если кластер является свободным, он содержит нулевое значение 000h (0000h);

· кластер, непригодный для использования (сбойный), отмечается числом FF7h (FFF7h).

Таким образом, в таблице FAT кластеры, принадлежащие одному файлу, связываются в цепочки.

Таблица размещения файлов хранится сразу после загрузочной записи логического диска, ее точное расположение описано в специальном поле в загрузочном секторе.

Она хранится в двух идентичных экземплярах, которые следуют друг за другом. При разрушении первой копии таблицы используется вторая.

В связи с тем, что FAT используется очень интенсивно при доступе к диску, она обычно загружается в ОП (в буфера ввода/вывода или кэш) и остается там настолько долго, насколько это возможно.

Основной недостаток FAT - медленная работа с файлами. При создании файла работает правило - выделяется первый свободный кластер. Это ведет к фрагментации диска и сложным цепочкам файлов. Отсюда следует замедление работы с файлами.

Для просмотра и редактирования таблицы FAT можно использовать утилиту Disk Editor .

Подробнаяинформация о самом файле хранится в другой структуре, которая называется корневым каталогом. Каждый логический диск имеет свой корневой каталог (ROOT, англ. - корень).

Корневой каталог описываетфайлы и другие каталоги. Элементом каталога является дескриптор (описатель) файла.

Дескриптор каждого файла и каталога включает его

· имя

· расширение

· дату создания или последней модификации

· время создания или последней модификации

· атрибуты (архивный, атрибут каталога, атрибут тома, системный, скрытый, только для чтения)

· длину файла (для каталога - 0)

· зарезервированное поле, которое не используется

· номер первого кластера в цепочке кластеров, отведенных файлу или каталогу; получив этот номер, операционная система, обращаясь к таблице FAT, узнает и все остальные номера кластеров файла.

Итак, пользователь запускает файл на выполнение. Операционная система ищет файл с нужным именем, просматривая описания файлов в текущем каталоге. Когда найден требуемый элемент в текущем каталоге, операционная система считывает номер первого кластера данного файла, а затем по таблице FAT определяет остальные номера кластеров. Данные из этих кластеров считываются в оперативную память, объединяясь в один непрерывный участок. Операционная система передает управление файлу, и программа начинает работать.

Для просмотра и редактирования корневого каталога ROOT можно также использовать утилиту Disk Editor .

Файловая система VFAT

Файловая система VFAT (виртуальная FAT ) впервые появилась в Windows for Workgroups 3.11 и была предназначена для файлового ввода/вывода в защищенном режиме.

Используется эта файловая система в Windows 95.

Поддерживается она также и в Windows NT 4.

VFAT - это «родная» 32-разрядная файловая система Windows 95. Ее контролирует драйвер VFAT .VXD .

VFAT использует 32-разрядный код для всех файловых операций, может использовать 32-разрядные драйверы защищенного режима.

НО, элементы таблицы размещения файлов остаются 12- или 16-разрядными, поэтому на диске используется та же структура данных (FAT ). Т.е. формат таблицы VFAT такой же , как и формат FAT .

VFAT наряду с именами «8.3» поддерживает длинные имена файлов . (Часто говорят, что VFAT - это FAT с поддержкой длинных имен).

Основной недостаток VFAT - большие потери на кластеризацию при больших размерах логического диска и ограничения на сам размер логического диска.

Файловая система FAT 32

Это новая реализация идеи использования таблицы FAT .

FAT 32 - это полностью самостоятельная 32-разрядная файловая система.

Впервые использовалась в Windows OSR 2 (OEM Service Release 2).

В настоящее время FAT 32 используется в Windows 98 и Windows ME .

Она содержит многочисленные усовершенствования и дополнения по сравнению с предыдущими реализациями FAT .

1. Намного эффективнее расходует дисковое пространство за счет того, что использует кластеры меньшего размера (4 Кб) - подсчитано, что экономится до 15%.

2. Имеет расширенную загрузочную запись, которая позволяет создавать копии критических структур данных Þ повышает устойчивость диска к нарушениям структур диска

3. Может использовать резервную копию FAT вместо стандартной.

4. Может перемещать корневой каталог, другими словами, корневой каталог может находиться в произвольном месте Þ снимает ограничение на размер корневого каталога (512 элементов, т.к. ROOT должен был занимать один кластер).

5. Усовершенствована структура корневого каталога

Появились дополнительные поля, например, время создания, дата создания, дата последнего доступа, контрольная сумма

По-прежнему для длинного имени файла используется несколько дескрипторов.

Файловая система HPFS

HPFS (High Performance File System ) - вы­сокопроизводительная файловая система.

HPFS впервые появилась в OS/2 1.2 и LAN Manager .

Перечислим основные особенности HPFS.

· Главное отличие - базовые принципы размещения файлов на диске и принципы хранения информации о местоположении файлов. Благодаря этим принципам HPFS имеет высокую производительность и отказоустойчивость, является надежной файловой системой.

· Дисковое пространство в HPFS выделяется не кластерами (как в FAT ), а блоками. В современной реализации размер блока взят равным одному сектору, но в принципе он мог бы быть и иного размера. (По сути дела, блок - это и есть кластер, только кластер всегда равен одному сектору). Размещениефайлов в таких небольших блоках позволяет более эффектив­но использовать пространство диска , так как непроизводительные потери сво­бодного места составляют в среднем всего (полсектора) 256 байт на каждый файл. Вспомним, что чем больше размер кластера, тем больше места на диске расходуется напрас­но.

· Система HPFS стремится расположить файл в смежных блоках, или, если такой возможности нет, разместить его на диске таким образом, чтобы экстенты (фрагменты) файла физически были как можно ближе друг к другу. Такой подход существенно уменьшает время позиционирова­ния головок записи/чтения жесткого диска и время ожидания (задержка между установкой головки чтения/записи на нужную дорожку). Напомним, что в FAT файлу просто выделяется первый свободный кластер.

Экстенты (extent ) - фрагменты файла, располагающиеся в смежных секторах диска. Файл имеет по крайней мере один экстент, если он не фрагментирован, а в противномслучае - несколько экстентов.

· Используется метод сбалансированных двоичных деревьев для хранения и поиска ин­формации о местонахождении файлов (каталоги хранятся в центре диска, кроме того, предусмотрена автоматиче­ская сортировка каталогов), что существенно повышает производительность HPFS (в сравнении с FAT ).

· В HPFS предусмотрены специальные расширенные атрибуты файлов, позволяющие управлять доступом к файлам и каталогам .

Расширенные атрибуты (extended attributes , EAs ) позволяют хранить дополнительную информацию о файле. Например, каждому файлу может быть сопоставлено его уникаль­ное графическое изображение (значок), описание файла, коммента­рий, сведения о владельце файла и т. д.

C труктура раздела HPFS


В начале раздела с установленной HPFS расположено три управляющих блока:

· загрузочный блок (boot block ),

· дополнительный блок (super block ) и

· запас­ной (резервный) блок (spare block ).

Они занимают 18 секторов.

Все остальное дис­ковое пространство в HPFS разбито на части из смежных секторов - полосы (band - полоса, лента). Каждая полоса занимает на диске 8 Мбайт.

Каждая полоса и имеет свою собственную битовую карту распределе­ния секторов .Битовая карта показывает, какие секторы данной полосы за­няты, а какие - свободны. Каждому сектору полосы данных соответствует один бит в ее битовой карте. Если бит = 1, то сектор занят, если 0 - свободен.

Битовые карты двух полос располагаются на диске рядом, так же располагаются и сами полосы. То есть последовательность полос и карт выглядит как на рис.

Сравним с FAT . Там на весь диск только одна «битовая карта» (таблица FAT ). И для работы с ней приходится перемещать головки чте­ния/записи в среднем через половину диска.

Именно для того, чтобы сократить время позиционирования головок чтения/записи жесткого диска, в HPFS диск разбит на полосы.

Рассмотрим управляющие блоки .

Загрузочный блок (boot block )

Содержит имя тома, его серийный номер, блок парамет­ров BIOS и программу начальной загрузки.

Программа начальной загрузки на­ходит файл OS 2 LDR , считывает его в память и передает управление этой про­грамме загрузки ОС, которая, в свою очередь, загружает с диска в память ядро OS/2 - OS 2 KRNL . И уже OS 2 KRIML с помощью сведений из файла CONFIG . SYS за­гружает в память все остальные необходимые программные модули и блоки дан­ных.

Загрузочный блок располагается в секторах с 0 по 15.

Супер Блок (super block )

Содержит

· указатель на список битовых карт (bitmap block list ). В этом списке перечислены все блоки на диске, в которых расположены би­товые карты, используемые для обнаружения свободных секторов;

· указатель на список дефектных блоков (bad block list ). Когда система обнаруживает поврежденный блок, он вносится в этот список и для хранения информации больше не используется;

· указатель на группу каталогов (directory band ),

· указатель на файловый узел (F -node ) корневого каталога,

· дату последней проверки раздела програм­мой CHKDSK ;

· информацию о размере полосы (в текущей реализации HPFS - 8 Мбайт).

Super block размещается в 16 секторе.

Резервный блок (spare block)

Содержит

· указатель на карту аварийного замеще­ния (hotfix map или hotfix -areas );

· указатель на список свободных запасных бло­ков (directory emergency free block list );

· ряд системных флагов и дескрипторов.

Этот блок разме­щается в 17 секторе диска.

Резервный блок обеспечивает высокую отказоустойчивость файловой системы HPFS и позволяет восстанавливать поврежденные данные на диске.

Принцип размещения файлов

Экстенты (extent ) - фрагменты файла, располагающиеся в смежных секторах диска. Файл имеет по крайней мере один экстент, если он не фрагментирован, а в противномслучае - несколько экстентов.

Для сокращения времени позиционирования головок чтения/записи жесткого диска система HPFS стремится

1)расположить файл в смежных блоках;

2)если такой возможности нет, то разместить экстенты фрагментированного файла как можно ближе друг к другу,

Для этого HPFS использует статистику, а также старается условно резервировать хотя бы 4 килобайта места в конце файлов, которые растут.

Принципы хранения информации о расположении файлов

Каждый файл и каталог диска имеет свой файловый узел F-Node . Это структура, в которой содержится информация о располо­жении файла и о его расширенных атрибутах.

Каждый F-Node занимает один сектор и всегда располагается поблизости от своего файла или каталога (обычно - непосредственно перед файлом или ка­талогом). Объект F-Node содержит

· длину,

· первые 15 символов имени файла,

· специальную служебную информацию,

· статистику по доступу к файлу,

· расши­ренные атрибуты файла,

· список прав доступа (или только часть этого списка, если он очень большой); если расширен­ные атрибуты слишком велики для файлового узла, то в него записывается ука­затель на них.

· ассоциативную информацию о расположении и подчине­нии файла и т. д.

Если файл непрерывен, то его размещение на диске описывается двумя 32-битными числами. Первое число представляет собой указатель на первый блок файла, а второе - длину экстента (число следующих друг за другом бло­ков, принадлежащих файлу).

Если файл фрагментирован, то размещение его экстентов описывается в файловом узле дополнительными парами 32-битных чисел.

В файловом узле можно разместить информацию максимум о восьми экстентах файла. Если файл имеет больше экстентов, то в его файловый узел записывается указатель на блок размещения (allocation block ), который может содержать до 40 указателей на экстенты или, по аналогии с блоком дерева каталогов, на другие блоки размещения.

Структура и размещение каталогов

Для хранения каталогов используется полоса, находящаяся в центре диска .

Эта полоса называетсяdirectory band .

Если она полностью заполнена, HPFS начинает располагать каталоги файлов в других полосах.

Расположение этой информаци­онной структуры в середине диска значительно сокращает среднее время пози­ционирования головок чтения/записи.

Однако существенно больший (по сравнению с размещением Directory Band в середине логического диска) вклад в производительность HPFS дает использо­вание метода сбалансированных двоичных деревьев для хранения и поиска ин­формации о местонахождении файлов.

Вспомним, что в файловой системе FAT каталог имеет линейную структуру, специальным образом не упорядоченную, поэтому при поиске файла требуется последовательно просматривать его с само­го начала.

В HPFS структура каталога представляет собой сбалансированное де­рево с записями, расположенными в алфавитном порядке.

Каждая за­пись, входящая в состав дерева, содержит

· атрибуты файла,

· указатель на соответствующий файловый узел,

· информацию о времени и дате создания фай­ла, времени и дате последнего обновления и обращения,

· длине данных, содержа­щих расширенные атрибуты,

· счетчик обращений к файлу,

· длине имени файла

· само имя,

· и другую информацию.

Файловая система HPFS при поиске файла в каталоге просматривает только не­обходимые ветви двоичного дерева. Такой метод во много раз эффек­тивнее, чем последовательное чтение всех записей в каталоге, что имеет место в системе FAT .

Размер каждого из блоков, в терминах которых выделяются каталоги в текущей реализации HPFS, равен 2 Кбайт. Размер записи, описывающей файл, зависит от размера имени файла. Если имя занимает 13 байтов (для формата 8.3), то блок из 2 Кбайт вмещает до 40 описателей файлов. Блоки связаны друг с другом по­средством списка.

Проблемы

При переименовании файлов может возникнуть так называемая перебаланси­ровка дерева. Создание файла, переименование или стирание может приводить к каскадированию блоков каталогов . Фактически, переименование может потер­петь неудачу из-за недостатка дискового пространства, даже если файл непо­средственно в размерах не увеличился. Во избежание этого «бедствия» HPFS поддерживает небольшой пул свободных блоков, которые могут использовать­ся при «аварии». Эта операция может потребовать выделения дополнительных блоков на заполненном диске. Указатель на этот пул свободных блоков сохраня­ется в SpareBlock ,

Принципы размещения файлов и каталогов на диске в HPFS :

· информация о местоположении файлов рассредоточена по всему дис­ку, при этом записи каждого конкретного файла размещаются (по возможно­сти) в смежных секторах и поблизости от данных об их местоположении;

· каталоги размещаются в середине дискового пространства;

· каталоги хранятся в виде бинарного сбалансированного дерева с записями, расположенными в алфавитном порядке.

Надежность хранения данных в HPFS

Любая файловая система должна обладать средствами исправления ошибок, возникаю­щих при записи информации на диск. Система HPFS для этого использует меха­низм аварийного замещения ( hotfix ).

Если файловая система HPFS сталкивается с проблемой в процессе записи дан­ных на диск, она выводит на экран соответствующее сообщение об ошибке. Затем HPFS сохраняет информацию, которая должна была быть записана в дефектный сектор, в одном из запасных секторов, заранее зарезервированных на этот слу­чай. Список свободных запасных блоков хранится в резервном блоке HPFS. При обнаружении ошибки во время записи данных в нормальный блок HPFS выби­рает один из свободных запасных блоков и сохраняет эти данные в нем. Затем файловая система обновляет карту аварийного замещения в резервном блоке.

Эта карта представляет собой просто пары двойных слов, каждое из которых является 32-битным номером сектора.

Первый номер указывает на дефектный сек­тор, а второй - на тот сектор среди имеющихся запасных секторов, который был выбран для его замены.

После замены дефектного сектора запасным карта ава­рийного замещения записывается на диск, и на экране появляется всплывающее окно, информирующее пользователя о произошедшей ошибке записи на диск. Каждый раз, когда система выполняет запись или чтение сектора диска, она просматривает карту аварийного замещения и подменяет все номера дефектных секторов номерами запасных секторов с соответствующими данными.

Следует заметить, что это преобразование номеров существенно не влияет на производительность системы, так как оно выполняется только при физическом обращении к диску, но не при чтении данных из дискового кэша.

Файловая система NTFS

Файловая система NTFS (New Technology File System) содержит ряд значительных усовер­шенствований и изменений, существенно отличающих ее от других файловых систем.

Заметим, что за редкими исключениями, с разделами NTFS можно работать напрямую только из Windows NT , хотя и имеются для ряда ОС соответствующие реализа­ции систем управления файлами для чтения файлов из томов NTFS.

Однако полноценных реализаций для работы с NTFS вне системы Windows NT пока нет.

NTFS не поддерживается в широко распространенных ОС Windows 98 и Windows Millennium Edition .

Основные особенности NT FS

· работа на дисках большого объема происходит эффективно (намного эффективнее, чем в FAT );

· имеются средства для ограничения доступа к файлам и катало­гам Þ раз­делы NTFS обеспечивают локальную безопасность как файлов, так и каталогов;

· введен механизм транзакций, при котором осуществляется журналирование файловых операций Þ существенное увеличение надежности;

· сняты многие ограничения на максимальное количество дисковых секто­ров и/или кластеров;

· имя файла в NTFS, в отличие от файловых систем FAT и HPFS , может содержать любые символы, включая полный набор национальных алфавитов, так как данные представлены в Unicode - 16-битном представлении, которое дает 65535 разных символов. Максимальная длина имени файла в NTFS - 255 символов.

· система NTFS также об­ладает встроенными средствами сжатия, которые можно применять к отдельным файлам, целым каталогам и даже томам (и впоследствии отменять или назначать их по своему усмотрению).

Структура тома с файловой системой NTFS

Раздел NTFS называется томом (volume ). Максимально возможные размеры тома (и размеры файла) составляют 16 Эбайт (экзабайт 2**64).

Как и другие системы, NTFS делит дисковое пространство тома на кластеры - блоки данных, адресуемые как единицы данных. NTFS поддержива­ет размеры кластеров от 512 байт до 64 Кбайт; стандартом же считается кластер размером 2 или 4 Кбайт.

Все дисковое пространство в NTFS делится на две неравные части.


Первые 12 % диска отводятся под так называемую MFT-зону - пространство, которое может занимать, увеличиваясь в размере, главный служебный метафайл MFT .

Запись каких-либо данных в эту область невозможна. MFT-зона всегда держится пустой - это делается для того, чтобы MFT-файл по возможности не фрагментировался при своем росте.

Остальные 88 % тома представляют собой обычное пространство для хранения файлов.

MFT (master file table - общая таблица файлов) по сути - это каталог всех остальных файлов диска, в том числе и себя самого. Он предназначен для определения расположения файлов.

MFT состоит из записей фиксированного размера. Размер записи MFT (минимум 1 Кб и максимум 4 Кб) оп­ределяется во время форматирования тома.

Каждая запись соответ­ствует какому-либо файлу.

Первые 16 записей но­сят служебный характер и недоступны операционной системе - они называются метафайлами, причем самый первый метафайл - сам MFT.

Эти первые 16 эле­ментов MFT - единственная часть диска, имеющая строго фиксированное поло­жение. Копия этих же 16 записей хранится в середине тома для надежности.

Остальные части MFT-файла могут располагаться, как и любой другой файл, в произвольных местах диска.

Метафайлы носят служебный характер - каждый из них отвечает за какой-либо аспект работы системы. Метафайлы нахо­дятся в корневом каталоге NTFS-тома. Все они начинаются с символа имени «$», хотя получить какую-либо информацию о них стандартными средствами сложно. В табл. приведены основные метафайлы и их назначение.

Имя метафайла

Назначение метафайла

$MFT

Сам Master File Table

$MFTmirr

Копия первых 16 записей MFT, размещенная посередине тома

$LogFile

Файл поддержки операций журналирования

$Volume

Служебная информация - метка тома, версия файловой системы и т. д.

$AttrDef

Список стандартных атрибутов файлов на томе

Корневой каталог

$Bitmap

Карта свободного места тома

$Boot

Загрузочный сектор (если раздел загрузочный)

$Quota

Файл, в котором записаны права пользователей на использование дискового пространства (этот файл начал работать лишь в Windows 2000 с системой NTFS 5.0)

$Upcase

Файл - таблица соответствия заглавных и прописных букв в именах файлов. В NTFS имена файлов записываются в Unicode (что составляет 65 тысяч различных символов) и искать большие и малые эквиваленты в данном случае - нетривиальная задача

В соответствующей записи MFT хранится вся информация о файле:

· имя файла,

· размер;

· атрибуты файла;

· положение на диске отдельных фрагментов и т. д.

Если для информации не хватает одной записи MFT, то используется несколько записей, причем не обязательно идущих подряд.

Если файл имеет не очень большой размер, то данные файла хранятся прямо в MFT, в оставшемся от основных данных месте в пределах одной записи MFT.

Файл в томе с NTFS идентифицируется так называемой файловой ссылкой (File Reference ), которая представляется как 64-разрядное число.

· номера файла, который соответствует номеру записи в MFT,

· и номера последовательности. Этот номер увеличивается всякий раз, когда данный номер в MFT используется повторно, что позволяет файловой системе NTFS выполнять внутренние проверки целостности.

Каждый файл в NTFS представлен с помощью потоков (streams ), то есть у него нет как таковых «просто данных», а есть потоки.

Один из потоков - это и есть данные файла.

Большинство атрибутов файла - это тоже потоки.

Таким об­разом, получается, что базовая сущность у файла только одна - номер в MFT, а все остальное, включая и его потоки, - опционально.

Данный подход может эффективно использоваться - например, файлу можно «прилепить» еще один поток, записав в него любые данные.

Стандартные атрибуты для файлов и каталогов в томе NTFS имеют фиксиро­ванные имена и коды типа.

Каталог в NTFS представляет собой специальный файл, хранящий ссылки на другие файлы и каталоги.

Файл каталога разделен на блоки, каждый из которых содержит

· имя файла,

· базовые атрибуты и

Корневой каталог диска ничем не отличается от обычных каталогов, кроме специальной ссылки на него из начала метафайла MFT.

Внутренняя структура каталога представляет собой бинарное дерево, как в HPFS.

Количество файлов в корневом и некорневом каталогах не ограни­чено.

Файловая система NTFS поддерживает объектную модель безопасности NT : NTFS рассматривает каталоги и файлы как разнотипные объекты и ведет отдельные (хотя и перекры­вающиеся) списки прав доступа для каждого типа.

NTFS обеспечивает безопасность на уровне файлов; это означает, что права доступа к томам, каталогам и файлам могут зависеть от учетной записи пользователя и тех групп, к которым он принадлежит. Каждый раз, когда пользователь обращается к объекту файловой системы, его права доступа проверяются по списку разреше­ний данного объекта. Если пользователь обладает достаточным уровнем прав, его запрос удовлетворяется; в противном случае запрос отклоняется. Эта модель безопасности применяется как при локальной регистрации пользователей на компьютерах с NT , так и при удаленных сетевых запросах.

Система NTFS также обладает определенными средствами самовосстановления. NTFS поддерживает различные механизмы проверки целостности системы, вклю­чая ведение журналов транзакций, позволяющих воспроизвести файловые опе­рации записи по специальному системному журналу.

При журналировании файловых операций система управления файлами фиксирует в специальном служебном файле происходящие изменения. В начале операции, связанной с изменением файловой структуры, делается соответствующая пометка. Если во время операций над файлами происходит какой-нибудь сбой, то упомянутая отметка о начале операции остается указанной как незавершенная. При выполнении процедуры проверки целостности файловой системы после перезагрузки машины эти незавершенные опера­ции будут отменены и файлы будут приведены к исходному состоянию. Если же опера­ция изменения данных в файлах завершается нормальным образом, то в этом самом служебном файле поддержки журналирования операция отмечается как завершенная.

Основной недостаток файловой системы NTFS - служебные данные занимают много места (например, каждый элемент каталога занимает 2 Кбайт) - для малых раз­делов служебные данные могут занимать до 25% объема носителя.

Þ система NTFS не может использоваться для форматирования флоппи-дисков. Не стоит пользоваться ею для форматирования разделов объемом менее 100 Мбайт.

Файловая система ОС UNIX

В мире UNIX существует несколько разных видов файловых систем со своей структурой внешней памяти. Наиболее известны традиционная файловая система UNIX System V (s5) и файловая система семейства UNIX BSD (ufs).

Рассмотрим s 5.

Файл в системе UNIX представляет собой множество символов с произвольным доступом.

Файл имеет такую структуру, которую налагает на него пользователь.

Файловая система Unix, это иерархическая, многопользовательская файловая система.

Файловая система имеет древовидную структуру. Вершинами (промежуточными узлами) дерева являются каталоги со ссылками на другие каталоги или файлы. Листья дерева соответствуют файлам или пустым каталогам.

Замечание. На самом деле файловая система Unix не является древообразной. Дело в том, что в системе имеется возможность нарушения иерархии в виде дерева, так как имеется возможность ассоциировать несколько имен с одним и тем же содержимым файла .

Структура диска

Диск разделен на блоки. Размер блока данных определяется при форматировании файловой системы командой mkfs и может быть установлен 512, 1024, 2048, 4096 или 8192 байтов.

Считаем по 512 байт (размер сектора).

Дисковое пространство делится на следующие области (см. рис.):

· загрузочный блок;

· управляющий суперблок;

· массив i -узлов;

· область для хранения содержимого (данных) файлов;

· совокупность свободных блоков (связанных в список);

Блокначальной загрузки

Суперблок

i - узел

. . .

i - узел

Замечание. Для файловой системы UFS - все это для группы цилиндров повторяется (кроме Boot -блока) + выделена специальная область для описания группы цилиндров

Блок начальной загрузки

Блок размещен в блоке №0. (Вспомним, что размещение этого блока в нулевом блоке системного устройства определяется аппаратурой, так как аппаратной загрузчик всегда обращается к нулевому блоку системного устройства. Это последний компонент файловой системы, который зависит от аппаратуры.)

Boot -блок содержит программу раскрутки, которая служит для первоначального запуска ОС UNIX . В файловых системах s 5 реально используется boot -блок только корневой файловой системы. В дополнительных файловых системах эта область присутствует, но не используется.

Суперблок

Он содержит оперативную информацию о состоянии файловой системы, а также данные о параметрах настройки файловой системы.

В частности суперблок содержит следующую информацию

· количество i -узлов (индексных дескрипторов);

· размер раздела???;

· список свободных блоков;

· список свободных i -узлов;

· и другое.

Обратим внимание! Свободное пространство на диске образует связанный список свободных блоков . Этот список хранится в суперблоке.

Элементами списка являются массивы из 50 элементов(если блок = 512 байт, то элемент = 16 бит):

· в элементах массива №№1-48 записаны номера свободных блоков пространства блоков файлов с 2 до 49.

· в №0 элементе содержится указатель на продолжение списка, а

· в последнем элементе (№49) содержится указатель на свободный элемент в массиве.

Если какому-то процессу для расширения файла требуется свободный блок, то система по указателю (на свободный элемент) выбирает элемент массива, и блок с №, хранящимся в данном элементе, предоставляется файлу. Если происходит сокращение файла, то высвободившиеся номера добавляются в массив свободных блоков и корректируется указатель на свободный элемент.

Так как размер массива - 50 элементов, то возможны две критические ситуации:

1. Когда мы освобождаем блоки файлов, а они не могут поместиться в этом массиве. В этом случае из файловой системы выбирается один свободный блок и заполненный полностью массив свободных блоков копируется в этот блок, после этого значение указателя на свободный элемент обнуляется, а в нулевой элемент массива, который находится в суперблоке, записывается номер блока, который система выбрали для копирования содержимого массива . В этот моментсоздается новый элемент списка свободных блоков (каждый по 50 элементов).

2. Когда содержимое элементов массива свободных блоков исчерпалось (в этом случае нулевой элемент массива равен нулю) Если этот элемент нулю не равен, то это означает, что существует продолжение массива. Это продолжение считывается в копию суперблока в оперативной памяти.

Список свободных i -узлов . Это буфер, состоящий из 100 элементов. В нем находится информация о 100 номерах i -узлов, которые свободны в данный момент.

Суперблок всегда находится в ОЗУ

Þ все операции (освобождение и занятие блоков и i -узлов происходят в ОЗУ Þ минимизация обменов с диском.

Но! Если содержимое суперблока не будет записано на диск и выключено питание, то возникнут проблемы (несоответствие реального состояния файловой системы и содержимого суперблока). Но это уже требование к надежности аппаратуры системы.

Замечание . В файловых системах UFS для повышения устойчивости поддерживается несколько копий суперблока (по одной копии на группу цилиндров)

Область индексных дескрипторов

Это массив описаний файлов, называемых i -узлами (i - node ) .(64-х байтные?)

Каждый индексный описатель (i -узел) файла содержит:

· Тип файла (файл/каталог/специальный файл/fifo/socket)

· Атрибуты (права доступа) - 10

· Идентификатор владельца файла

· Идентификатор группы-владельца файла

· Время создания файла

· Время модификации файла

· Время последнего доступа к файлу

· Длина файла

· Количество ссылок к данному i -узлу из различных каталогов

· Адреса блоков файла

! Обратите внимание . Здесь нет имени файла

Рассмотрим подробнее как организована адресация блоков , в которых размещен файл. Итак, в поле с адресами находятся номера первых 10 блоков файла.

Если файл превышает десять блоков, то начинает работать следующий механизм: 11-й элемент поля содержит номер блока, в котором размещены 128(256) ссылок на блоки данного файла. В том случае, если файл еще больше - то используется 12й элемент поля- он содержит номер блока, в котором содержится 128(256) номеров блоков, где каждый блок содержит 128(256) номеров блоков файловой системы. А если файл еще больше, то используется 13 элемент - где глубина вложенности списка увеличена еще на единицу.

Таким образом мы можем получить файл размером (10+128+128 2 +128 3)*512.

Это можно представить в следующем виде:

Адрес 1-го блока файла

Адрес 2-го блока файла

Адрес 10-го блока файла

Адрес блока косвенной адресации (блока с 256 адресами блоков)

Адрес блока 2-й косвенной адресации (блока с 256 адресами блоков с адресами)

Адрес блока 3-й косвенной адресации (блока с адресами блоков с адресами блоков с адресами)

Защита файла

Теперь обратим внимание на идентификаторы владельца и группы и биты защиты.

В ОС Unix используется трехуровневая иерархия пользователей :

Первый уровень - все пользователи.

Второй уровень - группы пользователей. (Все пользователи подразделены на группы.

Третий уровень - конкретный пользователь (Группы состоят из реальных пользователей). В связи с этой трехуровневой организацией пользователей каждый файл обладает тремя атрибутами:

1) Владелец файла. Этот атрибут связан с одним конкретным пользователем, который автоматически назначается системой владельцем файла. Владельцем можно стать по умолчанию, создав файл, а также есть команда, которая позволяет менять владельца файла.

2) Защита доступа к файлу. Доступ к каждому файлу ограничивается по трем категориям:

· права владельца (что может делать владелец с этим файлом, в общем случае - не обязательно все, что угодно);

· права группы, которой принадлежит владелец файла. Владелец сюда не включается (например, файл может быть закрыт на чтение для владельца, а все остальные члены группы могут свободно читать из этого файла;

· все остальные пользователи системы;

По этим трем категориям регламентируются три действия: чтение из файла, запись в файл и исполнение файла (в мнемонике системы R,W,X, соответственно). В каждом файле по этим трем категориям определено - какой пользователь может читать, какой писать, а кто может запускать его в качестве процесса.

Организация каталогов

Каталог с точки зрения ОС - это обычный файл, в котором размещены данные о всех файлах, которые принадлежат каталогу.

Элемент каталога состоит из двух полей:

1)номер i -узла (порядковый номер в массиве i -узлов)и

2)имя файла:

Каждый каталог содержит два специальных имени: ‘.’ - сам каталог; ‘..’ - родительский каталог.

(Для корневого каталога родитель ссылается на него же самого.)

В общем случае, в каталоге могут неоднократно встречаться записи, ссылающиеся на один и тот же i -узел, но в каталоге не могут встречаться записи с одинаковыми именами. То есть с содержимым файла может быть связано произвольное количество имен. Это называется связыванием . Элемент каталога, относящийся к одному файлу называется связью .

Файлы существуют независимо от элементов каталогов, а связи в каталогах указывают действительно на физические файлы. Файл «исчезает» когда удаляется последняя связь, указывающая на него.

Итак, чтобы получить доступ к файлу по имени, операционная система

1. находит это имя в каталоге, содержащем файл,

2. получает номер i -узла файла,

3. по номеру находит i- узел в области i-узлов,

4. из i-узла получает адреса блоков, в которых расположены данные файла,

5. по адресам блоков считывает блоки из области данных.

Структура дискового раздела в EXT 2 FS

Все пространство раздела делится на блоки. Блок может иметь размер от 1, 2 или 4 килобайта. Блок является адресуемой единицей дискового пространства.

Блоки, в свою область объединяются в группы блоков. Группы блоков в файловой системе и блоки внутри группы нумеруются последовательно, начиная с 1. Первый блок на диске имеет номер 1 и принадлежит группе с номером 1. Общее число блоков на диске (в разделе диска) является делителем объема диска, выраженного в секторах. А число групп блоков не обязано делить число блоков, потому что последняя группа блоков может быть не полной. Начало каждой группы блоков имеет адрес, который может быть получен как ((номер группы - 1)* (число блоков в группе)).

Каждая группа блоков имеет одинаковое строение. Ее структура представлена в таблице.

Первый элемент этой структуры (суперблок) - одинаков для всех групп, а все остальные - индивидуальны для каждой группы. Суперблок хранится в первом блоке каждой группы блоков (за исключением группы 1, в которой в первом блоке расположена загрузочная запись). Суперблок является начальной точкой файловой системы. Он имеет размер 1024 байта и всегда располагается по смещению 1024 байта от начала файловой системы. Наличие нескольких копий суперблока объясняется чрезвычайной важностью этого элемента файловой системы. Дубликаты суперблока используются при восстановлении файловой системы после сбоев.

Информация, хранимая в суперблоке, используется для организации доступа к остальным данным на диске. В суперблоке определяется размер файловой системы, максимальное число файлов в разделе, объем свободного пространства и содержится информация о том, где искать незанятые участки. При запуске ОС суперблок считывается в память и все изменения файловой системы вначале находят отображение в копии суперблока, находящейся в ОП, и записываются на диск только периодически. Это позволяет повысить производительность системы, так как многие пользователи и процессы постоянно обновляют файлы. С другой стороны, при выключении системы суперблок обязательно должен быть записан на диск, что не позволяет выключать компьютер простым выключением питания. В противном случае, при следующей загрузке информация, записанная в суперблоке, окажется не соответствующей реальному состоянию файловой системы.

Вслед за суперблоком расположено описание группы блоков (Group Descriptors). Это описание содержит:

Адрес блока, содержащего битовую карту блоков (block bitmap) данной группы;

Адрес блока, содержащего битовую карту индексных дескрипторов (inode bitmap) данной группы;

Адрес блока, содержащего таблицу индексных дескрипторов (inode table) данной группы;

Счетчик числа свободных блоков в данной группе;

Число свободных индексных дескрипторов в данной группе;

Число индексных дескрипторов в данной группе, которые являются каталогами

и другие данные.

Информация, которая хранится в описании группы, используется для того, чтобы найти битовые карты блоков и индексных дескрипторов, а также таблицу индексных дескрипторов.

Файловая система Ext 2 характеризуется:

  • иерархической структурой,
  • согласованной обработкой массивов данных,
  • динамическим расширением файлов,
  • защитой информации в файлах,
  • трактовкой периферийных устройств (таких как терминалы и ленточные устройства) как файлов.

Внутреннее представление файлов

Каждый файл в системе Ext 2 имеет уникальный индекс. Индекс содержит информацию, необходимую любому процессу для того, чтобы обратиться к файлу. Процессы обращаются к файлам, используя четко определенный набор системных вызовов и идентифицируя файл строкой символов, выступающих в качестве составного имени файла. Каждое составное имя однозначно определяет файл, благодаря чему ядро системы преобразует это имя в индекс файла.Индекс включает в себя таблицу адресов расположения информации файла на диске. Так как каждый блок на диске адресуется по своему номеру, в этой таблице хранится совокупность номеров дисковых блоков. В целях повышения гибкости ядро присоединяет к файлу по одному блоку, позволяя информации файла быть разбросанной по всей файловой системе. Но такая схема размещения усложняет задачу поиска данных. Таблица адресов содержит список номеров блоков, содержащих принадлежащую файлу информацию.

Индексные дескрипторы файлов

Каждому файлу на диске соответствует индексный дескриптор файла, который идентифицируется своим порядковым номером - индексом файла. Это означает, что число файлов, которые могут быть созданы в файловой системе, ограничено числом индексных дескрипторов, которое либо явно задается при создании файловой системы, либо вычисляется исходя из физического объема дискового раздела. Индексные дескpиптоpы существуют на диске в статической форме и ядро считывает их в память прежде, чем начать с ними работать.

Индексный дескриптор файла содержит следующую информацию:

- Тип и права доступа к данному файлу.

Идентификатор владельца файла (Owner Uid).

Размер файла в байтах.

Время последнего обращения к файлу (Access time).

Время создания файла.

Время последней модификации файла.

Время удаления файла.

Идентификатор группы (GID).

Счетчик числа связей (Links count ).

Число блоков, занимаемых файлом.

Флагифайла (File flags)

Зарезервировано для ОС

Указатели на блоки, в которых записаны данные файла (пример прямой и косвенной адресации на рис.1)

Версия файла (для NFS)

ACL файла

ACL каталога

Адресфрагмента (Fragment address)

Номерфрагмента (Fragment number)

Размер фрагмента (Fragment size )

Каталоги

Каталоги являются файлами.

Ядро хранит данные в каталоге так же, как оно это делает в файле обычного типа, используя индексную структуру и блоки с уровнями прямой и косвенной адресации. Процессы могут читать данные из каталогов таким же образом, как они читают обычные файлы, однако, исключительное право записи в каталог резервируется ядром, благодаря чему обеспечивается правильность структуры каталога.).

Когда какой-либо пpоцесс использует путь к файлу, ядpо ищет в каталогах соответствующий номеp индексного дескpиптоpа. После того, как имя файла было пpеобpазовано в номеp индексного дескpиптоpа, этот дескpиптоp помещается в память и затем используется в последующих запpосах.

Дополнительные возможности EXT2 FS

В дополнение к стандаpтным возможностям Unix, EXT2fs пpедоставляет некотоpые дополнительные возможности, обычно не поддеpживаемые файловыми системами Unix.

Файловые атpибуты позволяют изменять pеакцию ядpа пpи pаботе с набоpами файлов. Можно установить атpибуты на файл или каталог. Во втоpом случае, файлы, создаваемые в этом каталоге, наследуют эти атpибуты.

Во вpемя монтиpования системы могут быть установлены некотоpые особенности, связанные с файловыми атpибутами. Опция mount позволяет администpатоpу выбpать особенности создания файлов. В файловой системе с особенностями BSD, файлы создаются с тем же идентификатоpом гpуппы, как и у pодительского каталога. Особенности System V несколько сложнее. Если у каталога бит setgid установен, то создаваемые файлы наседуют идентификатоp гpуппы этого каталога, а подкаталоги наследуют идентификатоp гpуппы и бит setgid. В пpотивном случае, файлы и каталоги создаются с основным идентификатоpом гpуппы вызывающего пpоцесса.

В системе EXT2fs может использоваться синхpонная модификация данных, подобная системе BSD. Опция mount позволяет администpатоpу указывать чтобы все данные (индексные дескpиптоpы, блоки битов, косвенные блоки и блоки каталогов) записывались на диск синхpонно пpи их модификации. Это может быть использовано для достижения высокой потности записи инфоpмации, но также пpиводит к ухудшению пpоизводительности. В действительности, эта функция обычно не используется, так как кpоме ухудшения пpоизводительности, это может пpивести к потеpе данных пользователей, котоpые не помечаются пpи пpовеpке файловой системы.

EXT2fs позволяет пpи создании файловой системы выбpать pазмеp логического блока. Он может быть pазмеpом 1024, 2048 или 4096 байт. Использование блоков большого объема пpиводит к ускоpению опеpаций ввода/вывода (так как уменьшается количество запpосов к диску), и, следовательно, к меньшему пеpемещению головок. С дpугой стоpоны, использование блоков большого объема пpиводит к потеpе дискового пpостpанства. Обычно последний блок файла используется не полностью для хpанения инфоpмации, поэтому с увеличением объема блока, повышается объем теpяемого дискового пpостpанства.

EXT2fs позволяет использовать ускоpенные символические ссылки. Пpи пpименении таких ссылок, блоки данных файловой системы не используются. Имя файла назначения хpанится не в блоке данных, а в самом индексном дескpиптоpе. Такая стpуктуpа позволяет сохpанить дисковое пpостpанство и ускоpить обpаботку символических ссылок. Конечно, пpостpанство, заpезеpвиpованное под дескpиптоp, огpаничено, поэтому не каждая ссылка может быть пpедставлена как ускоpенная. Максимальная длина имени файла в ускоpенной ссылке pавна 60 символам. В ближайшем будующем планиpуется pасшиpить эту схему для файлов небольшого объема.

EXT2fs следит за состоянием файловой системы. Ядpо использует отдельное поле в супеpблоке для индикации состояния файловой системы. Если файловая система смонтиpована в pежиме read/write, то ее состояние устанавливается как "Not Clean". Если же она демонтиpована или смонтиpована заново в pежиме read-only, то ее состояние устанавливается в "Clean". Во вpемя загpузки системы и пpовеpке состояния файловой системы, эта инфоpмация используется для опpеделения необходимости пpовеpки файловой системы. Ядpо также помещает в это поле некотоpые ошибки. Пpи опpеделении ядpом несоответствия, файловая система помечается как "Erroneous". Пpогpамма пpовеpки файловой системы тестиpует эту инфоpмацию для пpовеpки системы, даже если ее состояние является в действительности "Clean".

Длительное игноpиpование тестиpования файловой системы иногда может пpивести к некотоpым тpудностям, поэтому EXT2fs включает в себя два метода для pегуляpной пpовеpки системы. В супеpблоке содеpжится счетчик монтиpования системы. Этот счетчик увеличивается каждый pаз, когда система монтиpуется в pежиме read/write. Если его значение достигает максимального (оно также хpанится в супеpблоке), то пpогpамма тестиpования файловой системы запускает ее пpовеpку, даже если ее состояние является "Clean". Последнее вpемя пpовеpки и максимальный интеpвал между пpовеpками также хpанится в супеpблоке. Когда же достигается максимальный интеpвал между пpовеpками, то состояние файловой системы игноpиpуется и запускается ее пpовеpка.

Оптимизация пpоизводительности

Система EXT2fs содеpжит много функций, оптимизиpующих ее пpоизводительность, что ведет к повышению скоpости обмена инфоpмацией пpи чтении и записи файлов.

EXT2fs активно использует дисковый буфеp. Когда блок должен быть считан, ядpо выдает запpос опеpации ввода/вывода на несколько pядом pасположенных блоков. Таким обpазом, ядpо пытается удостовеpиться, что следующий блок, котоpый должен быть считан, уже загpужен в дисковый буфеp. Подобные опеpации обычно пpоизводятся пpи последовательном считывании файлов.

Система EXT2fs также содеpжит большое количество оптимизаций pазмещения инфоpмации. Гpуппы блоков используются для объединения соответствующих индексных дескpиптоpов и блоков данных. Ядpо всегда пытается pазместить блоки данных одного файла в одной гpуппе, так же как и его дескpиптоp. Это пpедназначено для уменьшения пеpемещения головок пpивода пpи считывании дескpиптоpа и соответствующих ему блоков данных.

Пpи записи данных в файл, EXT2fs заpанее pазмещает до 8 смежных блоков пpи pазмещении нового блока. Такой метод позволяет достичь высокой пpоизводительности пpи сильной загpуженности системы. Это также позволяет pазмещать смежные блоки для файлов, что укоpяет их последующее чтение.

FAT32 : старая система Windows, применяемая на небольших съемных носителях. Используется на небольших устройствах хранения или для совместимости с цифровыми камерами, игровыми консолями, телевизионными приставками и другими устройствами, поддерживающими только FAT32.

NTFS : современные версии Windows начиная с Win XP — используют ее для своих разделов. Внешние носители форматируются посредством FAT32, большие внешние жесткие диски емкостью 1 ТБ форматируются посредством NTFS.

HFS+ : на компьютерах Macintosh применяют HFS + для своих внутренних разделов, а также для форматирования внешнего носителя с HFS+. Мас считывает и записывает файлы в FAT32, но по умолчанию считывает только NTFS. Для записи в формате NTFS Macintosh понадобится стороннее ПО.

Ext2 / Ext3 / Ext4 : встречаются в Линукс. Ext2 — это более старая ФС, в ней отсутствуют важные функции, такие как ведение журнала — если питание отключается или компьютер перезагружается при записи на диск ext2, данные могут быть потеряны. Ext3 добавляет функции надежности за счет скорости. Ext4 оказывается более современной, быстрой и стандартной системой для большинства дистрибутивов Линукс и работает быстрее. Win и Mac не поддерживают Ext2 / Ext3 / Ext4 — понадобится дополнительный инструмент для доступа к файлам. По этой причине часто идеально форматировать разделы Linux, как ext4 и оставлять съемные устройства, отформатированные посредством FAT32 или NTFS, если необходима совместимость с другими ОС. Linux считывает и записывает как в FAT32, так и в NTFS.

Btrfs : создана для Linux, находится в разработке. На данный момент она не является стандартным для большинства дистрибутивов Линукс, но вскоре Btrfs займет лидирующую позицию. Цель состоит в том, чтобы предоставить дополнительные функции, которые позволяют Линукс масштабироваться для большего объема хранилища.

Swap : в Linux «swap» не оказывается ФС. Раздел, отформатированный как «swap», используется только как пространство подкачки ОС — похоже на файл страницы в Windows, но для этого требуется выделенный раздел.

Файловые системы для внешних USB-носителей

Все внешние накопители также имеют свои файловые системы:

  • FAT — ФС разработана корпорацией Microsoft, является самой широко распространённой на картах памяти и usb-флешках. Используется в бытовых приборах, таких как: видеокамера, телевизор, DVD-плеер, музыкальный центр. Ограничением является то, что она имеет максимальный объем файла 4 Гб.
  • exFAT — создана Microsoft, расширенная версия FAT, используется для flash-устройств. Упразднены ограничения на размер файлов, объем разделов. Недостаток: не поддерживается большинством бытовых устройств и ранними версиями Win XP.
  • FFS2 — создана в 1990 году и запатентована компанией Майкрософт. Продолжила систему FFS1, одна из ранних ФС для flash-карт.
  • JFFS — лог-структурированная Linux система для NOR-usb-носителей.
  • JFFS2 — используется в устройствах flash-памяти. Последователь JFFS. Поддерживает устройства Nand, улучшена работоспособность. Трудности при работе с Flash-накопителями больших объемов.
  • LogFS — в стадии разработки, используется для Linux, заменяет JFFS2. Улучшена для быстрой компоновки флеш-накопителей большого объёма.
  • YAFFS — разработана для NAND-flash, возможно использование в NOR-флеш-дисках.

Операционная система Windows может быть установлена только на файловую систему NTFS, поэтому обычно у пользователей не возникает вопросов какую ФС лучше использовать. Но Linux очень сильно отличается, здесь в ядро системы встроены и могут использоваться несколько файловых систем, каждая из которых оптимизирована для решения определенных задач и лучше подходит именно для них.

Новые пользователи не всегда понимают что такое раздел жесткого диска и файловая система. В нашей сегодняшней статье мы попытаемся разобраться во всех этих понятиях, рассмотрим что такое файловая система, а также рассмотрим самые распространенные типы файловых систем Linux. Но начнем с самых основ, разделов диска.

Обычно в компьютере используется один жесткий диск, но для удобства все доступное пространство разделяется на разделы, в Windows они известны как диски, в Linux же их принято называть разделами. Чтобы операционная система знала сколько разделов есть на диске и их физические границы используется таблица разделов. Она может быть двух типов - . В этой статье мы не будем рассматривать ее подробно. Скажу только, что там находится метка раздела, его порядковый номер и адрес начала и конца на жестком диске.

Что такое файловая система?

Дальше больше. Чтобы на каждом разделе можно было работать с файлами и каталогами, необходима файловая система. Мы могли бы писать просто содержимое файлов на диск, но нужно еще где-то хранить данные о папках, имена файлов, их размер, адрес на жестком диске, атрибуты доступа. Всем этим занимается файловая система.

От файловой системы зависит очень многое, скорость работы с файлами, скорость записи и даже размер файлов. Также от стабильности файловой системы будет зависеть сохранность ваших файлов.

Типы файловых систем Linux

Файловые системы в Linux используются не только для работы с файлами на диске, но и для хранения данных в оперативной памяти или доступа к конфигурации ядра во время работы системы. Дальше мы рассмотрим типы файловых систем Linux, включая специальные файловые системы.

Основные файловые системы

Каждый дистрибутив Linux позволяет использовать одну из этих файловых систем, каждая из них имеет свои преимущества и недостатки:

  • Ext2;
  • Ext3;
  • Ext4;
  • ReiserFS;
  • Btrfs;

Все они включены в ядро и могут использоваться в качестве корневой файловой системы. Давайте рассмотрим каждую из них более подробно.

Ext2, Ext3, Ext4 или Extended Filesystem - это стандартная файловая система для Linux. Она была разработана еще для Minix. Она самая стабильная из всех существующих, кодовая база изменяется очень редко и эта файловая система содержит больше всего функций. Версия ext2 была разработана уже именно для Linux и получила много улучшений.

В 2001 году вышла ext3, которая добавила еще больше стабильности благодаря использованию журналирования. В 2006 была выпущена версия ext4, которая используется во всех дистрибутивах Linux до сегодняшнего дня. В ней было внесено много улучшений, в том числе увеличен максимальный размер раздела до одного экзабайта.

JFS или Journaled File System была разработана в IBM для AIX UNIX и использовалась в качестве альтернативы для файловых систем ext. Сейчас она используется там, где необходима высокая стабильность и минимальное потребление ресурсов. При разработке файловой системы ставилась цель создать максимально эффективную файловую систему для многопроцессорных компьютеров. Также как и ext, это журналируемая файловая система, но в журнале хранятся только метаданные, что может привести к использованию старых версий файлов после сбоев.

ReiserFS - была разработана намного позже, в качестве альтернативы ext3 с улучшенной производительностью и расширенными возможностями. Она была разработана под руководством Ганса Райзера и поддерживает только Linux. Из особенностей можно отметить динамический размер блока, что позволяет упаковывать несколько небольших файлов в один блок, что предотвращает фрагментацию и улучшает работу с небольшими файлами.

Еще одно преимущество - в возможности изменять размеры разделов на лету. Но минус в некоторой нестабильности и риске потери данных при отключении энергии. Раньше ReiserFS применялась по умолчанию в SUSE Linux, но сейчас разработчики перешли на Btrfs.

XFS - это высокопроизводительная файловая система, разработанная в Silicon Graphics для собственной операционной системы еще в 2001 году. Она изначально была рассчитана на файлы большого размера, и поддерживала диски до 2 Терабайт. Из преимуществ файловой системы можно отметить высокую скорость работы с большими файлами, отложенное выделение места, увеличение разделов на лету и незначительный размер служебной информации.

XFS - журналируемая файловая система, однако в отличие от ext, в журнал записываются только изменения метаданных. Она используется по умолчанию в дистрибутивах на основе Red Hat. Из недостатков - это невозможность уменьшения размера, сложность восстановления данных и риск потери файлов при записи, если будет неожиданное отключение питания, поскольку большинство данных находится в памяти.

Btrfs или B-Tree File System - это совершенно новая файловая система, которая сосредоточена на отказоустойчивости, легкости администрирования и восстановления данных. Файловая система объединяет в себе очень много новых интересных возможностей, таких как размещение на нескольких разделах, поддержка подтомов, изменение размера не лету, создание мгновенных снимков, а также высокая производительность. Но многими пользователями считается нестабильной. Тем не менее, она уже используется как файловая система по умолчанию в OpenSUSE и SUSE Linux.

Другие файловые системы, такие как NTFS, FAT, HFS могут использоваться в Linux, но корневая файловая система linux на них не устанавливается, поскольку они для этого не предназначены.

Специальные файловые системы

Ядро Linux использует специальные файловые системы, чтобы предоставить доступ пользователю и программам к своим настройкам и информации. Наиболее часто вы будете сталкиваться с такими вариантами:

  • tmpfs;
  • procfs;
  • sysfs;

Файловая система tmpfs позволяет размещать любые пользовательские файлы в оперативной памяти компьютера. Достаточно создать блочное устройство нужного размера, затем подключить его к папке, и вы можете писать файлы в оперативную память.

procfs - по умолчанию смонтирована в папку proc и содержит всю информацию о запущенных в системе процессах, а также самом ядре.

sysfs - с помощью этой файловой системы вы можете задавать различные настройки ядра во время выполнения.

Виртуальные файловые системы

Не все файловые системы нужны в ядре. Существуют некоторые решения, которые можно реализовать и в пространстве пользователя. Разработчики ядра создали модуль FUSE (filesystem in userspace), который позволяет создавать файловые системы в пространстве пользователя. К виртуальным файловым системам можно отнести ФС для шифрования и сетевые файловые системы.

EncFS - файловая система, которая шифрует все файлы и сохраняет их в зашифрованном виде в нужную директорию. Получить доступ к расшифрованным данным можно только примонтировав файловую систему.

Aufs (AnotherUnionFS) - позволяет объединять несколько файловых систем (папок) в одну общую.

NFS (Network Filesystem) - позволяет примонтировать файловую систему удаленного компьютера по сети.

Таких файловых систем очень много, и мы не будем перечислять все их в данной статье. Есть даже очень экзотические варианты, обратите внимание на проект PIfs.

Выводы

В этой статье мы рассмотрели типы файловых систем Linux. Как видите, здесь все намного запутаннее чем в Windows. Но на самом деле все просто. Если вам нужна максимально стабильная файловая система linux - то лучшим решением будет ext4, хотите новых технологий - btrfs, для маленьких файлов - raiser4, для больших - XFS. А какие файловые системы linux предпочитаете вы? Напишите в комментариях!

На завершение видео о том, что такое файловая система и ее структура в linux: