Закон ома напряжение прямо пропорционально. История закона Ома. Метод контурных токов

Если I - сила тока, U - напряжение, a R - сопротивление, то

I =

Этот закон носит название закона Ома , по имени ученого, его открывшего.

Часто бывает нужно регулировать силу тока в цепи. Для этого используются специальные приборы, называемые реостатами. В реостате проволока, сделанная из материала с большим удельным сопротивлением, намотана на керамический цилиндр. Над обмоткой расположен металлический стержень, по которому может перемещаться контакт. Контакт прижимается к обмотке; при его перемещении меняется длина обмотки, по которой проходит ток, и соответственно сопротивление реостата. Реостат и его условное обозначение на схемах показаны на рисунке 17.

Закон ома для полной цепи

Пусть за время t через поперечное сечение проводника пройдет электрический заряд q. Тогда работу сторонних сил при перемещении заряда можно записать так:

Аст = q.

Согласно определению силы тока

q = It.

Поэтому

Аст = It .

При совершении этой работы на внутреннем и внешнем участках цепи, сопротивления которых R и r , выделяется некоторое количество теплоты Q . По закону Джоуля-Ленца оно равно:

Q = I Rt + I r.

Согласно закону сохранения энергии

A = Q.

Следовательно,

= IR + I r.

Произведение силы тока на сопротивление участка цепи часто называют падением напряжения на этом участке. Таким образом, ЭДС равна сумме падений напряжений на внутреннем и внешнем участках замкнутой цепи. Обычно это выражение записывают так:

I = /( R + r ).

Эту зависимость опытным путем получил Г. Ом, и называется она законом Ома для полной цепи и читается так:

Сила тока в полной цепи прямо пропорциональна эдс источника тока и обратно пропорциональна полному сопротивлению цепи.

При разомкнутой цепи ЭДС равна напряжению на зажимах источника и, следовательно, может быть измерена вольтметром.

f 214. Ядерные силы

В состав ядра входят протоны, испытывающие взаимное кулоновское отталкивание, и нейтроны. Устойчивость ядер, не разлетающихся под действием кулоновских сил отталкивания, свидетельствует о том, что в ядрах действуют специфические силы притяжения, называемые ядерными силами. Ядерные силы не могут быть обычными силами кулоновского взаимодействия. Кулоновское взаимодействие между протоном и протоном сводится к отталкиванию, а между нейтроном и протоном, нейтроном и нейтроном отсутствует. Электрические силы зависят от заряда и малы по сравнению с ядерными. Гравитационные силы также не могут удерживать частицы в ядре, так как они слишком малы. Например, гравитационное взаимодействие двух протонов в 1036 раз меньше их кулоновского взаимодействия. В роли ядерных сил не могут выступать и силы магнитного взаимодействия. Расчеты " показывают, что энергия" магнитного взаимодействия, например протона и нейтрона в ядре атома дейтерия |Н, составляет около 0,1 МэВ, что гораздо меньше энергии связи нуклонов в ядре (2,2 МэВ).

Все это говорит о том, что ядерные силы не могут быть сведены ни к электрическим, ни к магнитным, ни к гравитационным, а представляют собой специфический вид сил.

Взаимодействие между нуклонами в ядре является примером сильных взаимодействий - взаимодействий через ядерные силы.

В 1826 году немецкий ученый Георг Ом совершил открытие и описал
эмпирический закон о соотношении между собой таких показателей как сила тока, напряжение и особенности проводника в цепи. Впоследствии, по имени ученого он стал называться закон Ома.

В дальнейшем выяснилось, что эти особенности не что иное, как сопротивление проводника, возникающее в процессе его контакта с электричеством. Это внешнее сопротивление (R). Есть также внутреннее сопротивление (r), характерное для источника тока.

Закон Ома для участка цепи

Согласно обобщенному закону Ома для некоторого участка цепи, сила тока на участке цепи прямо пропорциональна напряжению на концах участка и обратно пропорциональна сопротивлению.

Где U – напряжение концов участка,I– сила тока, R– сопротивление проводника.

Беря во внимание вышеприведенную формулу, есть возможность найти неизвестные значенияUиR, сделав несложные математические операции.

Данные выше формулы справедливы лишь когда сеть испытывает на себе одно сопротивление.

Закон Ома для замкнутой цепи

Сила тока полной цепи равна ЭДС, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Замкнутая сеть имеет одновременно сопротивления внутреннего и внешнего характера. Поэтому формулы отношения будут уже другими.

Где E – электродвижущая сила (ЭДС), R- внешнее сопротивление источника, r-внутреннее сопротивление источника.

Закон Ома для неоднородного участка цепи

Замкнутая электрическая сеть содержит участки линейного и нелинейного характера. Участки, не имеющие источника тока и не зависящие от стороннего воздействия являются линейными, а участки, содержащие источник – нелинейными.

Закон Ома для участка сети однородного характера был изложен выше. Закон на нелинейном участке будет иметь следующий вид:

I = U/ R = f1 – f2 + E/ R

Где f1 – f2 – разница потенциалов на конечных точках рассматриваемого участка сети

R – общее сопротивление нелинейного участка цепи

ЭДС нелинейного участка цепи бывает больше нуля или меньше. Если направление движения тока, идущего из источника с движением тока в электрической сети, совпадают, будет преобладать движение зарядов положительного характера и ЭДС будет положительная. В случае же совпадения направлений, в сети будет увеличено движение отрицательных зарядов, создаваемых ЭДС.

Закон Ома для переменного тока

При имеющейся в сети емкости или инертности, необходимо учитывать при проводимых вычислениях, что они выдают свое сопротивление, от действия которого ток приобретает переменный характер.

Закон Ома для переменного тока выглядит так:

где Z – сопротивление по всей длине электрической сети. Его еще называют импеданс. Импеданс составляют сопротивления активного и реактивного характера.

Закон Ома не является основным научным законом, а лишь эмпирическим отношением, причем в некоторых условиях оно может не соблюдаться:

  • Когда сеть обладает высокой частотой, электромагнитное поле меняется с большой скоростью, и при расчетах необходимо учитывать инертность носителей заряда;
  • В условиях низкой температуры с веществами, которые обладают сверхпроводимостью;
  • Когда проводник сильно нагревается проходящим напряжением, отношение тока к напряжению становится переменным и может не соответствовать общему закону;
  • При нахождении под высоким напряжением проводника или диэлектрика;
  • В светодиодных лампах;
  • В полупроводниках и полупроводниковых приборах.

В свою очередь элементы и проводники, соблюдающие закон Ома, называются омическими.

Закон Ома может дать объяснение некоторым явлениям природы. Например, когда мы видим птиц, сидящих на высоковольтных проводах, у нас возникает вопрос – почему на них не действует электрический ток? Объясняется это довольно просто. Птицы, сидя на проводах, представляют собой своеобразные проводники. Большая часть напряжения приходится на промежутки между птицами, а та доля, что приходится на сами «проводники» не представляет для них опасности.

Но это правило работает лишь при единичном соприкосновении. Если птица заденет клювом или крылом провод или телеграфный столб, она неминуемо погибнет от огромного количества напряжения, которое несут в себе эти участки. Такие случаи происходят повсеместно. Поэтому в целях безопасности в некоторых населенных пунктах установлены специальные приспособления, защищающие птиц от опасного напряжения. На таких насестах птицы находятся в полной безопасности.

Закон Ома также широко применятся на практике. Электричество смертельно опасно для человека при одном лишь касании к оголенному проводу. Но в некоторых случаях сопротивление человеческого тела может быть разным.

Так, например, сухая и неповрежденная кожа обладает большим сопротивлением к воздействию электричества нежели рана или кожа, покрытая потом. В следствие переутомления, нервного напряжения и опьянения, даже при небольшом напряжении тока человек может получить сильный удар током.

В среднем, сопротивление тела человека – 700 Ом, значит, для человека является безопасным напряжение в 35 В. Работая с большим напряжением, специалисты используют .

Если увеличить в несколько раз напряжение, действующее в электрической цепи, то ток в этой цепи увеличится во столько же раз. А если увеличить в несколько раз сопротивление цепи, то ток во столько же раз уменьшится. Подобно этому водяной поток в трубе тем больше, чем сильнее давление и чем меньше сопротивление, которое оказывает труба движению воды.

Чтобы выразить закон Ома математически наиболее просто, считают, что сопротивление проводника, в котором при напряжении 1 В проходит ток 1 А, равно 1 Ом.

Ток в амперах можно всегда определить, если разделить напряжение в вольтах на сопротивление в омах. Поэтому закон Ома для участка цепи записывается следующей формулой:

Расчеты, выполняемые с помощью закона Ома для участка цепи, будут правильны в том случае, когда напряжение выражено в вольтах, сопротивление в омах и ток в амперах. Если используются кратные единицы измерений этих величин (например, миллиампер, милливольт, мегаом и т. д.), то их следует перевести соответственно в амперы, вольты и омы. Чтобы подчеркнуть это, иногда формулу закона Ома для участка цепи пишут так:

ампер = вольт/ом

Можно также рассчитывать ток в миллиамперах и микроамперах, при этом напряжение должно быть выражено в вольтах, а сопротивление - в килоомах и мегаомах соответственно.

Закон Ома справедлив для любого участка цепи. Если требуется определить ток в данном участке цепи, то необходимо напряжение, действующее на этом участке (рис. 1), разделить на сопротивление именно этого участка.

Рис 1. Применение закона Ома для участка цепи

Приведем пример расчета тока по закону Ома . Пусть требуется определить ток в лампе, имеющей сопротивление 2,5 Ом, если напряжение, приложенное к лампе, составляет 5 В. Разделив 5 В на 2,5 Ом, получим значение тока, равное 2 А. Во втором примере определим ток, который будет протекать под действием напряжения 500 В в цепи, сопротивление которой равно 0,5 МОм. Для этого выразим сопротивление в омах. Разделив 500 В на 500 000 Ом, найдем значение тока в цепи, которое равно 0,001 А или 1 мА.



Часто, зная ток и сопротивление, определяют с помощью закона Ома напряжение. Запишем формулу для определения напряжения

Из этой формулы видно, что напряжение на концах данного участка цепи прямо пропорционально току и сопротивлению . Смысл этой зависимости понять нетрудно. Если не изменять сопротивление участка цепи, то увеличить ток можно только путем увеличения напряжения. Значит при постоянном сопротивлении большему току соответствует большее напряжение. Если же надо получить один и тот же ток при различных сопротивлениях, то при большем сопротивлении должно быть соответственно большее напряжение.

Напряжение на участке цепи часто называют падением напряжения . Это нередко приводит к недоразумению. Многие думают, что падение напряжения есть какое-то потерянное ненужное напряжение. В действительности же понятия напряжение и падение напряжения равнозначны.

Расчет напряжения с помощью закона Ома можно показать на следующем примере. Пусть через участок цепи с сопротивлением 10 кОм проходит ток 5 мА и требуется определить напряжение на этом участке.

Умножив I = 0,005 А на R -10000 Ом, получим напряжение,равное 50 В. Можно было бы получить тот же результат, умножив 5 мА на 10 кОм: U = 50 В

В электронных устройствах ток обычно выражается в миллиамперах, а сопротивление - в килоомах. Поэтому удобно в расчетах по закону Ома применять именно эти единицы измерений.

По закону Ома рассчитывается также сопротивление, если известно напряжение и ток. Формула для этого случая пишется следующим образом: R = U/I.

Сопротивление всегда представляет собой отношение напряжения к току. Если напряжение увеличить или уменьшить в несколько раз, то ток увеличится или уменьшится в такое же число раз. Отношение напряжения к току, равное сопротивлению, остается неизменным.

Не следует понимать формулу для определения сопротивления в том смысле, что сопротивление данного проводника зависит оттока и напряжения. Известно, что оно зависит от длины, площади сечения и материала проводника. По внешнему виду формула для определения сопротивления напоминает формулу для расчета тока, но между ними имеется принципиальная разница. Ток в данном участке цепи действительно зависит от напряжения и сопротивления и изменяется при их изменении. А сопротивление данного участка цепи является величиной постоянной, не зависящей от изменения напряжения и тока, но равной отношению этих величин.

Когда один и тот же ток проходит в двух участках цепи, а напряжения, приложенные к ним, различны, то ясно, что участок, к которому приложено большее напряжение, имеет соответственно большее сопротивление. А если под действием одного и того же напряжения в двух разных участках цепи проходит различный ток, то меньший ток всегда будет на том участке, который имеет большее сопротивление. Все это вытекает из основной формулировки закона Ома для участка цепи, т. е. из того, что ток тем больше, чем больше напряжение и чем меньше сопротивление.

Расчет сопротивления с помощью закона Ома для участка цепи покажем на следующем примере. Пусть требуется найти сопротивление участка, через который при напряжении 40 В проходит ток 50 мА. Выразив ток в амперах, получим I = 0,05 А. Разделим 40 на 0,05 и найдем, что сопротивление составляет 800 Ом.

Закон Ома можно наглядно представить в виде так называемой вольт-амперной характеристики . Как известно, прямая пропорциональная зависимость между двумя величинами представляет собой прямую линию, проходящую через начало координат. Такую зависимость принято называть линейной .

Измерение сопротивления проводника: R =U/I→ 1 Ом = 1 В/1 А.

Электрическое сопротивление (R) - свойство электри­ческой цепи (проводника) противодействовать протекающему по ней электрическому току, измеряемое при постоянном напряжении на его концах отношением этого напряжения к силе тока.

Природа электрического сопротивления на основе электронных представ­лений о строении вещества: "потеря" упорядоченного движения свобод­ными заряженными частицами в проводнике при их взаимодействии с ионами кристаллической решетки.

Зависимость электрического сопротивления проводника от его длины (реостаты), поперечного сечения и материала. Удельное сопротивление материала проводника: .

Вопрос : Почему сопротивление проводника зависит от его длины, площа­ди поперечного сечения и материала?

Для провода = , где - удельная электрическая проводимость.

- (закон Ома в дифференциальной форме) - устанавливает связь между величинами для каждой точки проводника.

Демонстрация зависимости сопротивления проводника от его температуры (малый накал). Температурный коэффициент сопротивления.

Границы применимости закона Ома.

IV. Задачи:

  1. Определите электрический заряд, прошедший через попереч­ное сечение проводника сопротивлением 3 Ом при равномерном нарастании напряжения на концах проводника от 2 В до 4 В в течение 20 с.

2. Определить площадь поперечного сечения и длину проводник из алюминия, если его сопротивление 0,1 Ом, а масса 54 г.

Вопросы:

1. Объясните, позему сопротивление проволоки зависит от его материала, длины и площади поперечного сечения.

2. Как отрезать кусок провода сопротивлением 5 Ом?

3. Длину медной проволоки вытягиванием увеличили вдвое. Как измени­лось ее сопротивление?

4. Почему сопротивление кожи человека зависит от ее состояния, площади контакта, приложенного напряжения, длительности протекания тока?

5. Изменится ли сопротивление вольфрамового волоска электрической лампы, рассчитанной на 120 В, если присоединить ее к источнику тока с напряжением 4 В?

6. Высота плотины – электрическое напряжение, расход воды из отверстия у основании плотины – сила тока. Удачна ли эта аналогия?


V . § 54 Упр. 10 № 3

1. Предложите конструкцию и рассчитайте параметры реостата (материал провода, длина, площадь поперечного сечения), сопротивление которого можно плавно изменять от 0 до 100 Ом при максимальной силе электри­ческого тока до 2 А.

2. Как изменяется сопротивление проволоки при ее растяжении? Попробуйте установить эту зависимость в пределах упругих деформаций. Предложите конструкцию и рассчитайте параметры прибора (тензодатчика), пред­назначенного для измерения механического напряжения.

Дополнительная информация: Тензорезистивный эффект – изменение сопротивления материала при деформации (недавно созданные материалы из алюминия и кремния изменяют свое сопротивление при ударе почти в 900 раз).

3. Предложите конструкцию и опишите электрическую схему прибора для установления зависимости удельного сопротивления проводника от температуры (можно с реостатом).

4. Измерьте удельное сопротивление воды при комнатной температуре и при температуре кипения.

"Непосредственный опыт всегда очевиден, и из него в кратчайшее время можно извлечь пользу".

ЛАБОРАТОРНАЯ РАБОТА № 3 "ИЗМЕРЕНИЕ УДЕЛЬНОГО СОПРОТИВЛЕНИЯ МАТЕРИАЛА ПРОВОДНИКА"

ЦЕЛЬ РАБОТЫ: Научить учеников с заданной точностью измерять удельное сопротивление материала проводника.

ТИП УРОКА: лабораторная работа.

ОБОРУДОВАНИЕ: Источник тока, амперметр и вольтметр лабораторные, ключ, реостат, линейка ученическая, проводник на колодке, соединительные провода, штангенциркуль (микрометр).

ПЛАН УРОКА: 1. Вступительная часть 1-2 мин

2. Вводный инструктаж 5 мин

3. Выполнение работы 30 мин

4. Задание на дом 2-3 мин

II . Схема лабораторной установки на доске. Как измерить сопротивление проводника; площадь поперечного сечения проволоки; длину проводника?

Относительная и абсолютная погрешность при измерении удельного сопротивления:

III . Выполнение работы.

Понятие напряжения.

Напряжение - это физическая величина, характеризующая электрическое поле, которое создает ток.
Электри́ческое напряже́ние
между точками A и B электрической цепи или электрического поля - физическая величина, значение которой равно отношению работы эффективного электрического поля (включающего сторонние поля), совершаемой при переносе пробногоэлектрического заряда из точки A в точку B , к величине пробного заряда.

Напряжение характеризует электрическое поле, создаваемое током.

Напряжение (U) равно отношению работы электрического поля по перемещению заряда
к величине перемещаемого заряда на участке цепи.

Единица измерения напряжения в системе СИ:


Понятие сопротивления.

Электри́ческое сопротивле́ние - физическая величина, характеризующая свойства проводника препятствовать прохождениюэлектрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему .

Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса иволнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Сопротивление (часто обозначается буквой R или r ) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

R - сопротивление, Ом;

U - разность электрических потенциалов (напряжение) на концах проводника, В;

I - сила тока, протекающего между концами проводника под действием разности потенциалов, А.

Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление.
Чем больше сопротивление проводника, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем легче электрическому току пройти через этот проводник. Следовательно, для характеристики проводника (с точки зрения прохождения через него электрического тока) можно рассматривать не только его сопротивление, но и величину, обратную сопротивлению и называемую, проводимостью. Электрической проводимостью называется способность материала пропускать через себя электрический ток. Так как проводимость есть величина, обратная сопротивлению, то и выражается она как 1/R,обозначается проводимость латинской буквой g.


5. Элементы электрических цепей. Активными элементами являются источники электрической энергии. Они подразделяются на источники напряжения – условное обозначение на рисунке. Пассивные элементы – элементы, которые не являются источниками электрической энергии. Они делятся на диссипативные и реактивные. Диссипативные элементы – элементы, осуществляющие диссипацию электрической энергии. Элементы с такими свойствами осуществляют преобразование электрической энергии в тепловую. Такими элементами являются резисторы. Они характеризуются электрическим сопротивлением, которое измеряется в омах (Ом). Реактивные элементы – элементы, способные накапливать электрическую энергию и отдавать ее либо источнику, от которого эта энергия была получена, либо передавать другому элементу. В любом случае этот элемент не превращает электрическую энергию в тепловую. Такими элементами являются катушка индуктивности и конденсатор. Электрической цепью называется такое соединение электрических элементов, при котором под воздействием источника электрической энергии в элементах протекает электрический ток. Узел – точка соединения трех и более элементов. Ветвь – участок цепи, содержащий хотя бы один элемент и находящийся между двумя ближайшими узлами. Контур – замкнутая часть электрической цепи. Перемычка – это электрический проводник с нулевым сопротивлением, подсоединенный своими концами к различным двум точкам схемы. Классификация электрической цепи осуществляется по следующим признакам: – наличие или отсутствие в цепи источника электрической энергии; – наличие или отсутствие в цепи диссипативных элементов; – в зависимости от характера вольтамперных характеристик электрических элементов; – в зависимости от количества выводов электрической цепи. Пассивной цепью называется цепь, не содержащая источника электрической энергии. В такой цепи присутствуют только диссипативные и реактивные элементы. Активной цепью называется цепь, содержащая хотя бы один источник электрической энергии. К активным цепям относятся цепи, содержащие и усилительные элементы – транзисторы и электронные лампы.


6. Закон Ома.
Основным законом электротехники, при помощи которого можно изучать и рассчитывать электрические цепи, является закон Ома, устанавливающий соотношение между током, напряжением и сопротивлением. Немецкий физик Георг Ом (1787 -1854) экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорционально напряжению U на концах проводника:
I = U/R
где R - электрическое сопротивление проводника.
Уравнение выражает закон Ома для участка цепи (не содержащего источника тока): сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорционально сопротивлению проводника.
Участок цепи, в котором не действуют э.д.с. (сторонние силы) называют однородным участком цепи, поэтому эта формулировка закона Ома справедлива для однородного участка цепи.

Закон Ома для участка цепи гласит: ток прямо пропорционален напряжению и обратно пропорционален сопротивлению.

Закон Ома . I= , где = R+ R i


7. Первый закон Кирхгофа. Второй закон Кирхгофа.

1 закон Кирхгофа (относится к узловым точкам)

Алгебраическая сумма токов ветвей, образующих узел, равна 0: ∑i=0

Причём знак «+» присваивается току, входящему в узел, знак «-» - выходящему из узла.

Например i 1 +i 2 -i 3 -i 4 =0 (узел б)

Узлом называется такая точка схемы, где сходятся три и более ветвей.

m – число узлов

m-1- уравнение для решения

i 1 +i 2 -i 3 -i 4 =0 (узел б)

2 закон Кирхгофа (относятся к любому контуру);

Алгебраическая сумма ЭДС, действующих в контуре, равна алгебраической сумме падений напряжений на пассивных элементах этого контура, включая и внутреннее сопротивление источника:

Знак «+» присваивается ЭДС, совпадающего по направлению с обходом контура, знак «-» приписывается падению напряжения, если направление тока не совпадает с направлением обхода.

Наприм, для контура abfgdca, выбрав направление обхода по часовой стрелке (см. рис.), второй закон Кирхгофа запишем так:

E 1 -E 2 =r i i 1 -r 4 i 2 -r 02 i 2 -r 5 i 2 +r 2 i 1 +r 01 i 1 .

8. Мостовые цепи. Мостовая цепь, мост электрический, электрический четырёхполюсник, к одной паре зажимов (полюсов) которого подключен источник питания, а к другой - нагрузка. Классическая Мостовая цепь состоит из четырёх сопротивлений, соединённых последовательно в виде четырёхугольника (рис.), причём точки а, b, c и d называются вершинами. Ветвь, содержащая источник питания UП, называется диагональю питания, а ветвь, содержащая сопротивление нагрузки ZH - диагональю нагрузки или указательной диагональю. Сопротивления Z1, Z2, Z3 и Z4, включенные между двумя соседними вершинами, называются плечами Мостовая цепьДиагонали Мостовая цепь, как мостики, соединяют две противолежащие вершины (диагональ нагрузки, например, ранее так и называлась - мост). Схема, представленная нарис., известна в литературе как четырёхплечий мост.


9.Получение синусоидальной ЭДС. Действующие значения синусоидальных токов и напряжений.

Переменным током называется ток, периодически меняющийся по величине и направлению.

Получение переменного тока:

Пусть в однородном магнитном поле постоянного магнита равномерно вращается с угловой скоростью W рамка площадью S. Магнитный поток через рамку Ф=BScosa, где a – угол между нормалью к рамке.

Т.к. при равном. Вращении рамки угл. Скорость W=a/t, то угол а будет изменяться по закону а=wt, и формула примет вид: Ф=BScos(wt).

Т.к. при вращ. Рамки пересек. Её магн. Поток всё время меняется, то по закону эл. Инд. В ней будет наход. ЭДС инд.:

Е=dФ/dt =BSwsin(wt)=E 0 sin(wt)

Где Е 0 =BSw –амплитуда синусоидальной ЭДС

Таким образом в рамке возникает синусоидальный Эдс, а если замкнуть рамку на нагрузку, то в цепи потечёт синусоидальный ток.