Физический принцип действия солнечных батарей. Принципы работы солнечных батарей и как они устроены. Мотоциклы с карданным приводом

В наше время практически каждый может собрать и получить в свое распоряжение свой независимый источник электроэнергии на солнечных батареях (в научной литературе они называются фотоэлектрическими панелями ).

Дорогостоящее оборудование со временем компенсируется возможностью получать бесплатную электроэнергию. Важно, что солнечные батареи - это экологически чистый источник энергии. За последние годы цены на фотоэлектрические панели упали в десятки раз и они продолжают снижаться, что говорит о больших перспективах при их использовании.

В классическом виде такой источник электроэнергии будет состоять из следующих частей: непосредственно, солнечной батареи (генератора постоянного тока), аккумулятора с устройством контроля заряда и инвертора, который преобразует постоянный ток в переменный.

Солнечные батареи состоят из набора солнечных элементов (фотоэлектрических преобразователей) , которые непосредственно преобразуют солнечную энергию в электрическую.

Большинство солнечных элементов производят из кремния, который имеет довольно высокую стоимость. Этот факт определят высокую стоимость электрической энергии, которая получается при использовании солнечных батарей.

Распространены два вида фотоэлектрических преобразователей: сделанные из монокристаллического и поликристаллического кремния. Они отличаются технологией производства. Первые имеют кпд до 17,5%, а вторые - 15%.

Наиболее важным техническим параметром солнечной батареи, которая оказывает основное влияние на экономичность всей установки, является ее полезная мощность . Она определяется напряжением и выходным током. Эти параметры зависят от интенсивности солнечного света, попадающего на батарею.

Э.д.с. (электродвижущая сила) отдельных солнечных элементов не зависит от их площади и снижается при нагревании батареи солнцем, примерно на 0,4% на 1 гр. С. Выходной ток зависит от интенсивности солнечного излучения и размера солнечных элементов. Чем ярче солнечный свет, тем больший ток генерируется солнечными элементами. Зарядный ток и отдаваемая мощность в пасмурную погоду резко снижается. Это происходит за счет уменьшения отдаваемой батареей тока.

Если освещенная солнцем батарея замкнута на какую либо нагрузку с сопротивлением Rн, то в цепи появляется электрический ток I, величина которого определяется качеством фотоэлектрического преобразователя, интенсивностью освещения и сопротивлением нагрузки. Мощность Pн, которая выделяется в нагрузке определяется произведением Pн = IнUн, где Uн напряжение на зажимах батареи.

Наибольшая мощность выделяется в нагрузке при некотором оптимальном ее сопротивлении Rопт, которое соответствует наибольшему коэффициенту полезного действия (кпд) преобразования световой энергии в электрическую. Для каждого преобразователя имеется свое значение Rопт, которая зависит от качества, размера рабочей поверхности и степени освещенности.

Солнечная батарея состоит из отдельных солнечных элементов, которые соединяются последовательно и параллельно для того, чтобы увеличить выходные параметры (ток, напряжение и мощность). При последовательном соединении элементов увеличивается выходное напряжение, при параллельном - выходной ток. Для того, чтобы увеличить и ток и напряжение комбинируют два этих способа соединения. Кроме того, при таком способе соединения выход из строя одного из солнечных элементов не приводит в выходу из строя всей цепочки, т.е. повышает надежность работы всей батареи.

Таким образом, солнечная батарея состоит из параллельно-последовательно соединенных солнечных элементов . Величина максимально возможного тока отдаваемого батареей прямо пропорциональна числу параллельно включенных, а э.д.с. - последовательно включенных солнечных элементов. Так комбинируя типы соединения собирают батарею с требуемыми параметрами.

Солнечные элементы батареи шунтируются диодами. Обычно их 4 - по одному, на каждую ¼ часть батареи. Диоды предохраняют от выхода из строя части батареи, которые по какой-то причине оказались затемненными, т. е. если в какой-то момент времени свет на них не попадает. Батарея при этом временно генерирует на 25% меньшую выходную мощность, чем при нормальном освещении солнцем всей поверхности батареи.

При отсутствии диодов эти солнечные элементы будут перегреваться и выходить из строя, так как они на время затемнения превращаются в потребителей тока (аккумуляторы разряжаются через солнечные элементы), а при использовании диодов, они шунтируются и ток через них не идет. Диоды должны быть низкоомными, чтобы уменьшить на них падение напряжения. Для этих целей в последнее время используют диоды Шоттки.

Получаемая электрическая энергия накапливается в аккумуляторах, а затем отдается в нагрузку. - химические источники тока. Заряд аккумулятора происходит тогда, когда к нему приложен потенциал, который больше напряжения аккумулятора.

Число последовательно и параллельно соединенных солнечных элементов должно быть таким, чтобы рабочее напряжение подводимое к аккумуляторам с учетом падения напряжения в зарядной цепи немного превышало напряжение аккумуляторов, а нагрузочный ток батареи обеспечивал требуемую величину зарядного тока.

Например, для зарядки свинцовой аккумуляторной батареи 12 В необходимо иметь солнечную батарею состоящую из 36 элементов.

При слабом солнечном свете заряд аккумуляторной батареи уменьшается и батарея отдает электрическую энергию электроприемнику, т.е. аккумуляторные батареи постоянно работают в режиме разряда и подзаряда.

Это процесс контролируется . При циклическом заряде требуется постоянное напряжение или постоянный ток заряда.

При хорошей освещенности аккумуляторная батарея быстро заряжается до 90% своей номинальной емкости, а затем с меньшей скоростью заряда до полной емкости. Переключение на меньшую скорость заряда производится контроллером зарядного устройства.

Наиболее эффективно использование специальных аккумуляторов - (в батарее в качестве электролита применяется серная кислота) и свинцовыех батарей, которые сделанны по AGM-технологии. Этим батареям не нужны специальные условия для установки и не требуется обслуживание. Паспортный срок службы таких батарей - 10 - 12 лет при глубине разряда не более 20%. Аккумуляторные батареи никогда не должны разряжаться ниже этого значения, иначе их срок службы резко сокращается!

Аккумулятор подсоединяется к солнечной батарее через контроллер, который контролирует ее заряд. При заряде батареи на полную мощность к солнечной батареи подключается резистор, который поглощает избыточную мощность.

Для того чтобы преобразовать постоянное напряжение от аккумуляторной батареи в переменное напряжение, которой можно использовать для питания большинства электроприемников совместно с солнечной батарей можно использовать специальные устройства - .

Без использования инвертора от солнечной батареи можно питать электроприемники, работающие на постоянном напряжении, в т.ч. различную портативную технику, энергосберегающие источники света, например, те же светодиодные лампы.

Применение солнечных батарей

Использование солнечной энергии для создания солнечных электростанций является очень выгодным и не таким уж дорогим источником электроэнергии. Широкое применение солнечных батарей нашли не только в промышленности и других отраслях, но и для индивидуальных нужд.

Со временем солнечные батареи становятся дешевле и все большее число людей приобретают их и используют в качестве источника альтернативной энергии. На солнечных панелях работают калькуляторы, радиоприемники, фонари на аккумуляторах с подзарядкой от солнечной панели.

Есть даже корейский мобильный телефон, который может заряжаться от солнечных панелей. Появились небольшие переносные электростанции на солнечных панелях, которыми пользуются туристы, рыбаки, охотники. Сейчас никого не удивишь автомобилем с солнечной панелью на крыше.

Как работают солнечные батареи

Солнечная панель состоит из множества фотоэлементов, которые при освещении солнечными лучами создают разность потенциалов. Теперь, соединяя эти фотоэлементы последовательно, мы увеличим величину постоянного напряжения, а соединяя параллельно, увеличим силу тока.

Устройство солнечных батарей

Т. е., соединяя фотоэлементы последовательно – параллельно мы можем достичь большой мощности солнечной панели. Также батареи можно собирать параллельно и последовательно в модуле и добиться значительного увеличения напряжения, тока и мощности такого модуля.

Принцип работы солнечной панели

Кроме солнечных батарей схема имеет еще такие устройства как контроллер , необходимый для контроля заряда аккумулятора, инвертор имеет функцию преобразования постоянного напряжения в стабильное переменное, для потребителей электроэнергии. Аккумуляторы предназначены для накопления электроэнергии.

Как работают фотоэлементы солнечной батареи

Еще Беккерель доказал, что энергию солнца можно преобразовать в электричество, освещая специальные полупроводники. Позднее эти полупроводники стали называть фотоэлементами. Фотоэлемент представляет собой два слоя полупроводника имеющих разную проводимость. С обеих сторон к этим полупроводникам припаиваются контакты для подключения в цепь. Слой полупроводника с n проводимостью является катодом, а слой с p проводником анодом.

Проводимость n называют электронной проводимостью, а слой p дырочной проводимостью. За счет передвижения «дырок» в p слое во время освещения, создается ток. Состояние атома потерявшего электрон называется «дырка». Таким образом, электрон перемещается по «дыркам» и создается иллюзия движения «дырок».

В действительности «дырки» не передвигаются. Граница соприкосновения проводников с разной проводимостью называется p-n переходом. Создается аналог диода, который выдает разность потенциалов при его освещении. Когда освещается n проводимость, то электроны, получая дополнительную энергию, начинают проникать сквозь барьер p-n перехода.

Число электронов и «дырок» меняется, что приводит к появлению разности потенциала, и при замыкании цепи появляется ток. Величина разности потенциала зависит от размеров фотоэлемента, силы света, температуры. Основной первого фотоэлемента стал кремний. Однако высокую чистоту кремния получить трудно, стоит это недешево.

Когда освещается n проводимость, то электроны, получая дополнительную энергию, начинают проникать сквозь барьер p-n перехода. Число электронов и «дырок» меняется, что приводит к появлению разности потенциала, и при замыкании цепи появляется ток

Поэтому сейчас ищут замену кремнию. В новых разработках кремний заменен на многослойный полимер с высоким КПД до 30%. Но такие солнечные панели дорогие, и пока отсутствуют на рынке. КПД солнечных батарей можно повысить, если устанавливать их на южной стороне и под углом не меньше 30 градусов.

Рекомендуется, солнечные батареи устанавливать на устройство слежения за движением солнца. Это устройство передвигает панели таким образом, чтобы они получали максимально возможное освещение лучами солнца от восхода до заката. При этом КПД солнечных панелей возрастает достаточно сильно.

Дорого отапливать дом газом? Или у вас на даче постоянно отключают свет? А может быть вы устали переплачивать за электроэнергию? Вам поможет установка солнечной батареи, которая обеспечит вас не только электричеством, но и отоплением. В этой статье мы рассмотрим принцип работы солнечной батареи, и ее отличия от солнечного коллектора.

В чем суть работы солнечной батареи?

Солнечная батарея, она же фотобатарея, представляет собой фотопластину, изменяющую под воздействием солнечных лучей проводимость в отдельных своих участках.

Это позволяет преобразовать энергию этих переходов в электрическую, которая либо используется сразу, либо накапливается.
Для того, чтобы понять принцип работы солнечной батареи, необходимо знать несколько моментов:


Итак, как же работает солнечная батарея?

На отрицательно заряженную панель падает солнечный свет. Он вызывает активное образование дополнительных отрицательных зарядов и «дырок». Под воздействием электрического поля, которое присутствует в p-n переходе, происходит разделение положительно и отрицательно заряженных частиц. Первые направляются в верхний слой, а вторые в нижний. Таким образом, появляется разность потенциалов, иными словами, постоянное напряжение (U). Исходя из этого видно, что один фотопреобразователь работает по принципу батарейки. И в случае, когда к нему подсоединяется нагрузка, в цепи возникает ток. Сила тока будет зависеть от таких параметров, как:


Выделяют несколько типов солнечных батарей: поли- и монокристаллические, а также аморфные.
Монокристаллические являются наименее продуктивными, но при этом самыми недорогими. В связи с этим их использование оправдано в качестве дополнительных источник энергии на случай отключения централизованной подачи электроэнергии.
Поликристаллы занимают промежуточные позиции по этим двум параметрам, в связи с чем могут быть использованы в отдаленных районах, лишенных централизованной подачи электроэнергии.

Аморфные солнечные батареи отличаются высокой эффективностью, однако и очень высокой стоимостью. В их основу входит аморфный кремний.

Данные разработки еще не вышли на промышленный уровень и находятся на экспериментальной стадии.

Зачем нужен контроллер в солнечной батарее?

Солнечные батареи, принцип работы которых был описан выше, не смогли бы эффективно заменить системы центральной подачи электроэнергии, если бы не были оснащены контроллерами, способными контролировать степень заряда солнечной батареи.

Контролеры позволяют перераспределять энергию, полученную от солнечных батарей, направляя ее при необходимости напрямую к источнику потребления, либо сохраняя ее в аккумуляторе.
Выделяют несколько типов контроллеров солнечных батарей, отличающихся между собой степенью увеличения общей эффективности системы солнечных батарей.

Для того, чтобы приобщиться к использованию альтернативных источников энергии, вовсе не обязательно приобретать дорогостоящую солнечную батарею. Есть более доступные примеры использования солнечной энергии для получения электрической. Речь идет о популярных в настоящее время садовых фонарях на солнечных батареях.

Такие фонарики позволяют освещать приусадебный участок в темное время суток, не затрачивая на это дополнительную электроэнергию.

Принцип работы таких фонарей заключается в том, что посредством фитопластины, вмонтированной в верхнюю часть фонарика, происходит улавливание и преобразование солнечной энергии, которая аккумулируется в небольшой батарее, расположенной в основании фонарика. Расход накопившейся энергии происходит в темное время суток.

Казалось бы, совсем недавно солнечная батарея прочно ассоциировалась с космическими кораблями, орбитальными станциями и луноходами. А сейчас, устройство, способное извлекать электричество из света можно обнаружить в любом калькуляторе. Более того, в богатых солнечным светом странах с жарким летом и мягкой зимой (ученые называют их «страны с высокой инсоляцией»), таких как Италия, Испания, Португалия, южные штаты США и т.д. Солнечная энергетика является заметной статьей экономии средств на электро- и теплоснабжение. Причем экономия эта происходит как по частной инициативе граждан, так и в виде обязательных к выполнению государственных нормативных актов, как например в Испании.

Попытки заставить работать на себя энергию солнца предпринимались человечеством давно, так по легенде Архимед сжег римский флот, приказав сфокусировать множеством зеркал (в другой версии – начищенных до блеска щитов) солнечный свет на парусах римских галер. Но заметные результаты попытки подчинения энергии солнца дали только в прошлом веке. Какие же существуют пути использования солнечной энергии?

Как получить электричество

Самый очевидный путь – это преобразование световой энергии солнца в тепловую. Строго говоря, это даже преобразованием назвать нельзя, ведь свет и тепло имеют одну и ту же природу и отличаются лишь частотой, правильнее будет говорить о сборе тепла. Для сбора солнечного тепла устройства, которые так и называются - («коллектор» буквально означает сборщик). Принцип их действия предельно прост – теплоноситель (вода, реже воздух) нагревается в сделанном из теплопоглощающего материала радиаторе. Такие устройства имеют широкое применение для горячего водоснабжения частных домов.

Другой интересный способ использования энергии ближайшего светила подсказывает нам природа. За миллионы лет эволюции растения научились преобразовывать энергию солнца в энергию химических связей, синтезируя из простых веществ сложное соединение – глюкозу. Тот, кто не прогуливал в школе ботанику, конечно, догадался, что речь идет о фотосинтезе. Но не каждый задумывался об энергетической сущности этого процесса, состоящей как раз в накоплении солнечной энергии и дальнейшего ее использования (в том числе зимой) в «личных» целях. То есть речь идет о биоэнергетике. Реальной, а не той, о которой рассказывают доморощенные маги. Способ использования энергии солнца по такому принципу работы еще только ждет своего применения в рукотворной технике.


Как уже говорилось выше, самый простой способ использования в личных целях энергию солнца – это сбор тепловой энергии. Однако «самый простой» не всегда означает «самый лучший». Дело в том, что тепловая энергия – это, можно сказать, «скоропортящийся продукт». Попробуйте «законсервировать» тепло или передать его на большие расстояния. Скорее всего, затраты перекроют все возможные выгоды. Наиболее удобным для накопления и транспортировки видом энергии является электричество. Его можно без особых проблем собрать в аккумуляторах либо передать по проводам к месту, где оно будет работать, с минимальными потерями. Отсюда следует третий, самый распространенный способ использования солнечного света – преобразование его в электрическую энергию.

Как это работает

Преобразование солнечного света происходит в батареях (то есть последовательно подключенных группах) фотоэлементов, которые подучили название «солнечные батареи». По какому же принципу работают солнечные батареи?


Сердцем фотоэлемента является кремниевый кристалл. С кремнием (точнее его оксидами) мы встречаемся каждый день – это знакомый нам песок. Таким образом, можно сказать, что кремниевый кристалл – это выращенная в лаборатории гигантская песчинка. Кристаллам придают форму куба и режут на платины толщиной в двести микрон (примерно три-четыре толщины человеческого волоса).

На кремниевую пластинку с одной стороны наносят тончайший слой фосфора, с другой стороны – тончайший слой бора. Там, где кремний контактирует с бором, возникает избыток свободных электронов, а там, где кремний контактирует с фосфором, наоборот электроны в недостатке, возникают так называемые «дырки». Стык сред, обладающих избытком и недостатком электронов, называется в физике p-n переход. Фотоны света бомбардируют поверхность пластины и вышибают избыточные электроны фосфора к недостающим электронам бора. Упорядоченное движение электронов – это и есть электрический ток. Осталось только «собрать» его, проведя через пластину металлические дорожки. Так в принципе устроен кремниевый фотоэлемент.

Мощность одной пластинки-фотоэлемента довольно скромная, ее хватит разве что для работы лампочки карманного фонарика. Поэтому отдельные элементы собирают в системы-батареи. Теоретически можно собрать из элементов батарею любой мощности. Батарею укладывают на металлическую подложку, армируют для повышения прочности и накрывают стеклом. Важно, что солнечная батарея преобразует в электричество не только видимую, но и ультрафиолетовую часть солнечного спектра, поэтому стекло, покрывающее батарею обязательно должно пропускать ультрафиолет.

Важным преимуществом солнечной батареи является то, что она использует свет, а не тепло, поэтому, в отличие от коллектора, солнечная батарея может работать и зимой, лишь бы облачность не закрывала солнечный свет. Существуют проекты строительства огромных полей солнечных батарей в Арктике и Антарктике, которые будут накапливать энергию во время полугодового полярного дня, который на севере наступает летом, а на юге – зимой, то есть две гигантских солнечных электростанции никогда не будут бездействовать одновременно.

Это все в далекой перспективе, а извлечь пользу из свойств солнечной батареи можно уже сегодня, оборудовав свое жилище миниатюрной гелиоэлектростанцией. Такая станция конечно вряд ли сможет полностью удовлетворить потребности хозяйства в электричестве, но, без сомнения, станет чувствительным фактором экономии семейного бюджета.

Достаточно часто тем, кто проживает в своем собственном доме, приходится сталкиваться с тем, что отключают электроэнергию по техническим причинам или из-за чрезвычайной ситуации. Такие проблемы доставляют не только дискомфорт, но и множество проблем, например, портятся продукты, невозможно заниматься работой, если для этого требуется использование электроприборов. Что делать в такой ситуации? Стоит установить солнечные батареи, которые позволяют решить данную задачу максимально быстро и смогут доставить только пользу и ничего более.

Солнечная батарея (или панель) – это элемент питания (называется фотопластина), меняющий свою проводимость и выделяющий энергию при воздействии солнечных лучей. Именно такое преобразование позволят обогащать жилую конструкцию необходимым электричеством. Как правило, солнечные панели имеют различные виды.

В продажу поступают такие конструкции, как:

  • Монокристаллическая;
  • Поликристаллическая;
  • Аморфная.

У каждой конструкции есть определенная производительность, от чего напрямую зависит принцип работы и цена. Пластиной с минимальной мощностью считается батарея, сделанная на основе монокристаллов, а также у них самая низкая цена. В основном, их стараются использовать в тех условиях, где постоянная подача электричества не является слишком важной.

Владелец частного дома и непосредственно таких батарей должен тщательно следить за тем, чтобы фотоэлектрическая панель была чистой, так как если на ее покрытие будет попадать большое количество таких загрязнений, как снег, помет птиц и даже сухая листва, то это снизит эффективность работы и снизит уровень подаваемого напряжения. Солнечная батарейка для дома работает по особому принципу.

А именно:

  1. Происходит улавливание энергии солнца пластиной, сделанной на основе кремния.
  2. При нагревании происходит высвобождение энергии.
  3. Далее активизируются электроны, это способствует их передвижению по проводнику.
  4. Проводниками ток направляется в полость аккумулятора, это формирует своеобразную подзарядку.
  5. Посредством проводного подключения, ток поступает к бытовым приборам.

Принцип действия установки вполне понятен, но стоит ознакомиться с особенностями проведения обслуживания батарей и требуется ли оно вовсе. Первоначально нужно отметить тот факт, что в солнечной батареи полностью отсутствует движущая часть, так как это стационарные конструкции.

Как проводится обслуживание, чтобы работала солнечная батарея

Как правило, очищение покрытия стоит проводить раз в 7 дней. Специалисты считают, что этого вполне достаточно для поддержания оптимального состояния пластин в чистом виде. Также требуется осуществлять еще ряд процедур, это позволит эксплуатировать панели без проблем, а также исключить образование дефектов и неисправностей.

Обязательно проведение:

  1. Внешнего осмотра на предмет выявления расшатывания креплений и образования трещин в каркасе.
  2. Чистки панели.
  3. Проверки силового кабеля на отсутствие оголенных проводов, что может стать причиной возгорания.
  4. Контролирования и фиксирования состояния автоматики и показателей КИПа.
  5. Отслеживание уровня заряда аккумулятора.
  6. Контроля за состоянием конструктивными узлами блока на предмет выявления коррозийных образований.
  7. Осмотра прочности кожуха панели.

Также необходимы корректировки положения конструкции, это зависит от времени года и подтягивание каждого резьбового соединения. Помимо этого, можно проводить полив панелей из шланга самой обычной проточной водой, для чего достаточно 4 процедур в год.

Безопасный и эффективный ветрогенератор можно собрать своими руками. Все этапы работы описаны на следующей странице:

КПД солнечных батарей и другие параметры

Делают солнечные панели из такого материала, как кремний, и при покупке стоит обращать внимание на такие особенности, как наличие показателя КПД, который должен превышать 20%, высокого уровня сопротивления.

Наличие закаленного стекла, устойчивости к самым суровым погодным условиям, поликристаллического покрытия, если изделие устанавливается в регионе с жаркой температурой, необходимо.

Важно монокристаллическое покрытие для областей с неблагоприятными климатическими условиями. Современные кремниевые солнечные плиты обладают рядом преимуществ. Те, кто уже пользуются подобными установками, отзываются исключительно положительно.

Признают такие изделия:

  • Автономными;
  • Максимально экономичными по средствам, так как не требуется оплата электроэнергии;
  • Очень удобными в эксплуатации, так как не нужна регулировка;
  • Выгодными, так как ресурс пополняется автоматически;
  • Экологическими;
  • Безопасными;
  • Практичными, так как они могут быть, как резерв или основной ;
  • Очень долговечными.

Есть и некоторые недостатки, но на фоне множества положительных качеств их можно назвать не существенными. К ним относят высокую стоимость, низкую устойчивость к погодным катаклизмам, надобность в подготовке места для расположения конструкции, в обслуживании, снижение производительности в зимний период времени, необходимость в модернизации, при необходимости увеличить мощность и, соответственно, производительность.

Виды солнечных батарей

Наиболее доступными по цене изделиями для улавливания солнечной энергии признаны монокристаллические, так как они сделаны по простейшей технологии и по мощности могут существенно уступить другим видам пластин. Каждый вид имеет свои особенности, за счет которых и происходит их выбор.

Солнечные плиты бывают трех видов:

  • Монокристаллические;
  • Поликристаллические;
  • Аморфные.

Панели, сделанные на основе поликристаллического кремния – это самые дорогие изделия, так как они могут накапливать солнечную энергию даже в условиях повышенной облачности и пасмурную погоду. Особенность их состоит в высокой производительности, а также медленном остывании кремниевого расплава. После того как полотно полностью остынет, оно подвергается повторной термообработке.

Такие пластины выпускаются темно-синего цвета.

Если для изготовления плиты используется аморфный кремний, то это изделия, не выпускаемые большими партиями. Данные конструкции находятся на стадии совершенствования, модернизации, так как в продажу поступили некоторые тестовые модели.

Из чего в основном делают солнечные батареи

Многие владельцы думают, что если самостоятельно создал такое оборудование, то для этого нужно просто соблюдать технологию сбора системы, но следует и соответствовать поставленным высоким требованиям.

Состав элементов для улавливания солнечной энергии очень прост, так как все конструкции состоят из:

  • Солнечного модуля;
  • Контролера;
  • Аккумулятора;
  • Инвертора;
  • Первичного преобразователя;
  • Комплекта проводов;
  • Приборов способных отслеживать заряд аккумулятора;
  • Устройства забора мощности у батареи.

Помимо этого, на пластинах могут присутствовать полимерные пленочные рулонные покрытия, которые нужны для защиты от воздействия внешних факторов. Солнечная батарея предназначена для улавливания лучей солнца и преобразования их в электроэнергию.

Устройство солнечной батареи и нюансы проектирования

Как только приобретены все необходимые приспособления, а также материалы и инвентарь можно начинать непосредственное строительство. Тот, кто сам придумал и изобрел самостоятельно солнечную батарею, обязательно начинал с проектирования, в котором были учтены важные моменты.

А именно:

  1. Место расположения конструкции.
  2. Угол наклона изделия.
  3. Просчет несущей способности кровли, если монтаж будет проводиться на саму крышу, а не стены или фундамент дома.

Для каркаса используется алюминиевый уголок, толщина которого должна быть не меньше 35 мм. Объем ячеек должен полностью сходиться с количеством фотоэлементов. Например, 835х690 мм. В раме проделываются отверстия под метизы. На внутреннюю часть уголка наносится герметик в 2 слоя. Рама заполняется полотном оргстекла, поликарбоната, плексигласа или же любого другого материала.

Для того чтобы уплотнить швы между рамой и полотном материала, потребуется провести тщательное прижатие листа по всему периметру.

Изделие оставляется на открытом воздухе до полного высыхания. Стекло фиксируется в 10 точках, в заранее подготовленные отверстия, которые должны быть расположены в угловой части рамки и с каждой стороны. Перед тем как крепить фотоэлементы, нужно провести очищение поверхности от пыли. Далее припаивается провод к плитке, для чего предварительно протираются контакты спиртовым раствором, и укладываются под флюс. При работе с кристаллом, следует быть максимально осторожными, так как он обладает слишком хрупкой структурой.

Укладывается шина по всей длине контакта и медленно прогревается при помощи паяльника. Далее пластины нужно перевернуть, и осуществить те же самые действия. Затем происходит выкладывание фотоэлементов на поверхность оргстекла в рамку, а фиксируются они на монтажную ленту. В качестве фиксатора может быть применен обычный силиконовый клей, который наносится точечным способом. Вполне достаточно одной маленькой капли, так как он очень прочный.

Расположение кристаллов должно быть с зазорами между ними в 3-5 мм, чтобы при нагревании под воздействием лучей ультрафиолета не было деформирования поверхности. Обязательно нужно соединить проводник по краям фотоэлементов с полостью общих шин. Посредством специального устройства тестируется качество пайки. Для герметизации панели, наносится герметик между полотнами плит. Нужно сделать осторожное придавливание полотен, чтобы обеспечить максимальное приклеивание к стеклу. Края рамки также промазываются герметиком.

Боковая сторона каркаса снабжается соединительным разъемом, для подключения диодов Шоттки. Рама закрывается стеклом для защиты и также герметизируются стыки, чтобы избежать проникновение влаги внутрь конструкции. С лицевой стороны нужно обработать панель лаком. Панель устанавливается на крышу, стены или любое другое предназначенное для нее заранее место.

Эффективность панели солнечной батареи

Как уже было отмечено, существуют разные типы солнечных батарей и у каждых из них своя характеристика. Стоит заметить, что есть и гибридные конструкции для улавливания солнечной энергии, однако стоимость их гораздо выше, и в основном они применяются для промышленных зданий.

Естественно, качество и производительность любой солнечной батареи напрямую зависит от эффективности ее фотоэлементов, на что может повлиять такой фактор как:

  • Климатические условия;
  • Погода;
  • Длительность дня и ночи;
  • Равномерность освещения панели;
  • Перепады температуры воздуха;
  • Наличие грязи на пластике;
  • Необратимые потери.

В основном, эффективность или, другими словами, производительность солнечных батарей напрямую зависит от равномерности освещения конструкции. К примеру, если один из фотоэлементов сооружения имеет малую интенсивность освещения в отличие от остальных, то это станет причиной неравномерного распределения лучей солнца при попадании на панель, а значит, будет происходить перегрузка и снижение общей энергоотдачи.

Для уменьшения влияния такого фактора в некоторых случаях попросту отключают тот фотоэлемент, который выходит из строя.

Чтобы обеспечить солнечной батареи максимальную производительность, следует направлять ее точно на солнце в зависимости от времени года. Некоторые владельцы таких конструкций предпочитают устанавливать специальные установки, посредством которых возможно дистанционно управлять или, другими словами, поворачивать сооружение в нужную сторону. Существуют системы с автоматическим поворотом в зависимости от расположения солнца, которые двигаются в течение дня самостоятельно без посторонней помощи по заданной программе.

Помимо этого, на эффективность изделия может повлиять наличие пыли и грязи на пластине, так как происходит затемнение некоторых фотоэлементов и таким образом начинается неравномерное распределение забора энергии солнца, что описано ранее. В продаже есть специальный состав, которым можно покрыть поверхность солнечной батареи и тем самым исключить скапливание на ней загрязнителей различного характера.

Как работает солнечная батарея (видео)

Солнечная батарея – дорогостоящее оборудование, независимо от того, будет оно собрано самостоятельно или же куплено в готовом виде, а надобность в постоянном обслуживании может доставить дискомфорт, но однажды вложившись в это изделие, можно на протяжении длительного времени довольствоваться постоянному присутствию электричества и отсутствию платы за него.