При работе трансформатора используется явление. §63. Назначение и принцип действия трансформатора. Принцип действия трансформатора

Может быть, кто-то думает, что трансформатор – это что-то среднее между трансформером и терминатором. Данная статья призвана разрушить подобные представления.

Трансформатор – статическое электромагнитное устройство, предназначенное для преобразования переменного электрического тока одного напряжения и определенной частоты в электрический ток другого напряжения и той же частоты.

Работа любого трансформатора основана на явлении , открытой Фарадеем.

Назначение трансформаторов

Разные виды трансформаторов используются практически во всех схемах питания электрических приборов и при передаче электроэнергии на большие расстояния.

Электростанции вырабатывают ток относительно небольшого напряжения220 , 380 , 660 В. Трансформаторы, повышая напряжение до значений порядка тысяч киловольт , позволяют существенно снизить потери при передаче электроэнергии на большие расстояния, а заодно и уменьшить площадь сечения проводов ЛЭП.

Непосредственно перед тем как попасть к потребителю (например, в обычную домашнюю розетку), ток проходит через понижающий трансформатор. Именно так мы получаем привычные нам 220 Вольт.

Самый распространенный вид трансформаторов – силовые трансформаторы . Они предназначены для преобразования напряжения в электрических цепях. Помимо силовых трансформаторов в различных электронных приборах применяются:

  • импульсные трансформаторы;
  • силовые трансформаторы;
  • трансформаторы тока.

Принцип работы трансформатора

Трансформаторы бывают однофазные и многофазные, с одной, двумя или большим количеством обмоток. Рассмотрим схему и принцип работы трансформатора на примере простейшего однофазного трансформатора.

Из чего состоит трансформатор? Во простейшем случае из одного металлического сердечника и двух обмоток . Обмотки электрически не связаны одна с другой и представляют собой изолированные провода.

Одна обмотка (ее называют первичной ) подключается к источнику переменного тока. Вторая обмотка, называемая вторичной , подключается к конечному потребителю тока.


Когда трансформатор подключен к источнику переменного тока, в витках его первичной обмотки течет переменный ток величиной I1 . При этом образуется магнитный поток Ф , который пронизывает обе обмотки и индуцирует в них ЭДС.

Бывает, что вторичная обмотка не находится под нагрузкой. Такой режимы работы трансформатора называется режимом холостого хода. Соответственно, если вторичная обмотка подключена к какому-либо потребителю, по ней течет ток I2 , возникающий под действием ЭДС.

Величина ЭДС, возникающей в обмотках, напрямую зависит от числа витков каждой обмотки. Отношение ЭДС, индуцированных в первичной и вторичной обмотках, называется коэффициентом трансформации и равно отношению количества витков соответствующих обмоток.

Путем подбора числа витков на обмотках можно увеличивать или уменьшать напряжение на потребителе тока с вторичной обмотки.

Идеальный трансформатор

Идеальный трансформатор – трансформатор, в котором отсутствуют потери энергии. В таком трансформаторе энергия тока в первичной обмотке полностью преобразуется сначала в энергию магнитного поля, а далее – в энергию вторичной обмотки.

Конечно, такого трансформатора не существует в природе. Тем не менее, в случае, когда теплопотерями можно пренебречь, в расчетах удобно пользоваться формулой для идеального трансформатора, согласно которой мощности тока в первичной и вторичной обмотках равны.

Кстати! Для наших читателей сейчас действует скидка 10% на

Потери энергии в трансформаторе

Коэффициент полезного действия трансформаторов достаточно высок. Тем не менее, в обмотке и сердечнике происходят потери энергии, приводящие к тому, что температура при работе трансформатора повышается. Для трансформаторов небольшой мощности это не представляет проблемы, и все тепло уходит в окружающую среду – используется естественное воздушное охлаждение. Такие трансформаторы называют сухими.

В более мощных трансформаторах воздушного охлаждения оказывается недостаточно, и применяется охлаждение маслом. В этом случае трансформатор помещается в бак с минеральным маслом, через которое тепло передается стенкам бака и рассеивается в окружающую среду. В трансформаторах высоких мощностей дополнительно применяются выхлопные трубы – если масло закипает, образовавшимся газам нужен выход.


Конечно, трансформаторы не так просты, как может показаться на первый взгляд - ведь мы рассмотрели принцип действия трансформатора кратко. Контрольная по электротехнике с задачами на расчет трансформатора внезапно может стать настоящей проблемой. всегда готов оказать помощь в решении любых проблем с учебой! Обращайтесь в Zaochnik и учитесь легко!

Трансформаторы - электромагнитные статические преобразователи электрической энергии. Трансформаторами называются электромагнитные аппараты, служащие для преобразования переменного тока одного напряжения в переменный ток другого напряжения при той же частоте и для передачи электрической энергии электромагнитным путем из одной цепи в другую.

Основное назначение трансформаторов - изменять напряжение переменного тока. Трансформаторы применяются также для преобразования числа фаз и частоты.

Трансформаторами тока называются аппараты, предназначенные для преобразования тока любой величины в ток, допустимый для измерений нормальными приборами, а также для питания различных реле и обмоток электромагнитов. Число витков вторичной обмотки трансформатора тока ω2 > ω1.

Особенностью трансформаторов тока является их работа в режиме, близком к короткому замыканию, так как их вторичная обмотка всегда замкнута на небольшое сопротивление.

Трансформаторами напряжения называются аппараты, предназначенные для преобразования переменного тока высшего напряжения в переменный ток низшего напряжения и питания параллельных катушек измерительных приборов и реле. Принцип действия и устройства трансформаторов напряжения аналогичен принципу работы силовых трансформаторов. Число витков вторичной обмотки ω2

Особенность работы измерительного трансформатора напряжения заключается в том, что его вторичная обмотка всегда оказывается замкнутой на большое сопротивление, и трансформатор работает в режиме, близком к режиму холостого хода, так как подключаемые приборы потребляют незначительный ток.

Наибольшее распространение имеют силовые трансформаторы напряжения , которые выпускаются электротехнической промышленностью на мощности свыше миллиона киловольт-ампер и на напряжения до 1150 - 1500 кВ.

Для передачи и распределения электрической энергии необходимо повысить напряжение турбогенераторов и гидрогенераторов, установленных на электростанциях, с 16 - 24 кВ до напряжений 110, 150, 220, 330, 500, 750 и 1150 кВ, используемых в линиях передачи, а затем снова понизить до 35; 10; 6; 3; 0,66; 0,38 и 0,22 кВ, чтобы использовать энергию в промышленности, сельском хозяйстве и быту.

Так как в энергетических системах имеет место многократная трансформация, мощность трансформаторов в 7 - 10 раз превышает установленную мощность генераторов на электростанциях.

Силовые трансформаторы в выпускаются в основном на частоту 50 Гц.

Трансформаторы малой мощности широко используются в различных электротехнических установках, системах передачи и переработки информации, навигации и других устройствах. Диапазон частот, на которых могут работать трансформаторы, - от нескольких герц до 105 Гц.

По числу фаз трансформаторы делятся на однофазные, двухфазные, трехфазные и многофазные. Силовые трансформаторы выпускаются в основном в трехфазном исполнении. Для применения в однофазных сетях выпускаются .

Классификация трансформаторов по числу и схемам соединения обмоток

Трансформаторы имеют две или несколько обмоток, индуктивно связанных друг с другом. Обмотки, потребляющие энергию из сети, называются первичными . Обмотки, отдающие электрическую энергию потребителю, называются вторичными .

Многофазные трансформаторы имеют обмотки, соединенные в многолучевую звезду или многоугольник. Трехфазные трансформаторы имеют соединение в трехлучевую звезду и треугольник.

Повышающие и понижающие трансформаторы

В зависимости от соотношения напряжений на первичной и вторичной обмотках трансформаторы делятся на повышающие и понижающие . В повышающем трансформаторе первичная обмотка имеет низкое напряжение, а вторичная - высокое. В понижающем трансформаторе , наоборот, вторичная обмотка имеет низкое напряжение, а первичная - высокое.

Трансформаторы, имеющие одну первичную и одну вторичную обмотки, называются двухобмоточными . Достаточно широко распространены трехобмоточные трансформаторы , имеющие на каждую фазу три обмотки, например две на стороне низкого напряжения, одну - на стороне высокого напряжения или наоборот. Многофазные трансформаторы могут иметь несколько обмоток высокого и низкого напряжения.

Классификация трансформаторов по конструкции

По конструкции силовые трансформаторы делят на два основных типа - масляные и сухие .

В масляных трансформаторах магнитопровод с обмотками находится в баке, заполненном трансформаторным маслом, которое является хорошим изолятором и охлаждающим агентом.

В соответствии с нормативными документами особенности конструкции трансформатора отражаются в обозначении его типа и систем охлаждения.

Тип трансформатора:

  • Автотрансформатор (для однофазных О, для трехфазных Т) - А
  • Расщепленная обмотка низшего напряжения - Р
  • Защита жидкого диэлектрика с помощью азотной подушки без расширителя - З
  • Исполнение с литой изоляцией - Л
  • Трех обмоточный трансформатор - Т
  • Трансформатор с РПН - Н
  • Сухой трансформатор с естественным воздушным охлаждением (обычно вторая буква в обозначении типа), либо исполнение для собственных нужд электростанций (обычно последняя буква в обозначении типа) - С
  • Кабельный ввод - К
  • Фланцевый ввод (для комплектных ТП) - Ф


Системы охлаждения сухих трансформаторов:

  • Естественное воздушное при открытом исполнении - С
  • Естественное воздушное при защищенном исполнении - СЗ
  • Естественное воздушное при герметичном исполнении - СГ
  • Воздушное с принудительной циркуляцией воздуха - СД

Системы охлаждения масляных трансформаторов:

  • Естественная циркуляция воздуха и масла - М
  • Принудительная циркуляция воздуха и естественная циркуляция масла - Д
  • Естественная циркуляция воздуха и принудительная циркуляция масла с ненаправленным потоком масла - МЦ
  • Естественная циркуляция воздуха и принудительная циркуляция масла с направленным потоком масла - НМЦ
  • Принудительная циркуляция воздуха и масла с ненаправленным потоком масла - ДЦ
  • Принудительная циркуляция воздуха и масла с направленным потоком масла - НДЦ
  • Принудительная циркуляция воды и масла с ненаправленным потоком масла - Ц
  • Принудительная циркуляция воды и масла с направленным потоком масла - НЦ

Системы охлаждения трансформаторов с негорючим жидким диэлектриком:

  • Охлаждение жидким диэлектриком с принудительной циркуляцией воздуха - НД
  • Охлаждение негорючим жидким диэлектриком с принудительной циркуляцией воздуха и с направленным потоком жидкого диэлектрика - ННД

Назначение трансформатора. Трансформатором называется статический электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток другого напряжения той же частоты.

Трансформаторы позволяют значительно повысить напряжение, вырабатываемое источниками переменного тока, установленными на электрических станциях, и осуществить передачу электроэнергии на дальние расстояния при высоких напряжениях (110, 220, 500, 750 и 1150 кВ). Благодаря этому сильно уменьшаются потери энергии в проводах и обеспечивается возможность значительного уменьшения площади сечения проводов линий электропередачи.

В местах потребления электроэнергии высокое напряжение, подаваемое от высоковольтных линий электропередачи, снова понижается трансформаторами до сравнительно небольших значений (127, 220, 380 и 660 В), при которых работают электрические потребители, установленные на фабриках, заводах, в депо и жилых домах. На э. п. с. переменного тока трансформаторы применяют для уменьшения напряжения, подаваемого из контактной сети к тяговым двигателям и вспомогательным цепям.

Кроме трансформаторов, применяемых в системах передачи и распределения электроэнергии, промышленностью выпускаются трансформаторы: тяговые (для э. п. с), для выпрямительных установок, лабораторные с регулированием напряжения, для питания радиоаппаратуры и др. Все эти трансформаторы называют силовыми.

Трансформаторы используют также для включения электроизмерительных приборов в цепи высокого напряжения (их называют измерительными), для электросварки и других целей. Транс-

форматоры бывают однофазные и трехфазные, двух- и многообмоточные.

Принцип действия трансформатора. Действие трансформатора основано на явлении электромагнитной индукции. Простейший трансформатор состоит из стального магнитопровода 2 (рис. 212) и двух расположенных на нем обмоток 1 и 3. Обмотки выполнены из изолированного провода и электрически не связаны. К одной из обмоток подается электрическая энергия от источника переменного тока. Эту обмотку называют первичной. К другой обмотке, называемой вторичной , подключают потребители (непосредственно или через выпрямитель).

При подключении трансформатора к источнику переменного тока (электрической сети) в витках его первичной обмотки протекает переменный ток i 1 , образуя переменный магнитный поток Ф. Этот поток проходит по магнитопроводу трансформатора и, пронизывая витки первичной и вторичной обмоток, индуцирует в них переменные э. д. с. е 1 и е 2 . Если к вторичной обмотке присоединен какой-либо приемник, то под действием э. д. с. е 2 по ее цепи проходит ток i 2 .

Э. д. с, индуцированная в каждом витке первичной и вторичной обмоток трансформатора, согласно закону электромагнитной индукции зависит от магнитного потока, пронизывающего виток, и скорости его изменения. Магнитный поток каждого трансформатора является определенной величиной, зависящей от напряжения и частоты изменения переменного тока в источнике, к которому подключен трансформатор. Постоянна также и скорость изменения магнитного потока, она определяется частотой изменения переменного тока. Следовательно, в каждом витке первичной и вторичной обмоток индуцируется одинаковая э. д.с. В результате этого отношение действующих значений э. д. с. Е 1 и E 2 , индуцированных в первичной и вторичной обмотках трансформатора, будет равно отношению чисел витков ? 1 и? 2 этих обмоток, т. е.

E 1 /E 2 = ? 1 / ? 2 .

Отношение э. д. с. Е вн обмотки высшего напряжения к э. д. с. E нн обмотки низшего напряжения (или отношение чисел их витков) называется коэффициентом трансформации ,

n = Е вн / E нн = ? вн / ? нн .

Коэффициент трансформации всегда больше единицы. Если пренебречь падениями напряжения в первичной и вторичной обмотках трансформатора (в трансформаторах средней и большой мощности они не превышают обычно 2-5 % номинальных значений напряжений U 1 и U 2), то можно считать, что отношение напряжения U 1 первичной обмотки к напряжению U 2 вторичной обмотки приблизительно равно отношению чисел их витков , т. е.

U 1 /U 2 ? ? 1 / ? 2

Таким образом, подбирая требуемое соотношение между числами витков первичной и вторичной обмоток, можно увеличивать или уменьшать напряжение на приемнике, подключенном к вторичной обмотке. Если необходимо на вторичной обмотке получить напряжение большее, чем подается на первичную, то применяют повышающие трансформаторы, у которых число витков во вторичной обмотке больше, чем в первичной.

В понижающих трансформаторах, наоборот, число витков вторичной обмотки меньше, чем в первичной.

Трансформатор не может осуществить преобразование напряжения постоянного тока. При подключении его первичной обмотки к сети постоянного тока в трансформаторе создается постоянный по величине и направлению магнитный поток, который не может индуцировать э. д. с. в первичной и вторичной обмотках. Поэтому не будет происходить передачи электрической энергии из первичной обмотки во вторичную.

При подключении первичной обмотки трансформатора к сети переменного тока через эту обмотку проходит некоторый ток, называемый током холостого хода. При включении нагрузки по вторичной обмотке трансформатора начинает проходить ток, при этом увеличивается и ток, проходящий по первичной обмотке. Чем больше нагрузка трансформатора, т. е. электрическая мощность и ток i 2 , отдаваемые его вторичной обмоткой подключенным к ней приемникам, тем больше электрическая мощность и ток i 1 , поступающие из сети в первичную обмотку.

Ввиду того что потери мощности в трансформаторе обычно малы, можно приближенно принять, что мощности в первичной и вторичной обмотках одинаковы. В этом случае можно считать, что токи в обмотках трансформатора приблизительно обратно пропорциональны напряжениям: I 1 /I 2 ? U 2 /U 1 или что токи в обмотках трансформатора обратно пропорциональны числам витков первичной и вторичной обмоток: I 1 /I 2 ? ? 2 /? 1 . Это означает, что в повышающем трансформаторе ток во вторичной обмотке меньше, чем в первичной (во столько раз, во сколько напряжение U 2 больше напряжения U 1), а в понижающем ток во вторичной обмотке больше, чем в первичной. Поэтому в трансформаторах обмотки высшего напряжения выполняются из более тонких проводов, чем обмотки низшего напряжения.

Принцип действия трансформатора основан на явлении электромагнтной индукции. Если одну из обмоток трансформатора подключить к источнику переменного напряжения (рис. 1), то по этой обмотке потечет переменный ток, который создаст в магнитопроводе переменный магнитный поток Ф. Этот магнитный поток, сцепленный как с одной, так и с другой обмоткой, изменяясь, будет индуктировать в обмотках ЭДС. Так как в общем случае обмотки могут иметь различное число витков, то значения индуктируемых в них ЭДС будут неодинаковы. В той обмотке, которая имеет большее число витков, индуктируемая ЭДС будет больше, чем в обмотке, имеющей меньшее число витков.

Индуктируемая в первичной обмотке ЭДС примерно равна приложенному напряжению и будет почти полностью его уравновешивать. Ко вторичной обмотке подключаются различные потребители электроэнергии, которые будут являться нагрузкой для трансформатора. При подключении нагрузки в этой обмотке под действием индуктированной в ней ЭДС возникнет ток I2, а на ее выводах установится напряжение U2, которые будут отличаться от тока I1 и напряжения U1 первичной обмотки. Следовательно, в трансформаторе происходит изменение параметров энергии: подводимая к первичной обмотке из электрической сети электрическая энергия с напряжением U1 и током I1 преобразуется в электрическую энергию с напряжением U2 и током I2.

Трансформатор нельзя включать в сеть постоянного тока, так как при подключении трансформатора к сети постоянного тока магнитный поток в нем будет неизменным во времени и, следовательно, не будет индуктировать ЭДС в обмотках; вследствие этого в первичной обмотке будет протекать большой ток, так как при отсутствии ЭДС он будет ограничиваться только относительно небольшим активным сопротивлением обмотки. Этот ток может вызвать недопустимый нагрев обмотки и даже ее перегорание.

Отношение ЭДС Е1/Е2=W1/W2=К – коэффициент трансформации трансформатора. ЭДС, наводимая в первичн обмотке – ЭДС самоиндукции (Е 1). ЭДС со вторичной обмотки – ЭДС взаимной индукции (Е2). Е1=W1, Е2=W2. При этом величина ЭДС пропорциональна кол-ву витков обмоток. В зависимости от величины К трансформаторы бывают повыш (<1), пониж (>1). Для определ К делают опыт холостого хода.

72. Каковы основные особенности электроэнергетической системы

Отличительные особенности электроэнергетики как технической системы:

Невозможность запасать электрическую энергию в значительных масштабах, в связи с чем имеет место постоянное единство производства и потребления;

Зависимость объемов производства энергии исключительно от потребителей;

Необходимость оценивать объемы производства и потребления энергии не только в расчете на год (квартал, месяц), но и текущие величины энергетических нагрузок (мощность);

Необходимость бесперебой -ности энергоснабжения потребителей, являющейся важнейшим условием работы всего национального хозяйства и жизнедеятельности населения;

Планирование энергопотре- бления на каждые сутки и каждый час в течение года, т.е. необходимость разработки графиков нагрузки на каждый день каждого месяца с учетом сезона, климатических условий, дня недели и других факторов;

Зависимость качества продукции не только от производителя и поставщика, но и от потребителя.

Принцип работы трансформатора связан с принципом электромагнитной индукции. Ток поступающий на первичную обмотку создает в магнитопроводе магнитный поток.

Работа трансформатора основана на явлении электромагнитной индукции. На одну из обмоток, называемую первичной обмоткой подаётся напряжение от внешнего источника. Протекающий по первичной обмотке переменный ток создаёт переменный магнитный поток в магнитопроводе, сдвинутый по фазе, при синусоидальном токе, на 90° по отношению к току в первичной обмотке. В результате электромагнитной индукции, переменный магнитный поток в магнитопроводе создаёт во всех обмотках, в том числе и в первичной, ЭДС индукции пропорциональную первой производной магнитного потока, при синусоидальном токе сдвинутой на 90° по отношению к магнитному потоку. Когда вторичные обмотки ни к чему не подключены (режим холостого хода), ЭДС индукции в первичной обмотке практически полностью компенсирует напряжение источника питания, поэтому ток через первичную обмотку невелик, и определяется в основном её индуктивным сопротивлением. Напряжение индукции на вторичных обмотках в режиме холостого хода определяется отношением числа витков соответствующей обмотки w2 к числу витков первичной обмотки w1: U2=U1w2/w1.

При подключении вторичной обмотки к нагрузке, по ней начинает течь ток. Этот ток также создаёт магнитный поток в магнитопроводе, причём он направлен противоположно магнитному потоку, создаваемому первичной обмоткой. В результате, в первичной обмотке нарушается компенсация ЭДС индукции и ЭДС источника питания, что приводит к увеличению тока в первичной обмотке, до тех пор, пока магнитный поток не достигнет практически прежнего значения. В этом режиме отношение токов первичной и вторичной обмотки равно обратному отношению числа витков обмоток (I1=I2w2/w1,) отношение напряжений в первом приближении также остаётся прежним.

Схематично, выше сказанное можно изобразить следующим образом:

U1 > I1 > I1w1 > Ф > ε2 > I2.

Магнитный поток в магнитопроводе трансформатора сдвинут по фазе по отношению к току в первичной обмотке на 90°. ЭДС во вторичной обмотке пропорциональна первой производной от магнитного потока. Для синусоидальных сигналов первой производной от синуса является косинус, сдвиг фазы между синусом и косинусом составляет 90°. В результате, при согласном включении обмоток, трансформатор сдвигает фазу приблизительно на 180°. При встречном включении обмоток прибавляется дополнительный сдвиг фазы на 180° и суммарный сдвиг фазы трансформатором составляет приблизительно 360°.

Опыт холостого хода

Для испытания трансформатора служит опыт холостого хода и опыт короткого замыкания.

При опыте холостого хода трансформатора его вторичная обмотка разомкнута и тока в этой обмотке нет (/2-0).

Если первичную обмотку трансформатора включить в сеть источника электрической энергии переменного тока, то в этой обмотке будет протекать ток холостого хода I0, который представляет собой малую величину по сравнению с номинальным током трансформатора. В трансформаторах больших мощностей ток холостого хода может достигать значений порядка 5- 10% номинального тока. В трансформаторах малых мощностей этот ток достигает значения 25-30% номинального тока. Ток холостого хода I0 создает магнитный поток в магнитопроводе трансформатора. Для возбуждения магнитного потока трансформатор потребляет реактивную мощность из сети. Что же касается активной мощности, потребляемой трансформатором при холостом ходе, то она расходуется на покрытие потерь мощности в магнитопроводе, обусловленных гистерезисом и вихревыми токами.

Так как реактивная мощность при холостом ходе трансформатора значительно больше активной мощности, то коэффициент мощности cos φ его весьма мал и обычно равен 0,2-0,3.