Основные топологии локальных сетей. Типы локальных сетей и их устройство. Топология. Происхождение терминов «Дуга-узел» и «Геореляционный»

§ 1.9. База и предбаза топологии.

Для задания на множестве X некоторой топологии Ω нет необходимости указывать непосредственно все подмножества семейства Ω. Существует другой очень удобный способ построения топологии с помощью понятия базы.

Совокупность β открытых множеств пространства (X,Ω) называется базой топологии Ω или базой пространства (X,Ω), если всякое непустое открытое множество топологического пространства (X,Ω) можно представить в виде объединения некоторой совокупности множеств, принадлежащих β. В частности, X равно объединению всех множеств базы.

Теорема 1.9.

Совокупность β открытых множеств топологии Ω является базой этой топологии тогда и только тогда, когда для всякого открытого множества U Ω и для всякой точки х U существует множество V β такое, что х V U.

Доказательство. Пусть β - база топологии Ω. U - произвольное открытое множество из семейства Ω, х - произвольная точка множества U. Тогда, по определению базы, множество , где - некоторое семейство множеств, принадлежащих совокупности β. Так как х U, то найдется индекс α 0 J такой, что х V α0 β, и V α0 U. Обратно, если U - произвольное открытое множество из семейства Ω, то для любой точки х U найдется множество V x β такое, что х V x U. Непосредственно проверяется, что объединение всех таких V x совпадает с U: . Таким образом, любое открытое множество из семейства Ω является объединением некоторой совокупности множеств, принадлежащих β. Значит, β является, по определению, базой топологии Ω.

Теорема доказана.

Система подмножеств S α из X называется покрытием X, если объединение совпадает с X. Покрытие S называется открытым , если каждое S α открыто в пространстве (X,Ω).

В частности, база пространства (X,Ω) является открытым покрытием X. Однако не всякое покрытие X может служить базой некоторой топологии на X.

Возникает вопрос: если - некоторое покрытие X, то при каких условиях можно построить топологию на X так, чтобы данное семейство было базой этой топологии? Отвечает на этот вопрос следующая теорема.

Теорема 1.10.

Пусть . Покрытие β = является базой некоторой топологии на X тогда и только тогда, когда для каждого V α из β, каждого V β из β и для каждой точки x V α V β существует V γ β такое, что x V γ (V α V β).

Доказательство. Пусть β = - база пространства (X,Ω). Так как β Ω, то в силу аксиомы в) топологического пространства пересечение любых двух множеств из совокупности β является открытым множеством, т.е. V α V β Ω. Отсюда, по теореме 1.9 для любой точки х V α V β найдется V γ β такое, что x V γ (V α V β).

Обратно, пусть покрытие β удовлетворяет условию теоремы. Зададим семейство Ω, состоящее из пустого множества и всевозможных объединений множеств из β. Покажем, что построенное семейство Ω удовлетворяет аксиомам а) - в) топологического пространства. Аксиома а)очевидна: пустое множество входит в Ω по условию, а множество принадлежит Ω как объединение всех множеств из β. Проверим аксиому б). Пусть - семейство множеств, где U α Ω для любого индекса α из J. Каждое множество U α является объединением некоторой совокупности множеств из β: где V α,γ β для каждого индекса α J и каждого индекса γ G. Тогда , т.е. множество является объединением некоторой совокупности множеств из β и, следовательно, принадлежит семейству Ω. Для проверки аксиомы в) достаточно показать, что пересечение любых двух множеств U, из Ω. принадлежит Ω. Представим множества U, в следующем виде: где V γ β для каждого γ G, δ β для каждого δ D. Рассмотрим пересечение . Сначала убедимся в том, что каждое множество вида V γ δ принадлежит Ω. Действительно, для любой точки х V γ δ по условию теоремы найдется множество W x β такое, что х W x V γ δ . Следовательно, множество V γ δ = . Полученное равенство показывает, что множество V γ δ Ω как объединение некоторого семейства множеств из совокупности β. Поэтому множество U есть объединение некоторого семейства множеств, принадлежащих Ω, и значит, в силу аксиомы б), U Ω. Таким образом, семейство Ω удовлетворяет аксиомам а) - в) топологического пространства, т.е. является топологией на X, а покрытие β служит для Ω, по определению, базой.

Теорема доказана.

Заметим, что в доказательстве теоремы 1.10 указан способ построения топологии на X, если задано покрытие β, удовлетворяющее условию теоремы.

Можно ли сконструировать топологию на X, если задано произвольное покрытие ? Ответ на этот вопрос дает следующая теорема.

Теорема 1.11.

Пусть - произвольное покрытие множества X. Тогда семейство всевозможных конечных пересечений элементов из S образует базу некоторой топологии на X.

Доказательство. Проверим, что покрытие где К - произвольное конечное подмножество из I, удовлетворяет критерию базы. Заметив, что пересечение любых двух элементов семейства β снова является элементом семейства β, применим теорему 1.10: для любых множеств U α , V β , принадлежащих β, положим V γ = V α V β . Тогда V γ β как пересечение конечного числа множеств из S. Следовательно, для любой точки х V α V β имеем: х V γ = (V α V β). Таким образом, в силу теоремы 1.10, β является базой некоторой топологии на X.

Теорема доказана.

Семейство γ открытых подмножеств пространства (X,Ω) называется предбазой топологии Ω, если семейство β, состоящее из всевозможных конечных пересечений множеств из γ, образует базу топологии Ω.

Теорема 1.11 утверждает, что каждое покрытие множества X является предбазой некоторой топологии на X.

Очевидно, всякая база пространства является и его предбазой. Как правило, у топологии есть много баз и предбаз. Предпочтение может быть отдано той или иной из них в зависимости от решаемой задачи.

Множество называется топологическим пространством , когда задано определённое семейство его открытых подмножеств , удовлетворяющее аксиомам. Возможно много способов задания структуры топологического пространства на одном множестве: от дискретной до нехаусдорфовой «антидискретной (=тривиальной) топологии », склеивающей все точки вместе.

Базовые понятия теории множеств (множество , функция , ординальные числа и кардинальные числа , аксиома выбора , лемма Цорна и т.д.) не являются предметом общей топологии, но активно ею используются. Общая топология включает в себя следующие разделы: свойства топологических пространств и их отображений, операции над топологическими пространствами и их отображаениями, классификация топологических пространств.

Общая топология включает в себя теорию размерности .

История

Общая топология зародилась в конце XIX в. и оформилась в самостоятельную математическую науку в начале XX в . Основополагающие работы принадлежат Ф. Хаусдорфу , А. Пуанкаре , П. С. Александрову , П. С. Урысону , Л. Брауэру . В частности, была решена одна из главных задач общей топологии - нахождение необходимых и достаточных условий метризуемости топологического пространства.

Наиболее бурное развитие общей топологии как самостоятельной ветви знания происходило в середине ХХ в., в начале же XXI в . она скорее является вспомогательной дисциплиной, "обслуживающей" своим понятийным аппаратом многие области математики: топологию, функциональный анализ, комплексный анализ, теорию графов и т.д..

См. также

Замечания

  • Понятие предела функции, вводимое в общей топологии, допускает дальнейшее обобщение в рамках теории псевдотопологических пространств.

Литература

  • П. С. Александров, В. В. Федорчук, В. И. Зайцев Основные моменты в развитии теоретико-множественной топологии
  • Александров П. С. Введение в теорию множеств и общую топологию - М .: Наука , 1977
  • Архангельский А. В., Пономарёв В. И. Основы общей топологии в задачах и упражнениях - М .: Наука , 1974
  • Бурбаки Н. Элементы математики. Общая топология. Основные структуры - М .: Наука , 1968
  • Келли Дж. Л. Общая топология - М .: Наука , 1968
  • Энгелькинг Р. Общая топология - М .: Мир, 1986
  • Виро О. Я., Иванов О. А., Харламов В. М., Нецветаев Н. Ю. Элементарная топология . Учебник в задачах (рус., англ.)

Wikimedia Foundation . 2010 .

  • ГУЛАГ
  • Топологическое пространство

Смотреть что такое "Общая топология" в других словарях:

    ОБЩАЯ ТОПОЛОГИЯ - ветвь геометрии, посвященная исследованию непрерывности и предельного перехода на том естественном уровне общности, к рый определяется природой этих понятий. Исходными понятиями О. т. являются понятия топологического пространства и непрерывного… … Математическая энциклопедия

    Общая алгебра - (также абстрактная алгебра, высшая алгебра) раздел математики, изучающий алгебраические системы (также иногда называемые алгебраическими структурами), такие как группы, кольца, поля, частично упорядоченные множества, решётки, а также… … Википедия

    Топология - Не следует путать с топографией. У этого термина существуют и другие значения, см. Топология (значения). Лента Мёбиуса поверхно … Википедия

    Топология - (от греч. tоpos место и …логия (См. ...Логия) часть геометрии, посвященная изучению феномена непрерывности (выражающегося, например, в понятии предела). Разнообразие проявлений непрерывности в математике и широкий спектр различных… … Большая советская энциклопедия

    Топология Зарисского - Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Топология Зарисского в алгебраической геометрии специальная топология, отражающая алгебраическую при … Википедия

    ТОПОЛОГИЯ - раздел математики, занимающийся изучением свойств фигур (или пространств), которые сохраняются при непрерывных деформациях, таких, например, как растяжение, сжатие или изгибание. Непрерывная деформация это деформация фигуры, при которой не… … Энциклопедия Кольера

    Общая точка (математика) - У этого термина существуют и другие значения, см. Общая точка. Общая точка точка топологического пространства, замыкание которой совпадает со всем пространством. Топологическое пространство, имеющее общую точку, является неприводимым… … Википедия

    топология - Физическое или логическое распределение узлов сети. Физическая топология определяет физические связи (каналы) между узлами. Логическая топология описывает возможные соединения между сетевыми узлами. В локальных сетях наиболее распространены три… … Справочник технического переводчика

    ТОПОЛОГИЯ - в широком смысле область математики, изучающая топологич. свойства разл. матем. и физ. объектов. Интуитивно, к топологич. относятся качественные, устойчивые свойства, не меняющиеся при деформациях. Матем. формализация идеи о топологич. свойствах… … Физическая энциклопедия

    Общая теория систем - (теория систем) научная и методологическая концепция исследования объектов, представляющих собой системы. Она тесно связана с системным подходом и является конкретизацией его принципов и методов. Первый вариант общей теории систем был… … Википедия

Книги

  • Общая топология. Основные структуры , Н. Бурбаки. В этом новом издании сделано довольно большое число изменений в деталях; кроме того, переделан весь план гл. I и II с целью расположить материал в лучшем соответствиис общими представлениями

Все книги можно скачать бесплатно и без регистрации.

NEW. О. Виро, О. Иванов, Н. Нецветаев. Элементарная топология. 2010 год. 446 стр. djvu. 2.2 Мб.
В книге рассказывается об основных понятиях топологии. В неё включен основополагающий материал по общей топологии и введение в алгебраическую топологию, которое выстраивается вокруг понятий фундаментальной группы и накрывающего пространства. Основной материал книги содержит большое количество нетривиальных примеров и задач различной степени трудности.
Книга предназначена для студентов младших курсов.

Скачать

Александров. Введение в теорию множеств и общую топологию. 1977 год. 370 стр. djvu Размер 6.3 Mб.
Одна из самых простых, понятных и в то же время глубоких книг, служащих введением в математику бесконечных множеств. Написана в несколько старомодной манере объяснять все с помощью слов с минимумом формул. Для кого-то это может показаться недостатком, но для большинства служит большим достоинством.

Скачать

Бухштабер В.М., Панов Т.Е. Торические действия в топологии и комбинаторике. 2004 год. 272 стр. djvu. 2.9 Мб.
Цель настоящей книги - ввести читателя в обширную область исследований, богатую фундаментальными результатами и важными приложениями. Она формируется последние тридцать лет на основе взаимопроникновения идей, методов и достижений комбинаторной геометрии и топологии, алгебраической топологии и геометрии, гомологической алгебры, теории особенностей, а в самое последнее время и дискретной математической физики.
Среди топологических и комбинаторных объектов, изучаемых в книге, присут- присутствуют как классические, так и появившиеся совсем недавно. Это - выпуклые многогранники, симплициальные и кубические комплексы, симплициально клеточные разбиения, триангуляции сфер и более общих многообразий, пространства триангуляции, алгебраические торические многообразия и различные топологические аналоги их, момент-угол комплексы, представляющие собой новый класс торических действий, конфигурации подпространств и их дополнения.
В книге излагаются яркие результаты, обязанные глубоким связям геометрии, топологии, комбинаторики и гомологической алгебры. Приводится ряд классических и современных конструкций, позволяющих эффективно использовать эти связи. Книга содержит большой список открытых проблем.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Скачать

Ю.Г. Борисович и др. Введение в топологию. 2-изд. дополн. 1995 год. 415 стр. djvu. 3.9 Мб.
Содержит материал, составляющий основу топологических знаний. Излагаются понятия и теоремы общей и гомотопической топологий, дается классификация двумерных поверхностей, основные понятия гладких многообразий и их отображений, рассматриваются элементы теории Морса и теории гомологий с приложениями к неподвижным точкам. В книге использованы иллюстрации академика РАН А.Т.Фоменко. 1-е издание - 1980 г. Для студентов вузов, обучающихся по специальности `Математика`. Может быть использована преподавателями.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Скачать

Бычков Ю.А. Топология для физиков. Уч. пос обие. МФТИ. 1993 год. 107 стр. djvu. 2.1 Мб.
В пособии рассмотрены основные понятия и методы топологии, используемые в современной физике твердого тела и квантовой теории поля. Изложены основы теории гомотопических, гомологических и когомологических групп, а также простейшие методы их вычисления. Кратко рассмотрена дифференциальная геометрия расслоений (косых произведений топологических пространств) и связанное с ними понятие характеристических классов. Пособие посвящено тем проблемам топологии, которые позволяют исследовать тонкие вопросы теории дефектов в упорядоченных системах, проблему фазы Берри, а также различного рода монополии и инстантоны в теории калибровочных полей.
Для студентов старших курсов.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Скачать

Зейферт, Трелбфалль. Топология. 2001 год. 445 стр. djvu Размер 3.2 Mб.
Книга представляет собой классическую топологию.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Скачать

Чес Косневски. Начальный курс алгебраической топологии. 304 стр. djvu.5.5 Мб.
Вводный курс алгебраисеской топологии. Изложение сопровождается большим количеством примеров и рисунков.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Скачать

Милнор, Уоллес. Дифференциальная топология. Начальный курс. Книга доступна по изложеннию студентам младших курсов. 280 стр. Размер 3.3 Мб. djv.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Скачать

Новиков и др. Задачи по геометрии ((дифф. геометрия и топология).. МГУ. 1978 год. 168 стр. djvu. 3.0 Мб.
Пособие включает задачи, рекомендуемые при изучении обязательного на механико-математическом факультете Московского университета курса «Дифференциальная геометрия и топология» и других геометрических курсов, читаемых в университетах для студентов математических специальностей. Первая часть содержит задачи по обязательному курсу и включает темы: риманова геометрия и топология, теория кривых и поверхностей, векторные поля и дифференциальные формы на многообразиях, непрерывные группы преобразований, элементы общей топологии. Вторая часть состоит из более трудных задач, полезных при введении в новые, современные вопросы топологии и геометрии. Здесь представлены темы: общая теория гомотопий и гомотопические группы, группы гомологии и когомологий, теория гладких многообразий, теория расслоений, вычислительные методы в топологии.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Скачать

Новиков, Фоменко. Элементы дифференциальной геометрии и топологии.. Учебник.. МГУ. 1987 год. 432 стр. djvu. 10.0 Мб.
Излагаются основные сведеппя о геометрии евклидова пространства и пространства Минковского, включая их преобразования и теорию кривых п поверхностей, основы тензорного анализа и римановой геометрии, сведения из вариационного исчисления, пограничные с геометрией, элементы наглядной топологии многообразий. Изложение ведется в свете современных представлений о геометрии реального мира.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Скачать

Новиков С.П. Топология. 2-е изд. испр. доп. 2002 год. 167 стр. djvu. 4.4 Мб.
Книга дает представление о «скелете» и ключевых идеях топологии. В ней охвачены в сжатом виде практически все разделы современной топологии, исключая общую топологию. Особое внимание уделено геометрическим идеям и наиболее важным алгебраическим конструкциям. По сравнению с предыдущим изданием (ВИНИТИ, 1986 г.) книга существенно дополнена и доработана.
Предназначена для студентов и аспирантов, научных работников.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Скачать

В.В. Прасолов. Элементы комбинаторной и дифференциальной топологии. 2005 год. 352 стр. pdf. 2.4 Мб.
Методы, используемые современной топологией, весьма разнообразны. В этой книге подробно рассматриваются методы комбинаторной топологии, которые заключаются в исследовании топологических пространств посредством их разбиений на какие-то элементарные множества, и методы дифференциальной топологии, которые заключаются в рассмотрении гладких многообразий игладких отображений. Нередко одну и ту же топологическую задачу можно решить как комбинаторными методами, так и дифференциальными. В таких случаях обсуждаются оба подхода.
Одна из главных целей книги состоит в том, чтобы продвинуться в изучении свойств топологических пространств (и особенно многообразий) столь далеко, сколь это возможно без привлечения сложной техники. Этим она отличается от большинства книг по топологии.
Книга содержит много задач и упражнений. Почти все задачи снабжены подробными решениями.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Скачать

В.В. Прасолов. Элементы теории гомологий. 2005 год. 503 стр. pdf. 3.3 Мб.
Эта книга является непосредственным продолжением книги "Элементы комбинаторной и дифференциальной топологии". Она начинается с определения симплициальных гомологий и когомологий; приводятся многочисленные примеры их вычисления и и х приложений. Затем обсуждается умножение Колмогорова-Александера на когомологиях. Значительная часть книги посвящена различным приложениям (симплициальных) гомологий и когомологий. Многие из них связаны с теорией препятствий. Одним из таких примеров служат характеристические классы векторных расслоений. Сингулярные гомологии и когомологии определяются во второй половине книги. Затем рассматривается еще один подход к построению теории когомологий - когомологии Чеха и тесно связанные с ними когомологии де Рама. Книга завершается различными приложениями теории гомологий в топологии многообразий. В книге приведено много задач (с решениями) и упражнений для самостоятельного решения.
Для студентов старших курсов и аспирантов математических и физических специальностей; для научных работников.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Скачать

Пасынков, Федорчук. Топология и теория размерности. 1984 год. 68 стр. djvu. 1.6 Мб.
Топология возникла и развивается на стыке многих математических дисциплин. Ее методы используются не только в математике, но и в механике. Физике и других науках. Одной из интереснейших областей общей топологии является теория размерности, сочетающая наглядные геометрические представления с абстрактными идеями топологии, алгебры и других разделов математики. Настоящая брошюра, которая знакомит с основными идеями и понятиями теории размерности, будет интересна для всех интересующихся математикой, начиная со школьников старших классов и кончая научными работниками и преподавателями вузов.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Скачать

Н. В. Тимофеева. Дифференциальная геометрия и элементы топологии в задачах, рисунках и комментариях. Учебное пособие. 53 стр. PDF. 895 Kб.
Глава 1. Элементы топологии
Вопросы теории. Основные определения, результаты, комментарии
Глава 2. Дифференциальная геометрия
§1. Плоские кривые
§2. Пространственные кривые
§3. Поверхность. Метрические задачи на поверхности
§4. Задачи о кривизне на поверхности. Внутренняя геометрия поверхности

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Скачать

Фоменко. Дифференциальная геометрия и топология. Дополнительные главы. 1999 год. 5 файлов PDF в архиве 12.4 Мб.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

М. Хирш. Дмфференциальная топология. 201 стр. djvu. 7.3 Мб.
Книга принадлежит перу известного американского тополога и представляет собой учебное пособие по дифференциальной топологии, включающее разнообразные сведения из анализа и алгебраической топологии. Изложение построено так, что необходимый запас предварительных знаний сведен к минимуму. Много внимания уделено методической стороне дела: мотивированности определений и геометрической наглядности формулировок автор придает не меньшее значение, чем полноте доказательств.
Книга будет полезна математикам всех специальностей, а также студентам физико-математических факультетов университетов и пединститутов.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Скачать

Шапиро. Топология для физиков. 125 стр. Размер 644 Кб. djv.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Скачать

Шварц. Дифференциальная геометрия и тополония. 220 стр. Размер 1.4 Мб. djv.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Скачать

Доступно с лицензией Standard или Advanced.

Топология - это набор правил, которые вместе с инструментами и технологиями редактирования позволяют более точно моделировать геометрические отношения в базе геоданных. В ArcGIS топология обеспечивается через набор правил, которые определяют, как пространственные объекты взаморасполагаются в географическом пространстве, а также через набор инструментов редактирования, одинаковым образом применяющиеся к объектам с общей геометрией. Топология хранится в базе геоданных как одно или несколько отношений, определяющих, как пространственные объекты одного или нескольких классов пространственных объектов используют общую геометрию. Участвующие в топологии пространственные объекты относятся к простым классам пространственных объектов - топология не изменяет определение класса пространственных объектов, а сама служит описанием пространственных отношений этих объектов.

Зачем нужна топология?

В течение долгого времени, топология была ключевым элементом ГИС, служащим для управления данными и контролем над их целостностью. В целом, модель топологических данных управляет пространственными отношениями путем представления пространственных объектов (точечных, линейных и площадных объектов) в виде схем топологических примитивов – узлов, граней и ребер. Эти примитивы, взаимоотношения между ними, а также с объектами, чьи границы они представляют, определяются отображением геометрии пространственных объектов в графе топологических элементов.

Топология используется в основном для контроля качества данных с пространственными отношениями, а также помогает при их компиляции. Во многих случаях, топология также применяется для анализа пространственных взаимоотношений – например, чтобы убрать границы между соседними полигонами, имеющими одинаковые атрибутивные значения, или для прокладывания пути по сети элементов топологического графа.

Топология также используется для моделирования интеграции геометрии между несколькими различными классами пространственных объектов. Иногда это называют вертикальной интеграцией классов пространственных объектов.

Каким образом объекты в топологии используют общую геометрию

Пространственные объекты могут совместно использовать геометрию внутри топологии. Ниже приведены примеры смежных пространственных объектов:

  • Площадные объекты могут использовать общие границы (полигональная топология).
  • Линейные объекты могут использовать общие конечные точки (топология ребер и узлов).

Кроме того, общая геометрия может использоваться между классами пространственных объектов с помощью топологии базы геоданных. Например:

  • Линейные пространственные объекты могут иметь общие сегменты.
  • Площадные объекты могут совмещаться с другими площадными объектами. Например, земельные участки могут могут складываться в кварталы.
  • Линейные пространственные объекты могут иметь вершины, совпадающие с точечными объектами (узловая топология).
  • Точечные объекты могут совмещаться с линейными (точечные события).
Примечание:

Земельные участки часто управляются с помощью простых классов пространственных объектов и топологии базы геоданных, так как там набор классов пространственных объектов, необходимых для моделирования земельных участков, границ, угловых точек и контрольных точек следуют правилам совпадения. Еще одним способом управления земельными участками является использование набора данных участков , который автоматически обеспечивает наличие этих слоев. Набор данных участков управляет своей внутренней топологией, так что нет необходимости поддерживать топологию базы геоданных или выполнять какое-либо топологическое редактирование для используемый участками слоев.

Ключевое отличие между участками, моделируемыми в виде простых объектов, и участками в наборе данных участков заключается в том, что в наборе границы участков (линии в наборе данных участков) не являются общими – каждый земельный участок содержит полный набор линий границ; смежные линии участков перекрываются и совпадают друг с другом.

При этом наборы данных участков могут участвовать в топологии базы геоданных; там накладывающиеся линии границ обладают разной геометрией, линии разбиваются и граф топологии строится как обычно.

Два вида: объекты и элементы топологии

Слой полигонов можно описать и использовать:

  • Как наборы географических пространственных объектов (точек, линий и полигонов)
  • Как граф топологических элементов (узлов, ребер, граней и их взаимоотношений).

Это означает, что существуют два варианта работы с пространственными объектами: в одном случае вы работаете с пространственными объектами, имеющие заданные координаты, а в другом – с объектами, представленными в виде упорядоченного графа топологических элементов.

Эволюция покрытий в топологию базы геоданных

Примечание:

Прочтение этого раздела не является необходимым для работы с топологией базы геоданных. Однако прочитайте этот раздел, если вас интересует история появления и развития топологии в базах геоданных.

Происхождение терминов «Дуга-узел» и «Геореляционный»

Покрытия ArcInfo Workstation имеют долгую историю применения и показали важность топологии для обеспечения пространственной целостности данных.

Модель данных покрытия содержит следующие элементы.

Границы пространственных объектов и точки в покрытии хранились в нескольких основных файлах, управляемых ArcInfo Workstation . Файл «ARC» содержал линейную или полигональную геометрию границ в виде топологических ребер, которые назывались «дугами». Файл «LAB» содержал точечные объекты, которые использовались как отправные точки для построения полигонов или как отдельные точечные объекты, например скважины. Другие файлы использовались для определения и сохранения топологических отношений между ребрами полигонов.

Например, файл «PAL» («Polygon-arc list») содержал порядок и направление дуг каждого полигона. С помощью программной логики в ArcInfo Workstation осуществлялась сборка координат каждого полигона для целей отображения, анализа и запроса данных. Упорядоченный список, содержащийся в файле PAL, использовался для поиска и сборки координат ребер, которые хранились в файле ARC. Сборка полигонов происходила по мере необходимости во время работы.

Модель покрытий имела несколько преимуществ:

  • Она использовала простую структуру для хранения топологии.
  • Она позволяла один раз оцифровывать и сохранять дуги, которые затем использовались несколькими пространственными объектами.
  • Она могла отображать полигоны очень большого размера (с тысячами координатных точек), т.к. они были представлены в виде набора ребер (т.е. «дуг»)
  • Структура хранения топологии покрытия была интуитивно понятна. Ее физические топологические файлы были легко понятны пользователям ArcInfo Workstation .
Прежние версии:

Интересный исторический факт: сочетание Arc с менеджером таблиц Info породило название продукта ArcInfo Workstation , из которого развились все последующие Arc-продукты в семействе продуктов Esri – ArcInfo, ArcIMS, ArcGIS и т.д.

Покрытия также имели несколько недостатков:

  • Некоторые операции выполнялись медленно из-за необходимости сборки «на лету» большого количества объектов. Сюда относятся все полигоны и составные объекты, такие как регионы (термин, означающий полигоны, состоящие из нескольких частей) и маршруты (составные линейные объекты).
  • Топологические пространственные объекты (такие как полигоны, регионы и маршруты) были не готовы к использованию, пока не была построена топология покрытия. Если редактировались ребра, вся топология требовала перестроения. (Примечание: в конечном итоге была использована частичная обработка, что позволяло перестраивать только измененные части топологии покрытия). В основном, при редактировании пространственных объектов топологии, необходимо было задействовать алгоритм геометрического анализа для перестроения топологических отношений, независимо от использованной модели хранения данных.
  • Покрытия не позволяли использовать многопользовательское редактирование. Поскольку существовала необходимость обеспечить синхронизацию графа топологии с геометрией пространственных объектов, только один пользователь мог одновременно редактировать топологию. Пользователям приходилось разбивать покрытие на части для одновременного редактирования. Это давало возможность отдельным пользователям «закрывать» и редактировать свою часть данных. Для использования всего массива данных, пользователи должны были скопировать свои части в составной слой данных. Другими словами, разделенные на части наборы данных, которые они редактировали, нельзя было сразу использовать в совместном доступе. Сначала, их было необходимо конвертировать, что означало дополнительные затраты времени и труда.

Шейп-файлы и хранение простой геометрии

В начале 1980-х, покрытия рассматривались как существенное усовершенствование устаревших полигональных и линейных систем, в которых полигоны хранились в виде замкнутых петель. В этих устаревших системах, все координаты пространственных объектов хранились вместе с геометрией этих объектов. До появления покрытий и ArcInfo Workstation , использовались эти простые полигональные и линейные структуры. Эта структура данных была проста, но имела существенный недостаток «дважды оцифрованных границ». Т.е. в геометрии каждого полигона, имеющего общие грани, хранились две копии координат для соседних участков. Основной недостаток состоял в том, что программное обеспечение ГИС того времени не могло управлять целостностью общих ребер. Кроме того, стоимость хранения информации была очень велика, экономить приходилось каждый байт. В начале 80-х годов жесткий диск емкостью 300 МБ был размером со стиральную машину и стоил 30 000 долларов. Хранение двух и более наборов координат было дорогостоящим, а вычисления занимали немало машинного времени. Таким образом, использование топологии покрытия имело реальные преимущества.

В середине 1990-х, на фоне уменьшения стоимости дискового пространства и увеличения вычислительной мощности, усиливался интерес к простым геометрическим структурам. В это же время, наборы ГИС данных становились все доступнее, и пользователи ГИС стали переходить от первичной компиляции данных к их обработке и анализу.

Пользователи хотели повышения быстродействия при работе с данными (например, не ждать вычисления геометрии полигона, который потребовался в данный момент, а просто получить координаты полигонов как можно быстрее). Доступность полной геометрии пространственных объектов оказалась более эффективной. Тысячи пользователей ГИС создали огромное количество доступных наборов данных.

Примерно в это же время компания Esri разработала и опубликовала формат шейп-файла. Шейп-файлы использовали очень простую модель хранения координат пространственных объектов. Каждый шейп-файл представлял один класс пространственных объектов (точечных, линейных или полигональных) и использовал простую модель хранения координат пространственных объектов. Шейп-файлы легко создавались из покрытий и форматов других ГИС. Они быстро стали форматом «де-факто», широко распространились и используются по сей день.

Несколько лет спустя, ArcSDE предложил простую модель хранения данных в таблицах реляционных баз данных. Таблица пространственных объектов может хранить один объект в виде строки, вместе с информацией о его геометрии, а также атрибуты.

Пример такой таблицы, содержащей полигоны штатов, показан ниже. Каждая строка представляет один штат. Столбец shape содержит полигональную геометрию каждого штата.


Эта простая модель пространственных объектов хорошо подходит для механизма обработки SQL. Благодаря использованию реляционных баз данных, увеличение объема данных и количества пользователей не приводило к снижению производительности. Мы начали использовать РСУБД для управления данными ГИС.

Шейп-файлы получили повсеместное распространение и, благодаря ArcSDE, этот механизм хранения простой геометрии стал основной моделью хранения пространственных объектов в РСУБД. (Стремясь обеспечить совместимость данных, компания Esri сыграла ведущую роль в создании спецификации простой геометрии OGC и ISO).

Хранение простых объектов имело явные преимущества:

  • Полная геометрия каждого пространственного объекта содержится в одной строке. Сборка не требуется.
  • Структура данных (физическая схема) очень проста, кроме того, она не только быстрая, но и масштабируемая.
  • Легкость написания интерфейса.
  • Легкость взаимодействия. Позволяет без труда создавать конвертеры для переноса данных в формат простой геометрии из большого количества других форматов, и наоборот. Шейп-файлы широко применялись как формат хранения данных, а также как обменный формат.

Одним из их недостатков являлась невозможность использования топологии для поддержания целостности данных при работе с простыми объектами. Как следствие, пользователи использовали одну модель данных для редактирования и хранения (покрытия), а вторую для обработки (шейп-файлы или слои ArcSDE).

Пользователи стали применять такой гибридный подход для редактирования и работы с данными. Например, пользователи могли редактировать данные в покрытиях, файлах САПР или в других форматах. Затем, они могли конвертировать данные в шейп-файлы для картографического использования. Таким образом, несмотря на то, что структура простых объектов стала удобным форматом прямого использования, она не поддерживала топологическое редактирование и управление совместно используемой геометрией. Базы данных прямого пользования могли использовать простую структуру, но для редактирования использовалась иная топологическая форма. Это давало преимущества при работе с данными. Но, при этом данные устаревали, их требовалось обновлять. Эта схема работала, но при этом появлялась задержка обновления информации. Нижняя линия – топология отсутствует.

ГИС требовали механизма хранения пространственных объектов, использующего простую геометрию объектов, и позволяющего использовать топологию вместе с этой структурой данных. Это означало, что пользователи, наконец, смогут совместить преимущества обоих подходов – транзакционной модели данных, которая позволяет выполнять запросы к топологии, совместное редактирование и контроль над целостностью данных, и простого, хорошо масштабируемого механизма хранения данных, основанного на использовании геометрии простых объектов.

Эта модель данных оказалась простой, быстрой и эффективной. Она позволяет прямое редактирование и одновременную работу любого числа пользователей.

Рабочая среда топологии в ArcGIS

Фактически, топология предполагает нечто большее, чем только модель хранения данных. Топология включает:

  • Полная модель данных (объекты, правила целостности, инструменты редактирования и проверки, топологически-геометрический механизм, позволяющий обрабатывать наборы данных любого размера и сложности, а также набор топологических операторов, способов отображения и инструментов построения запросов).
  • Открытый формат хранения использует набор типовых записей для обозначения простых объектов и топологический интерфейс для построения запросов, поиска элементов топологии и обработки пространственных отношений между ними (т.е., поиск смежных областей и их общих ребер, перемещение вдоль соединенных линий).
  • Возможность взаимодействия пространственных объектов (точки, линии и полигоны), топологических элементов (узлы, ребра, грани) и их отношений.
  • Механизм, который может поддерживать:
    • Очень большие наборы данных, содержащие миллионы пространственных объектов.
    • Одновременное редактирование и обработку несколькими пользователями.
    • Готовую к использованию, всегда доступную геометрию пространственных объектов.
    • Поддержку топологической целостности и поведения.
    • Быстродействующую систему, масштабируемую в зависимости от числа пользователей и редакторов.
    • Гибкую и простую систему.
    • Систему, использующую преимущества механизма SQL реляционной СУБД и среду транзакций.
    • Систему, поддерживающую многопользовательское редактирование, длинные транзакции, историческое архивирование и репликацию.

В топологии базы геоданных, процесс проверки определяет общие координаты пространственных объектов (как в пределах одного класса пространственных объектов, так и между классами). Алгоритм кластеризации обеспечивает точное совпадение общих координат. Общие координаты хранятся как часть простой геометрии каждого пространственного объекта.

Это обеспечивает быстрый и масштабируемый поиск топологических элементов (узлов, ребер и граней). Дополнительным преимуществом является работа с механизмом SQL РСУБД и управление транзакциями.

При редактировании или обновлении данных, новые пространственные объекты можно использовать сразу после добавления. Обновленные области карты, так называемые «измененные области», маркируются в каждом классе пространственных объектов. В любое время, пользователи могут выполнить топологический анализ и проверку измененных областей. Перестройка требуется только для топологии измененных областей, что сокращает время, требующееся на обработку.

В результате, топологические примитивы (узлы, ребра и грани), отношения между ними и пространственные объекты, в которые они входят, можно быстро обнаружить и собрать. Такая топология имеет следующие преимущества:

  • Для хранения пространственных объектов используется простая геометрия. Модель хранения является открытой, эффективной, и масштабируется под большие объемы и многочисленных пользователей.
  • Модель данных простых объектов является транзакционной и многопользовательской. Предыдущие топологические модели данных не масштабировались и имели серьезные ограничения при многопользовательской работе.
  • Топология базы геоданных полностью поддерживает все возможности длинных транзакций и версионных данных базы геоданных. Топологию базы геоданных не нужно разбивать для многопользовательской работы, пользователи могут одновременно редактировать базу топологических данных – даже свои собственные версии одних и тех же пространственных объектов.
  • Классы пространственных объектов могут содержать очень большое количество объектов (сотни миллионов), при этом их производительность не снижается.
  • Такое решение топологии является аддитивным. Как правило, вы можете добавить топологию к существующей схеме пространственно связанных классов объектов. Или, вам придется заново создать схему, имеющею возможность использования топологических примитивов, и загрузить в нее имеющиеся пространственные данные.
  • Для редактирования геометрии и работы с данными, как правило, достаточно одной модели.
  • Это стало возможным благодаря использованию спецификаций Открытого геопространственного консорциума и ISO для хранения геометрии всех пространственных объектов.
  • Моделирование данных более естественно, т.к. оно основано на пользовательских пространственных объектах (таких как земельные участки, улицы, типы почв и водоразделы) вместо топологических примитивов (узлов, ребер и граней). Пользователи начинают оперировать категориями целостности данных относительно реальных объектов, а не следить за целостностью топологических примитивов. Например, как должны себя вести эти земельные участки? Такой подход упрощает моделирование всех типов географических объектов. Он упрощает представление о реальных объектах: улицах, типах почв, районах переписи, железнодорожных путях, лесах, ландшафтах и т.д.
  • Топология базы геоданных обеспечивает то же информационное наполнение, что и предыдущие версии топологии – вне зависимости от того, храните ли вы топологический линейный граф и рассчитываете геометрию пространственных объектов (как в покрытиях) или храните геометрию объектов и вычисляете элементы топологии и связи (как в базах геоданных).

В тех случаях, когда пользователи предпочитают хранить топологические примитивы, они могут создавать таблицы и размещать в них топологию и связи для различных аналитических операций и для обмена данными (например, если необходимо разместить информацию в Oracle Spatial, который хранит таблицы топологических примитивов).

С практической точки зрения, топологическое решение ArcGIS работает. Оно масштабируется без потери производительности, как по объему данных, так и по количеству пользователей. Оно позволяет использовать широкий набор инструментов проверки и редактирования для построения и обработки топологии в базе геоданных. Оно включает мощные и гибкие инструменты моделирования данных, которые позволяют пользователям создавать удобные системы, работающие как на файловом уровне, так и на уровне реляционных баз данных, и использующие любое количество схем.

Локальная сеть - важный элемент любого современного предприятия, без которого невозможно добиться максимальной производительности труда. Однако чтобы использовать возможности сетей на полную мощность, необходимо их правильно настроить, учитывая также и то, что расположение подсоединенных компьютеров будет влиять на производительность ЛВС.

Понятие топологии

Топология локальных компьютерных сетей - это месторасположение рабочих станций и узлов относительно друг друга и варианты их соединения. Фактически это архитектура ЛВС. Размещение компьютеров определяет технические характеристики сети, и выбор любого вида топологии повлияет на:

  • Разновидности и характеристики сетевого оборудования.
  • Надежность и возможность масштабирования ЛВС.
  • Способ управления локальной сетью.

Таких вариантов расположения рабочих узлов и способов их соединения много, и количество их увеличивается прямо пропорционально повышению числа подсоединенных компьютеров. Основные топологии локальных сетей - это "звезда", "шина" и "кольцо".

Факторы, которые следует учесть при выборе топологии

До того как окончательно определиться с выбором топологии, необходимо учесть несколько особенностей, влияющих на работоспособность сети. Опираясь на них, можно подобрать наиболее подходящую топологию, анализируя достоинства и недостатки каждой из них и соотнеся эти данные с имеющимися для монтажа условиями.

  • Работоспособность и исправность каждой из рабочих станций, подсоединенных к ЛВС. Некоторые виды топологии локальной сети целиком зависят от этого.
  • Исправность оборудования (маршрутизаторов, адаптеров и т. д.). Поломка сетевого оборудования может как полностью нарушить работу ЛВС, так и остановить обмен информацией с одним компьютером.
  • Надежность используемого кабеля. Повреждение его нарушает передачу и прием данных по всей ЛВС или же по одному ее сегменту.
  • Ограничение длины кабеля. Этот фактор также важен при выборе топологии. Если кабеля в наличии немного, можно выбрать такой способ расположения, при котором его потребуется меньше.

О топологии «звезда»

Этот вид расположения рабочих станций имеет выделенный центр - сервер, к которому подсоединены все остальные компьютеры. Именно через сервер происходят процессы обмена данными. Поэтому оборудование его должно быть более сложным.

Достоинства:

  • Топология локальных сетей "звезда" выгодно отличается от других полным отсутствием конфликтов в ЛВС - это достигается за счет централизованного управления.
  • Поломка одного из узлов или повреждение кабеля не окажет никакого влияния на сеть в целом.
  • Наличие только двух абонентов, основного и периферийного, позволяет упростить сетевое оборудование.
  • Скопление точек подключения в небольшом радиусе упрощает процесс контроля сети, а также позволяет повысить ее безопасность путем ограничения доступа посторонних.

Недостатки:

  • Такая локальная сеть в случае отказа центрального сервера полностью становится неработоспособной.
  • Стоимость "звезды" выше, чем остальных топологий, поскольку кабеля требуется гораздо больше.

Топология «шина»: просто и дешево

В этом способе соединения все рабочие станции подключены к единственной линии - коаксиальному кабелю, а данные от одного абонента отсылаются остальным в режиме полудуплексного обмена. Топологии локальных сетей подобного вида предполагают наличие на каждом конце шины специального терминатора, без которого сигнал искажается.

Достоинства:

  • Все компьютеры равноправны.
  • Возможность легкого масштабирования сети даже во время ее работы.
  • Выход из строя одного узла не оказывает влияния на остальные.
  • Расход кабеля существенно уменьшен.

Недостатки:

  • Недостаточная надежность сети из-за проблем с разъемами кабеля.
  • Маленькая производительность, обусловленная разделением канала между всеми абонентами.
  • Сложность управления и обнаружения неисправностей за счет параллельно включенных адаптеров.
  • Длина линии связи ограничена, потому эти виды топологии локальной сети применяют только для небольшого количества компьютеров.

Характеристики топологии «кольцо»

Такой вид связи предполагает соединение рабочего узла с двумя другими, от одного из них принимаются данные, а второму передаются. Главной же особенностью этой топологии является то, что каждый терминал выступает в роли ретранслятора, исключая возможность затухания сигнала в ЛВС.

Достоинства:

  • Быстрое создание и настройка этой топологии локальных сетей.
  • Легкое масштабирование, требующее, однако, прекращения работы сети на время установки нового узла.
  • Большое количество возможных абонентов.
  • Устойчивость к перегрузкам и отсутствие сетевых конфликтов.
  • Возможность увеличения сети до огромных размеров за счет ретрансляции сигнала между компьютерами.

Недостатки:

  • Ненадежность сети в целом.
  • Отсутствие устойчивости к повреждениям кабеля, поэтому обычно предусматривается наличие параллельной резервной линии.
  • Большой расход кабеля.

Типы локальных сетей

Выбор топологии локальных сетей также следует производить, основываясь на имеющемся типе ЛВС. Сеть может быть представлена двумя моделями: одноранговой и иерархической. Они не очень отличаются функционально, что позволяет при необходимости переходить от одной из них к другой. Однако несколько различий между ними все же есть.

Что касается одноранговой модели, ее применение рекомендуется в ситуациях, когда возможность организации большой сети отсутствует, но создание какой-либо системы связи все же необходимо. Рекомендуется создавать ее только для небольшого числа компьютеров. Связь с централизованным управлением обычно применяется на различных предприятиях для контроля рабочих станций.

Одноранговая сеть

Этот тип ЛВС подразумевает равноправие каждой рабочей станции, распределяя данные между ними. Доступ к информации, хранящейся на узле, может быть разрешен либо запрещен его пользователем. Как правило, в таких случаях топология локальных компьютерных сетей «шина» будет наиболее подходящей.

Одноранговая сеть подразумевает доступность ресурсов рабочей станции остальным пользователям. Это означает возможность редактирования документа одного компьютера при работе за другим, удаленной распечатки и запуска приложений.

Достоинства однорангового типа ЛВС:

  • Легкость реализации, монтажа и обслуживания.
  • Небольшие финансовые затраты. Такая модель исключает надобность в покупке дорогого сервера.

Недостатки:

  • Быстродействие сети уменьшается пропорционально увеличению количества подсоединенных рабочих узлов.
  • Отсутствует единая система безопасности.
  • Доступность информации: при выключении компьютера данные, находящиеся в нем, станут недоступными для остальных.
  • Нет единой информационной базы.

Иерархическая модель

Наиболее часто используемые топологии локальных сетей основаны именно на этом типе ЛВС. Его еще называют «клиент-сервер». Суть данной модели состоит в том, что при наличии некоторого количества абонентов имеется один главный элемент - сервер. Этот управляющий компьютер хранит все данные и занимается их обработкой.

Достоинства:

  • Отличное быстродействие сети.
  • Единая надежная система безопасности.
  • Одна, общая для всех, информационная база.
  • Облегченное управление всей сетью и ее элементами.

Недостатки:

  • Необходимость наличия специальной кадровой единицы - администратора, который занимается мониторингом и обслуживанием сервера.
  • Большие финансовые затраты на покупку главного компьютера.

Наиболее часто используемая конфигурация (топология) локальной компьютерной сети в иерархической модели - это «звезда».

Выбор топологии (компоновка сетевого оборудования и рабочих станций) является исключительно важным моментом при организации локальной сети. Выбранный вид связи должен обеспечивать максимально эффективную и безопасную работу ЛВС. Немаловажно также уделить внимание финансовым затратам и возможности дальнейшего расширения сети. Найти рациональное решение - непростая задача, которая выполняется благодаря тщательному анализу и ответственному подходу. Именно в таком случае правильно подобранные топологии локальных сетей обеспечат максимальную работоспособность всей ЛВС в целом.