Могущественный альфа-канал

Растровое изображение образуется из целого количества строк и столбцов. Для любого экземпляра класса, производного от BitmapSource, эти размеры могут быть получены из свойств PixelHeight и PixelWidth .

На концептуальном уровне биты пикселов хранятся в двумерном массиве, размеры которого равны PixelHeight и PixelWidth. Фактически массив имеет всего одно измерение, но основные проблемы возникают с представлением отдельных пикселов. В этом представлении, иногда называемым «цветовым форматом» растрового изображения, может использоваться от одного бита на пиксел (для изображений, состоящих только из черного и белого цветов) до одного байта на пиксел (для изображений, состоящих из оттенков серого или растров с 256-цветовой палитрой), 3 или 4 байтов на пиксел (для полноцветных изображений с прозрачностью или без нее) и даже более для больших цветовых разрешений.

Однако для работы с WriteableBitmap был установлен единый цветовой формат. В любом объекте WriteableBitmap каждый пиксел состоит из четырех байтов. Таким образом, общее количество байтов в массиве пикселов растрового изображения равно:

PixelHeight * PixelWidth * 4

Изображение начинается с верхней строки и следует слева направо. Выравнивание строк отсутствует. Для каждого пиксела байты следуют в определенном порядке:

Синий, Зеленый, Красный, Альфа

Значения байтов лежат в диапазоне от 0 до 255, как в значениях Color. Предполагается, что цветовые значения WriteableBitmap соответствуют схеме sRGB («стандарт RGB»), а следовательно, совместимы со значениями Windows Runtime Color (кроме значения Colors.Transparent - см. далее).

Пикселы WriteableBitmap хранятся в предумноженном альфа-канале (premultiplied alpha) . Вскоре я расскажу, что это значит.

Порядок «синий-зеленый-красный-альфа» на первый взгляд противоположен тому, который обычно используется для обозначения цветовых байтов (и их порядку в методе Color.FromArgb), но он вполне логичен, если учесть, что пиксел WriteableBitmap в действительности представляет собой 32-разрядное целое без знака, у которого в старшем байте хранится альфа-канал, а в младшем - синяя составляющая. В операционных системах на базе микропроцессоров Intel это целое число хранится в прямом (little-endian) порядке байтов.

Давайте построим растровое изображение. Для этого мы создадим объект WriteableBitmap и заполним его пикселами. Чтобы упростить вычисления, WriteableBitmap будет состоять из 256 строк и 256 столбцов. Левый верхний угол будет черным, правый верхний - синим, левый нижний - красным, и правый нижний - фиолетовый (сочетание красного и синего). Окраска представляет собой разновидность градиента, но она отличается от градиентов, доступных в Windows Runtime.

Файл XAML определяет элемент Image, которому присваивается экземпляр класса производного от ImageSource:

Создать экземпляр WriteableBitmap в XAML невозможно, потому что у этого класса нет конструктора без параметров. Файл фонового кода создает и строит WriteableBitmap в обработчике события Loaded. Ниже приведен полный файл вместе с необходимыми директивами using. Сам класс WriteableBitmap определяется в пространстве имен Windows.UI.Xaml.Media.Imaging:

Using System.IO; using Windows.UI.Xaml; using Windows.UI.Xaml.Media.Imaging; using Windows.UI.Xaml.Controls; using System.Runtime.InteropServices.WindowsRuntime; namespace WinRTTestApp { public sealed partial class MainPage: Page { public MainPage() { this.InitializeComponent(); Loaded += MainPage_Loaded; } private async void MainPage_Loaded(object sender, RoutedEventArgs e) { WriteableBitmap bitmap = new WriteableBitmap(256, 256); byte pixels = new byte; for (int y = 0; y < bitmap.PixelHeight; y++) for (int x = 0; x < bitmap.PixelWidth; x++) { int index = 4 * (y * bitmap.PixelWidth + x); pixels = (byte)x; // Blue pixels = 0; // Green pixels = (byte)y; // Red pixels = 255; // Alpha } using (Stream pixelStream = bitmap.PixelBuffer.AsStream()) { await pixelStream.WriteAsync(pixels, 0, pixels.Length); } bitmap.Invalidate(); image.Source = bitmap; } } }

Конструктору WriteableBitmap должна передаваться ширина и высота изображения в пикселах. На основании этих размеров программа выделяет память для массива байтов:

Byte pixels = new byte;

Размер массива для WriteableBitmap всегда вычисляется по этой формуле.

Циклы по строкам и столбцам перебирают все пикселы изображения. Индекс для обращения к конкретному пикселу в массиве вычисляется следующим образом:

Int index = 4 * (y * bitmap.PixelWidth + x);

В этом конкретном примере два цикла обращаются к пикселам в порядке их хранения в массиве, так что индекс не приходится пересчитывать заново для каждого пиксела. Его можно инициализировать нулем, а потом увеличивать следующим образом:

Int index = 0; for (int y = 0; y < bitmap.PixelHeight; y++) for (int x = 0; x < bitmap.PixelWidth; x++) { int index = 4 * (y * bitmap.PixelWidth + x); pixels = (byte)x; // Blue pixels = 0; // Green pixels = (byte)y; // Red pixels = 255; // Alpha }

Такое решение почти наверняка будет работать быстрее моего, но в целом оно обладает меньшей гибкостью.

Также можно определить цикл по index с вычислением x и y по текущему значению переменной. Важна не конкретная реализация, а то, чтобы в результате перебора были обработаны все пикселы (не всегда, конечно, но в большинстве случаев).

После того, как массив byte будет заполнен, пикселы необходимо перенести в объект WriteableBitmap. Этот процесс на первый взгляд выглядит довольно странно. Свойство PixelBuffer, определяемое WriteableBitmap, относится к типу IBuffer , который определяет всего два свойства: Capacity и Length. Как было указано ранее, объект IBuffer обычно представляет область памяти, находящуюся под управлением операционной системы с механизмом подсчета ссылок; когда память становится ненужной, объект автоматически уничтожается. Байты необходимо перенести в такой буфер.

К счастью, существует метод расширения AsStream , позволяющий интерпретировать объект IBuffer как объект.NET Stream:

Stream pixelStream = bitmap.PixelBuffer.AsStream()

Чтобы использовать этот метод расширения, необходимо включить в программу директиву using для пространства имен System.Runtime.InteropServices.WindowsRuntime. Без этой директивы InlelliSense не будет знать о существовании этого метода.

Далее обычный метод Write, определяемый классом Stream, используется для записи байтового массива в объект Stream; также можно использовать метод WriteAsync, как сделано у меня. Так как изображение невелико, а вызов просто передает массив байтов через API, метод Write отработает достаточно быстро для выполнения операции в потоке пользовательского интерфейса. Далее объект Stream уничтожается «вручную» или автоматически, или же логика Stream размешается в директиве using, как это сделано у меня:

Using (Stream pixelStream = bitmap.PixelBuffer.AsStream()) { await pixelStream.WriteAsync(pixels, 0, pixels.Length); }

Привыкните к тому, что при каждом изменении пикселов WriteableBitmap следует вызывать для изображения Invalidate:

Bitmap.Invalidate();

Этот вызов требует перерисовки растрового изображения. В этом конкретном контексте его присутствие не обязательно, но в других случаях он важен. Остается вывести построенное изображение. Программа просто задает его свойству Source элемента Image в файле XAML:

Image.Source = bitmap;

Результат:

Если сохранить объект Stream и массив пикселов в поле для дальнейших манипуляций с растровым изображением (например, его изменения со временем), перед вызовом WriteAsync следует вставить вызов Seek для возвращения текущей позиции к началу:

PixelStream.Seek(0, SeekOrigin.Begin);

Учтите, что в объект растрового изображения можно записать только часть массива байтов. Предположим, вы изменили пикселы в диапазоне от (x1, y1) до (x2, y2) (не включая последнюю точку). Сначала определите индексы байтов, соответствующих этим двум координатам:

Int index1 = 4 * (y1 * bitmap.PixelWidth + x1); int index2 = 4 * (y2 * bitmap.PixelWidth + x2);

Затем укажите, что вы собираетесь обновить пикселы от index1 до index2:

PixelStream.Seek(index, SeekOrigin.Begin); pixelStream.Write(pixels, index1, index2 - index1); bitmap.Invalidate();

Попробуем реализовать другую разновидность пользовательского градиента. В следующей программе CircularGradient градиент вычисляется на основании угла конкретного пиксела относительно центра изображения (вычисления проще, чем можно ожидать).

Файл XAML определяет Ellipse с толстым контуром и объектом ImageBrush для свойства Stroke. Анимация поворачивает объект Ellipse относительно центра:

Обработчик Loaded в файле фонового кода почти не отличается от предыдущей программы. Два цикла перебирают строки и столбцы изображения, каждый пиксел расположен в позиции (x,y) относительно левого верхнего угла. Пиксел в центре имеет координаты (bitmap.PixelWidth/2, bitmap.PixelHeight/2). В результате вычитания координат центра из координат конкретного пиксела и деления на ширину и высоту изображения координаты пиксела преобразуются в значения из диапазона от -1/2 до 1/2, которые затем можно передать методу Math.Atan2 дли получения нужного угла:

Using System.IO; using Windows.UI.Xaml; using Windows.UI.Xaml.Media.Imaging; using Windows.UI.Xaml.Controls; using System.Runtime.InteropServices.WindowsRuntime; using System; namespace WinRTTestApp { public sealed partial class MainPage: Page { public MainPage() { this.InitializeComponent(); Loaded += MainPage_Loaded; } private async void MainPage_Loaded(object sender, RoutedEventArgs e) { WriteableBitmap bitmap = new WriteableBitmap(256, 256); byte pixels = new byte; int index = 0; int centerX = bitmap.PixelWidth / 2; int centerY = bitmap.PixelHeight / 2; for (int y = 0; y < bitmap.PixelHeight; y++) for (int x = 0; x < bitmap.PixelWidth; x++) { double angle = Math.Atan2(((double)y - centerY) / bitmap.PixelHeight, ((double)x - centerX) / bitmap.PixelWidth); double fraction = angle / (2 * Math.PI); pixels = (byte)(fraction * 255); // Blue pixels = 0; // Green pixels = (byte)(255 * (1 - fraction)); // Red pixels = 255; // Alpha } using (Stream pixelStream = bitmap.PixelBuffer.AsStream()) { await pixelStream.WriteAsync(pixels, 0, pixels.Length); } bitmap.Invalidate(); imageBrush.ImageSource = bitmap; } } }

Этот угол преобразуется в дробную величину в диапазоне от 0 до 1 для вычисления градиента. Вот как выглядит полное растровое изображение, используемое объектом ImageBrush, заданным свойству Fill объекта Ellipse:

Как было показано ранее, кисти в Windows Runtime обычно растягиваются по элементу, к которому они применяются. С кистью ImageBrush происходит то же самое, так что в каком-то смысле размер базового изображения не так уж важен... До определенной степени, конечно, - слишком маленькое изображение не обладает достаточной детализацией, а слишком большое превращается в напрасную трату пикселов.

Когда растровое изображение отображается на поверхности (скажем, на экране монитора), его пикселы не всегда просто передаются на поверхность. Если растровое изображение поддерживает прозрачность, каждый пиксел должны объединяться с цветом существующей поверхности в соответствующей точке на основании альфа-канала этого пиксела. Если альфа-канал равен 255 (полная непрозрачность), пиксел изображения просто копируется на поверхность. Если альфа-канал равен 0 (прозрачность), пиксел вообще не копируется. Если альфа-канал равен 128, результатом является среднее значение цвета пиксела изображения и цвета поверхности перед выводом.

Следующие формулы демонстрируют соответствующие вычисления для одного пиксела. В реальности значения A, R, G и B лежат в диапазоне от 0 до 255, но следующие упрощенные формулы предполагают, что они были нормализованы до диапазона от 0 до 1. Подстрочные пояснения обозначают «результат» отображения частично прозрачного пиксела «изображения» на существующей «поверхности»:

Обратите внимание на второе умножение в каждой строке. В нем задействован только сам пиксел изображения, но не поверхность. Отсюда следует, что весь процесс отображения растрового изображения на поверхности можно ускорить предварительным умножением значений R, G и В пиксела на величину А:

Допустим, растровое изображение без предумножения альфа-канала содержит пиксел со значением ARGB (192,40,60,255). Альфа-канал 192 обозначает 75-процентную непрозрачность (192, деленное на 255). Эквивалентный пиксел с предумножением альфа-канала имеет вид (192, 30, 45, 192): красная, зеленая и синяя составляющие были умножены на 75 %.

При отображении WriteableBitmap операционная система предполагает, что пиксел имеет формат с предумножением альфа-канала. У произвольного пиксела ни одно из значений R, G и В не может превышать значение А. Если это условие не выполняется, ничего ужасного не случится, но вы не получите желаемые цвета и уровни прозрачности.

Рассмотрим несколько примеров. В статье "Масштабирование элементов в WinRT" было показано, как перевернуть изображение и «растворить» его, чтобы оно выглядело как отражение. Но поскольку Windows Runtime не поддерживает маски прозрачности, для реализации эффекта прозрачности мне пришлось накрыть изображение полупрозрачным прямоугольником.

В проекте ReflectedAlphaImage было использовано другое решение. Файл XAML содержит два элемента Image, занимающих одну ячейку панели Grid из двух строк. Для второго элемента Image задаются свойства RenderTransformOrigin и ScaleTransform, обеспечивающие его «отражение» относительно нижней стороны, но изображение при этом не указывается:

.jpg" HorizontalAlignment="Center" />

Растровое изображение, на которое ссылается первый элемент Image, должно загружаться независимо в файле фонового кода. (Возможно, у вас возник вопрос - нельзя ли получить объект WriteableBitmap на основе объекта, заданного свойству Source первого объекта Image? Но этот объект относится к типу BitmapSource, а создать WriteableBitmap по BitmapSource невозможно.) Если изменять загруженное изображение не требуется, конструктор может выглядеть примерно так:

Loaded += async (sender, e) =>.jpg"); RandomAccessStreamReference refStream = RandomAccessStreamReference.CreateFromUri(uri); IRandomAccessStreamWithContentType fileStream = await refStream.OpenReadAsync(); WriteableBitmap bitmap = new WriteableBitmap(1, 1); bitmap.SetSource(fileStream); reflectedImage.Source = bitmap; };

Этот код следует поместить в обработчик Loaded, потому что в нем используется асинхронное выполнение. Обратите внимание на возможность создания WriteableBitmap с фактически «неизвестным» размером при поступлении данных из метода SetSource. Читая поток JPEG, объект WriteableBitmap может определить фактические размеры в пикселах.

Однако когда объект FileStream передается методу SetSource объекта WriteableBitmap, а также при его задании свойству Source элемента Image, растровое изображение еще не загружено. Загрузка осуществляется асинхронно в коде WriteableBitmap. Это означает, что приступать к изменению пикселов пока нельзя, потому что данные еще не получены! Конечно, было бы удобно, если бы класс WriteableBitmap определял событие, инициируемое при завершении загрузки растрового изображения в SetSource, но такого события нет. Событие ImageOpened элемента Image также не может предоставить эту информацию WriteableBitmap.

Итак, нам остается загрузить растровый файл самостоятельно, а потом внести в него изменения. Код, который я собираюсь привести, можно немного упростить при помощи вспомогательных классов, упоминавшихся ранее, но давайте сначала посмотрим, как это делается без классов. Процесс выглядит так:

Using System.IO; using Windows.UI.Xaml; using Windows.UI.Xaml.Media.Imaging; using Windows.UI.Xaml.Controls; using System.Runtime.InteropServices.WindowsRuntime; using System; using Windows.Storage.Streams; namespace WinRTTestApp { public sealed partial class MainPage: Page { public MainPage() { this.InitializeComponent(); Loaded += MainPage_Loaded; } private async void MainPage_Loaded(object sender, RoutedEventArgs e).jpg"); RandomAccessStreamReference refStream = RandomAccessStreamReference.CreateFromUri(uri); // Создание буфера для чтения потока Windows.Storage.Streams.Buffer buffer = null; // Чтение всего файла using (IRandomAccessStreamWithContentType fileStream = await refStream.OpenReadAsync()) { buffer = new Windows.Storage.Streams.Buffer((uint)fileStream.Size); await fileStream.ReadAsync(buffer, (uint)fileStream.Size, InputStreamOptions.None); } // Создание объекта WriteableBitmap с неизвестным размером WriteableBitmap bitmap = new WriteableBitmap(1, 1); // Создание потока памяти для передачи данных using (InMemoryRandomAccessStream memoryStream = new InMemoryRandomAccessStream()) { await memoryStream.WriteAsync(buffer); memoryStream.Seek(0); // Поток в памяти используется как источник данных Bitmap bitmap.SetSource(memoryStream); } // Получение пикселов из растрового изображения byte pixels = new byte; int index = 0; using (Stream pixelStream = bitmap.PixelBuffer.AsStream()) { await pixelStream.ReadAsync(pixels, 0, pixels.Length); // Применение прозрачности к пикселам for (int y = 0; y < bitmap.PixelHeight; y++) { double opacity = (double)y / bitmap.PixelHeight; for (int x = 0; x < bitmap.PixelWidth; x++) for (int i = 0; i < 4; i++) { pixels = (byte)(opacity * pixels); index++; } } // Пикселы помещаются обратно в изображение pixelStream.Seek(0, SeekOrigin.Begin); await pixelStream.WriteAsync(pixels, 0, pixels.Length); } bitmap.Invalidate(); reflectedImage.Source = bitmap; } } }

Имя класса Buffer должно задаваться полностью уточненным, с включением пространства имен Windows.Storage.Streams, потому что в пространстве имен System тоже присутствует класс с именем Buffer.

Одна из наших целей - передача объекта типа IRandomAccessStream методу SetSource объекта WriteableBitmap. Однако мы хотим немедленно приступить к работе с пикселами полученного изображения, а это невозможно, пока файл не будет прочитан полностью.

Этим объясняется создание объекта Buffer для чтения объекта fileStream и последующее использование того же объекта Buffer для чтения содержимого в InMemoryRandomAccessStream . Как подсказывает название, класс InMemoryRandomAccessStream реализует интерфейс IRandomAccessStream, чтобы его экземпляры можно было передавать методу SetSource класса WriteableBitmap (обратите внимание на необходимость предварительного обнуления позиции в потоке).

Важно понимать, что здесь мы работаем с двумя разными блоками данных. Объект fileStream соответствует файлу PNG, который в данном случае представляет собой блок из 82 824 байт сжатых графических данных. Объект InMemoryRandomAccessStream содержит тот же блок данных. После того как поток будет передан методу SetSource класса WriteableBitmap, он декодируется на строки и столбцы пикселов. Размер массива pixels составляет 512 000 байт, и объект pixelStream работает с этими распакованными пикселами. Объект pixelStream сначала используется для чтения пикселов в массив pixels, а затем для их записи обратно в изображение.

Если вы хотите посмотреть, что произойдет при изменении одного лишь альфа байта, замените следующий код внутреннего цикла:

If (i == 3) { pixels = (byte)(opacity * pixels); index++; }

Между двумя вызовами выполняется непосредственное применение градиентной прозрачности. Если бы среда Windows Runtime не предполагала, что пикселы WriteableBitmap хранятся в формате с предумножением альфа-канала, то достаточно было бы модифицировать только альфа-байт. С предумножением альфа-канала также необходимо модифицировать и цветовые данные. Результат выглядит так:

Нужный уровень прозрачности достигается, но только при использовании белого фона. Если фон будет черным, прозрачности не будет вообще! Взгляните на формулы, и вам все станет ясно.

Предположим, вы хотите изменить проект CircularGradient так, чтобы в нем использовался градиент от однородного цвета к полной прозрачности. Измененный код для задания четырех байтов выглядит так:

Pixels = (byte)(fraction * 255); // Blue pixels = 0; // Green pixels = 0; // Red pixels = (byte)(fraction * 255); // Alpha

Синему и альфа-компоненту присваиваются одинаковые значения. В формате без предумножения альфа-канала синяя составляющая всегда будет равна 255. Результат:

Альфа-канал это информация о прозрачности определенных участков видео. Другими словами это видео с прозрачным фоном.

Альфа-канал позволяет оставить нужные нам объекты видимыми, а не нужное пространство сделать прозрачным. По сути, действует альфа-канал так же, как действует маска. Поэтому его иногда называют маска-канал.

В отличи от работы с масками, работа с альфой гораздо проще. Если видеоролик содержит альфа-канал, то все что нам нужно сделать, чтобы добиться нужного а – просто включить его.

Как использовать альфа-канал в Sony Vegas

Для примера мы возьмем видеокомпозицию с использованием черно-белой маски «два сердца», которую мы сделали в уроке « » (рис.4). Удалим из этой композиции клип 1 и клип 2, так как когда футаж будет готов, вместо них мы сможем подставить любое видео или фото.

В Sony Vegas есть возможность получить видео содержащее альфа-канал в одном из двух форматов.mov или.avi.

В меню file выбираем команду render as… (рис. 5)

В появившемся окне в поле «имя файла» дадим имя файлу. В поле «тип файла» выбираем Quick time 7 (*.mov). В поле template (шаблон) выбираем Default Template (uncompressed) (шаблон по умолчанию (без сжатия)), и нажимаем кнопку custom…(пользовательский) (рис. 6).

В появившемся окне (рис. 7), в поле Frame size (размер рамки) выбираем шаблон видео, который мы хотим получить на выходе. В поле Frame rate (частота кадров) выбираем нужный вам шаблон частоты кадров. Самое главное в поле Compressed depth (глубина сжатия) выбрать 32 bpp color (32 миллиона цветов), в противном случае альфа-канал не сохранится.

Чтобы футаж с альфой не содержал звуковой дорожки можно перейти на вкладку audio и снять галочку в поле Include audio (включите аудио) (рис. 8). Это немного уменьшит размер вашего файла.

После всех настроек нужно нажать на кнопку ОК, а в следующем окне на кнопку сохранить. Вот и все, теперь полученное видео будет содержать альфа-канал.

Если вы хотите вывести видео с альфой в avi, нужно сделать все также, как в первом примере, только в поле «тип файла» вместо Quick time 7 (*.mov). нужно выбрать Video for Windows (*.avi).

Затем, нажав на кнопку custom… в поле Compressed depth (глубина сжатия) выбрать uncompressed (без сжатия) и поставить галочку в поле Render alpha channel (uncompressed video formats only) (выводить альфа-канал). (рис. 9).

Основным недостатком футажей с альфой, является их размер. Так как сжатие в этом случае не используется, то размеры файла достаточно велики. В любом случае вам решать, что для вас важнее, сэкономленное благодаря использованию альфа-канала время, или место на жестком диске.

Этот метод часто применяется для многопроходной обработки изображения с последующей комбинацией этих частей в единое двумерное результирующее изображение. Таким образом, альфа канал представляет собой пустое пространство, или просто прозрачность.

Расчет результирующего цвета

Расчет яркости результирующего пикселя после наложения двух пикселей друг на друга выполняется по формуле

Result = Background * (1 Alpha ) + Foreground * Alpha

или (иная запись)

Result = Background + (Foreground Background ) * Alpha Background - яркость фонового пикселя, Foreground - яркость накладываемого пикселя, Alpha - непрозрачность накладываемого пикселя.

Вторая приведённая запись отображает следующий смысл: значение Alpha указывает относительное положение на отрезке [Background ..Foreground ].

Использование в web-дизайне, поддержка в формате PNG и других

Альфа-канал, также известный как маска-канал, это просто способ объединить переходную прозрачность с изображением. Формат GIF поддерживает простую бинарную прозрачность (когда любой пиксель может быть либо полностью прозрачным, либо абсолютно непрозрачным). Формат PNG позволяет использовать 254 или 65534 уровня частичной прозрачности.

Применение альфа-канала также возможно в Canvas , например для полупрозрачности фигур или изображений.

Давайте рассмотрим работу с альфа-каналами: сохранение, обработка, загрузка выделений, логические операции.

Наверное, вы уже сталкивались с тем, что одну и ту же область приходится выделять несколько раз в процессе редактирования изображения. А если эта область имеет сложную форму, то каждый раз повторяется один и тот же мучительный процесс.. Безрадостно. Хотелось бы сохранить где-то созданное выделение и загружать его по мере потребностей. Именно такую возможность предоставляют альфа-каналы - объекты Photoshop, позволяющие хранить выделения. Поскольку выделять можно с разной степенью прозрачности, то в альфа-каналах хранятся маски - представления выделений в виде градаций серого, где белый цвет соответствует выделенным областям, черный - невыделенным, серый - частично выделенным. Итак, помощью альфа-каналов можно сохранять, загружать и редактировать выделения. Работа с альфа-каналами напоминает работу в быстрой маске. Рассмотрим это на примере.

Сохранение и загрузка выделений.


Редактирование выделений в альфа-каналах. Работа с градиентными масками.


Логические операции с альфа-каналами.

Если при выборе пункта меню Select > Save Selection в списке Channel выбрать имя существующего канала, то у программы возникает естественный вопрос: если мы пытаемся поместить туда что-то новое, то что же делать со старым? Правила взаимодействия старого и нового содержимого канала определяются при помощи логической операции, выбранной в поле Operation .


Эти операции вам уже знакомы. При выборе пункта Replace Channel всё содержимое канала будет заменено на новое сохраняемое выделение. Если Вы включите переключатель Add to Channel , то к выделению, сохранённому в канале, будет добавлено сохраняемое выделение (операция сложения выделений). Операции вычитания (Substract from channel ) и пересечения (Intersect with channel ) выполняются аналогично подобным операциям с выделениями. Обязательно попробуйте работу этих операций. Только учтите, что пересечь или вычесть выделение из канала можно только в том случае, если сохраняемое выделение "перекрывает" уже сохранённое в данном канале. (т.е. они должны иметь общие области, иначе нечего будет пересекать и вычитать).


При загрузке выделения из канала с помощью пункта меню Select > также возможна логическая операция при условии, что мы будем загружать выделение в файл, уже содержащий выделенную область. Взаимодействовать будут старое выделение и новое, загружаемое из альфа-канала. Все операции стандартны.