Как узнать есть ли гироскоп в смартфоне. Что такое гироскоп в телефоне и для чего он нужен. Есть ли минусы у гироскопа

Почти все современные мобильные устройства оборудованы различными датчиками. Зачастую в телефоны встраиваются магнитометрические и термальные датчики, а также приборы, реагирующие на освещенность и изменение расстояния (приближение или удаление). Кроме того, любой гаджет оснащен акселерометром и гироскопом. Все эти элементы являются составной частью микроэлектромеханической системы, которая относится к категории «MEMS».

Каждый имеющийся в устройстве датчик имеет свою индивидуальную функцию. В данном случае гироскоп не является исключением.

Многие продвинутые пользователи считают, что гироскоп и акселерометр выполняют одну и ту же функцию, но это не так. Два этих, на первый взгляд одинаковых, прибора имеют большое различие как по характеристикам, так и по функциональности.

Гироскоп, или гиродатчик, является сенсорным прибором, который способен фиксировать расположение определенного объекта в пространстве касательно трех плоскостей. В свою очередь, акселерометром, или G-сенсором, называется прибор, имеющий возможность измерять проекцию мнимого ускорения.

Получается, что встроенный в коммуникатор акселерометр отвечает за поворот картинки экрана, когда гиродатчик реагирует даже на незначительные колебания устройства независимо от его расположения.

Также нужно учитывать, что если телефон обустроен двумя такими датчиками, то восприимчивость гаджета к незначительным и самым быстрым перемещениям увеличивается в несколько раз.

Одним из первых гаджетов, в который был встроен гироскоп, является Айфон. Именно этот коммуникатор с гиродатчиком открыл своим пользователям абсолютно новые и увлекательные возможности.

Наличие гироскопа в любой модели современного мобильного телефона позволяет обычным его встряхиванием осуществлять следующие действия:

  • отвечать на входящие звонки;
  • перелистывать страницы электронной коники;
  • листать изображения;
  • менять прослушиваемые треки;
  • увеличивать или уменьшать громкость;
  • обновлять блютуз;
  • работать с GPS-навигаторами.

Кроме того, мобильное устройство с таким датчиком имеет еще достаточно много всевозможных и разнообразных функций.

Для кого он нужен

Гироскоп является универсальным датчиком, так как его наличие намного упрощает использование телефона даже для самого неопытного пользователя. Однако кому этот датчик важнее всего, так это геймерам.

Геймером называется человек, специализирующийся на компьютерных играх. Именно с помощью гироскопа игры приобретают абсолютно иное качество.

С помощью такого устройства любые действия на дисплее становятся более точными и реальными. Поэтому гиродатчик просто необходим для следующих видов игр, где нужно применить быстроту и ловкость:

  1. Гонки. В данном случае нужно быстро повернуть руль или сделать другой резкий маневр.
  2. Стрелялки. В таких играх необходимо своевременно успеть навести прицел.
  3. Стимуляторы. Здесь необходимо совершать прыжки, а также увеличивать или сбавлять скорость движения.

Кроме того, смартфон со встроенным гироскопом является более удобным даже для обычного пользователя.

Выбираем телефон с гироскопом

Первым открывателем среди телефонов с гироскопом является четвертый Айфон. Пользователи данной модели устройства отнеслись положительно к этому нововведению, после чего такой сенсор начал применяться практически во всех современных гаджетах. Но стоит учитывать, что многие производители не отражают такой немаловажный бонус в характеристиках производимых устройств. Поэтому перед тем как покупать аксессуар той или иной модели, необходимо получить более подробную консультацию специалиста.

Широко распространенными и пользующимися большим потребительским спросом являются перечисленные ниже модели смартфонов, оснащенные гироскопом.

Является самой дорогостоящей моделью. Преимущества:

  • качественное изображение, благодаря которому смотреть фильмы и играть в игры стало еще приятнее;
  • наличие качественной основной и фронтальной камеры;
  • фотографии, сделанные в темноте, практически не отличишь от профессиональных снимков;
  • возможность использовать беспроводную зарядку;
  • идеальные размеры аксессуара, благодаря которым телефон комфортно ложится в руку взрослого человека.
  • достаточно высокая стоимость, которая составляет около ста тысяч рублей;
  • недостаточно слаженная работа «Face ID»;
  • отсутствует возможность разблокировки телефона, если он лежит на столе;
  • отсутствует кнопка «домой», к которой уже привыкли многие пользователи;
  • скудная комплектация для такой стоимости коммуникатора;
  • отсутствует быстрая зарядка.

Довольно известный телефон по сравнительно низкой цене. Достоинства:

  • оптимальные размеры;
  • шикарный внешний вид;
  • несмотря на то что фирма китайская, сборка произведена идеально;
  • приемлемая цена, которая составляет около двенадцати тысяч рублей;
  • хороший аккумулятор, который позволяет пользоваться смартфоном трое суток без подзарядки;
  • дисплей характеризуется насыщенными цветами, кроме того, имеется режим для меньшей усталости глаз;
  • отличная и быстрая работа сканера отпечатков;
  • имеется ИК-порт, с помощью которого можно управлять домашней техникой, не используя пульт;
  • хорошее качество звучания как из динамика, так и из наушников;
  • гаджет полностью русифицирован.
  • качество снимков оставляет желать лучшего, особенно если они были сделаны в сумраке;
  • корпус слишком маркий. Даже на моделях черного цвета остаются видимые отпечатки пальцев.

Весьма популярный гаджет. Плюсы:

  • недорогой, цена - в районе четырнадцати тысяч рублей;
  • имеет металлический корпус;
  • качественная камера, которая позволяет делать хорошие снимки, схожие с профессиональными;
  • существует множество настроек, позволяющих настроить параметры экрана под любого пользователя;
  • неплохая аккумуляторная батарея, с которой телефон может активно работать около сорока восьми часов;
  • отличная сборка.

Недостатки:

  • скользкий корпус, поэтому, приобретая такой гаджет, стоит сразу позаботиться о наличии чехла;
  • маловато оперативной (два гигабайта) и встроенной (шестнадцать гигабайт) памяти;
  • несъемная аккумуляторная батарея.

Бюджетный гаджет, который имеет больше недостатков, чем достоинств.

Преимущества:

  • невысокая цена, которая варьируется от десяти до двенадцати тысяч рублей;
  • хороший дизайн;
  • качественная сборка;
  • отчетливое и громкое звучание;
  • отлично принимает 3G и 4G-сети;
  • яркий экран, который даже на солнце предоставляет пользователю хорошую читабельность;
  • корректная и быстрая работа сканера отпечатков.

Недостатки:

  • слабый аккумулятор, которого едва хватает на один день активной работы;
  • длительный процесс зарядки батареи. Чтобы полностью ее зарядить необходимо не менее четырех часов;
  • недостаточно встроенной памяти (семь мегабайт);
  • отсутствует возможность перемещать приложения с телефона на флешку и обратно;
  • отсутствует указатель уведомлений;
  • установленный индикатор, который показывает заряд аккумулятора, практически не видно;
  • при сильной загруженности гаджет довольно часто подвисает.

Samsung Galaxy S8

Данный коммуникатор пользуется большим спросом у обычных пользователей.

  • великолепный дизайн;
  • качественный дисплей. Экран данной модели имеет минимальные рамки, что делает его только лучше;
  • несмотря на небольшие габариты смартфона, экран имеет оптимальную диагональ;
  • имеется разъем под наушники;
  • производитель позаботился о хорошей комплектации, которая является максимальной;
  • комфортный веб-серфинг;
  • имеет большой объем памяти (шестьдесят четыре гигабайта), существует возможность ее увеличить;
  • наличие «IP 68»;
  • возможность использовать одновременно две сим-карты;
  • много различных встроенных приложений, которые идентифицируют владельца.
  • довольно часто происходят лаги с интерфейсом;
  • в редких случаях экран может рябить;
  • достаточно высокая цена, в районе пятидесяти тысяч рублей;
  • неудобный размер сканера отпечатков;
  • не указывается срок обновления Андроида.

Как видите, существует масса моделей телефонов с гироскопом. При выборе следует ориентироваться на своим личные предпочтения, характеристики телефона и его цену.

Гироскоп - один из многих современных датчиков, без которых сложно представить работу смартфона.

Область применения этого датчика в телефоне достаточно обширна. Полноценный гироскоп визуально напоминает юлу внутри нескольких обручей. Ввиду габаритов такая конструкция не может быть установлена в гаджете, поэтому ее заменили на датчик, основанный на микроэлектромеханической системе.

Что такое гироскоп?

Гироскоп в современном телефоне - датчик, который позволяет автоматически менять ориентацию экрана в зависимости от положения смартфона.

Впервые гироскоп был установлен в iPhone 4, благодаря чему устройство обрело новый полезный функционал. С датчиком пользователи получили возможность, например, перелистывать страницы и переключать треки в плеере встряхиванием смартфона.

Для включения датчика на устройствах с операционной системой Android 4.0 KitKat и выше достаточно выкатить шторку уведомлений и активировать опцию автоповорота экрана.

Акселерометр и гироскоп

Как правило, современные телефоны оснащены этими датчиками в паре. Принцип их работы хоть и похож, но не дублируется. измеряет ускорение объекта при перемещении, в то время как гироскоп измеряет угол отклонения аппарата относительно разных плоскостей.

Функции гироскопа в смартфонах

Гироскоп вывел игровой процесс на новый уровень. Вращая устройство в пространстве, пользователь может управлять автомобилем, вести игровой поединок, искать персонажей и многое другое.

Если говорить о стандартных приложениях, наиболее показательными преимущества гироскопа выглядят, например, в приложении калькулятор. В портретной ориентации пользователю доступны стандартные действия: сложение, вычитание, умножение и деление. Повернув телефон на 90 градусов, можно получить большой выбор тригонометрических функций на все случаи жизни.

Разумеется, с автоматической работы датчика гораздо удобнее смотреть видео в YouTube и листать фотографии. Еще датчик можно использовать, чтобы сделать из телефона строительный уровень - д ля этого нужно скачать специальное приложение.

По сути, недостатков у гироскопа нет. Конечно, иногда появляется дискомфорт при просмотре картинок или чтении, когдапри изменении позы человека и устройства возможны нежеланные изменения ориентации экрана. Решение простое - отключить автоповорот в настройках.

Привет всем, уважаемые пользователи лучшего мобильного портала Trashbox. Сегодняшняя шестая по счёту статья из рубрики «Как это работает» посвящается гироскопу. Если вам не известно, что это такое - данная статья для вас. Давайте же узнаем, что такое гироскоп и как это работает. Самое интересное под катом .

Гироскоп (в переводе значит «вращение» или «смотреть») - устройство, имеющее способность измерения изменения углов ориентации связанного с ним тела относительно инерциальной системы координат. В настоящее время известно два типа гироскопов: механический и оптический. По режиму действия гироскопы делятся на: датчики угловой скорости и указатели направления. Однако, одно устройство может работать одновременно в разных режимах в зависимости от типа управления.

Что касается механических гироскопов, то из них больше всех известен роторный гироскоп - это твёрдое тело, которое быстро вращается и ось которого способна изменять ориентацию в пространстве. Скорость вращения гироскопа при этом существенно превышает скорость поворота оси его вращения. Основным свойством данного гироскопа является способность сохранения в пространстве неизменного направления оси вращения при отсутствии какого-либо воздействия на неё внешних сил. Основная часть роторного гироскопа - быстро-вращающийся ротор, имеющий несколько степеней свободы (осей возможного вращения).

Принцип работы

Принцип работы гироскопа заключается в грузиках, которые вибрируют на плоскости с частотой скорости умноженной на перемещение. При повороте гироскопа возникает так называемое Кориолисово ускорение. Если вы пропускали физику в школе или не знаете, то у всех тел есть единое свойство - при вращении они сохраняют свою ориентацию относительно направления силы тяжести. По сути, гироскоп - это волчок, который вращается вокруг вертикальной оси, закреплённый в раме, которая способна поворачиваться вокруг горизонтальной оси, и в свою очередь закреплена в другой раме, которая может поворачиваться вокруг третьей оси. Таким образом, можно придти к выводу: как бы мы не поворачивали волчок, он всегда имеет возможность всё равно находиться в вертикальном положении. Датчики снимают сигнал, как волчок ориентирован относительно рам, а процессор считывает, как рамы в этом случае должны быть расположены относительно силы тяжести.

Гироскопы применяются в технике. Они используются в виде компонентов как в системах навигации (авиагоризонт, гирокомпас и т. п.), так и в системах ориентации и стабилизации космических аппаратов. Что касается той самой системы стабилизации, то она бывает трёх типов: система силовой стабилизации (используется на двухстепенных гироскопах), система индикаторно-силовой стабилизации (также на двухстепенных гироскопах) и система индикаторной стабилизации (на трёхстепенных гироскопах).

А теперь поподробнее об этих трёх основных типах. Система силовой стабилизации: для стабилизации вокруг каждой оси требуется один гироскоп. Сама стабилизация осуществляется непосредственно гироскопом, а также двигателем разгрузки. В начале действует гироскопический момент, а потом уже подключается двигатель разгрузки. Система индикаторно-силовой стабилизации: для стабилизации также требуется один гироскоп. Стабилизация осуществляется только двигателями разгрузки, но в начале появляется небольшой гироскопический момент. И последняя - система индикаторной стабилизации: для стабилизации вокруг двух осей нужен один гироскоп. Стабилизация осуществляется только двигателями разгрузки.

Использование гироскопа в мобильных устройствах

Давайте же затронем тему использования гироскопа в мобильных устройствах и игровых приставках. В настоящее время в большинстве смартфонов используется так называемый МЭМС-акселерометр. Будучи датчиком ускорения, в покойном состоянии он видит только один вектор - вектор всемирной силы тяготения, который всегда направлен к центру Земли. По разложениям вектора на чувствительные оси датчика без каких-либо затруднений вычисляется угловое положение устройства в пространстве. Также разложение вектора может показать, что датчик неспособен определить разворот устройства по углу курса, то есть поворот влево или вправо при поставленном на ребро смартфоне - проекция вектора на курс всегда равняется нулю. Впервые игровой контроллер, умеющий определять своё положение в пространстве, был выпущен компанией Nintendo - Wii Remote для игровой приставки Wii, и в нём используется только трёхмерный акселерометр.

Кроме того, гироскоп стал применяться и в игровых контроллерах. Например, Sixaxis для SONY PlayStation третьего поколения и Wii MotionPlus для Nintendo Wii. В обоих игровых контроллерах используются два дополняющих друг друга пространственных сенсора: гироскоп, а также акселерометр. Также в новейших контроллерах, кроме акселерометра, используется дополнительный пространственный сенсор - гироскоп. Если привести работу гироскопа в других вещах, то существуют игрушки на основе гироскопа. Самыми банальными примерами являются йо-йо и волчок или в народе его называют «юла». Волчки же отличаются от гироскопов тем, что не имеют ни одной неподвижной точки.

В других сферах также есть применение гироскопу - их целый список. Гироскоп используется в приборах навигации в самолётах и космических аппаратах, в оружии (пуля при стрельбе закручивается, это придаёт ей гораздо большую устойчивость и повышает точность стрельбы), колёса велосипеда или подобного устройства работают как гироскопы - это не даёт ездоку упасть. Таким образом, любой вращающийся предмет можно назвать гироскопом - он противодействует отклонению оси вращения.

ГИРОСКОП (от греческого γ?ρος - круг, окружность и σκοπ?ω - наблюдать), устройство, совершающее быстрые циклические (вращательные или колебательные) движения и чувствительное вследствие этого к повороту в инерциальном пространстве. Термин «гироскоп» предложен в 1852 году Ж. Б. Л. Фуко для изобретённого им прибора, предназначенного для демонстрации вращения Земли вокруг своей оси. Долгое время термин «гироскоп» использовался для обозначения быстровращающегося симметричного твёрдого тела. В современной технике гироскоп - основной элемент всевозможных гироскопических устройств или приборов, широко применяемых для автоматического управления движением самолётов, судов, торпед, ракет, космических аппаратов, мобильных роботов, для целей навигации (указатели курса, поворота, горизонта, стран света), для измерения угловой ориентации подвижных объектов и во многих других случаях (например, при прохождении стволов штолен, строительстве метрополитенов, при бурении скважин).

Классический гироскоп. Согласно законам ньютоновской механики скорость поворота оси быстровращающегося симметричного твёрдого тела в пространстве обратно пропорциональна его собственной угловой скорости и, следовательно, ось гироскопа поворачивается столь медленно, что на некотором интервале времени её можно использовать в качестве указателя неизменного направления в пространстве.

Простейшим гироскопом является волчок, парадоксальность поведения которого заключается в его сопротивлении изменению направления оси вращения. Под воздействием внешней силы ось волчка начинает двигаться в направлении, перпендикулярном вектору силы. Именно благодаря этому свойству вращающийся волчок не падает, а его ось описывает конус вокруг вертикали. Это движение называется прецессией гироскопа. Если к оси быстро вращающегося свободного гироскоп придожить пару сил {Р, Р’}, Р’ = -Р, с моментом М = Ph, где h - плечо пары сил (рис. 1), то (против ожидания) гироскоп начнёт дополнительно поворачиваться не вокруг оси х, перпендикулярной к плоскости пары сил, а вокруг оси у, лежащей в этой плоскости и перпендикулярной оси z вращения гироскопа. Если в какой-либо момент времени действие пары сил прекратится, то одновременно прекратится прецессия, т. е. прецессионное движение гироскопа безынерционно. Чтобы ось гироскопа могла свободно поворачиваться в пространстве, гироскоп обычно закрепляют в кольцах карданового подвеса (рис. 2), который представляет собой систему твёрдых тел (рамок, колец), последовательно соединённых между собой цилиндрическими шарнирами. Обычно при отсутствии технологических погрешностей оси рамок карданового подвеса пересекаются в одной точке - центре подвеса. Закреплённое в таком подвесе симметричное тело вращения (ротор) имеет три степени свободы и может совершать любой поворот вокруг центра подвеса. Гироскоп, у которого центр масс совпадает с центром подвеса, называется уравновешенным, астатическим или свободным. Изучение законов движения классического гироскопа - задача динамики твёрдого тела.

Основной количественной характеристикой ротора механического гироскопа является его вектор собственного кинетического момента, называемого также моментом количества движения или моментом импульса,

где I - момент инерции ротора гироскопа относительно оси собственного вращения, Ω - угловая скорость собственного вращения гироскопа относительно оси симметрии.

Медленное движение вектора собственного кинетического момента гироскопа под действием моментов внешних сил, называемое прецессией гироскопа, описывается уравнением

ω x Η = Μ, (2)

где ω - вектор угловой скорости прецессии, Н - вектор собственного кинетического момента гироскопа, М - ортогональная к Н составляющая вектора момента внешних сил, приложенных к гироскопу.

Момент сил, приложенных со стороны ротора к подшипникам оси собственного вращения ротора, возникающий при изменении направления оси и определяемый уравнением

М g = -М = Η x ω, (3)

называется гироскопическим моментом.

Кроме медленных прецессионных движений ось гироскопа может совершать быстрые колебания с малой амплитудой и высокой частотой - так называемые нутации. Для свободного гироскопа с динамически симметричным ротором в безынерционном подвесе частота нутационных колебаний определяется формулой

где А - момент инерции ротора относительно оси, ортогональной оси собственного вращения и проходящей через центр масс ротора. При наличии сил трения нутационные колебания обычно достаточно быстро затухают.

Погрешность гироскопа измеряется скоростью ухода его оси от первоначального положения. Согласно уравнению (2) величина ухода, называемого также дрейфом, пропорциональна моменту сил М относительно центра подвеса гироскопа:

ω ух = М/Н (4)


Уход ω ух обычно измеряется в угловых градусах в час. Из формулы (4) следует, что свободный гироскоп функционирует идеально лишь в том случае, если внешний момент М равен 0. При этом угловая скорость прецессии обращается в нуль и ось собственного вращения будет в точности совпадать с неизменным направлением в инерциальном пространстве.

Однако на практике любые средства, используемые для подвеса ротора гироскопа, являются причиной возникновения нежелательных внешних моментов неизвестной величины и направления. Формула (4) определяет пути повышения точности механического гироскопа: надо уменьшить «вредный» момент сил М и увеличить кинетический момент Н. При выборе угловой скорости гироскопа необходимо учитывать одно из главных ограничений, связанных с пределами прочности материала ротора из-за возникающих при вращении центробежных сил. При разгоне ротора выше так называемой допускаемой угловой скорости начинается процесс его разрушения.

Лучшие современные гироскопы имеют случайный уход порядка 10 -4 -10 -5 °/ч. Ось гироскопа с погрешностью 10 -5 °/ч совершает полный оборот на 360° за 4 тысячи лет! Точность балансировки гироскопа с погрешностью 10 -5 °/ч должна быть выше одной десятитысячной доли микрометра (10 -10 м), то есть смещение центра масс ротора из центра подвеса не должно превышать величину порядка диаметра атома водорода.

Гироскопические устройства можно разделить на силовые и измерительные. Силовые устройства служат для создания моментов сил, приложенных к основанию, на котором установлен гироскопический прибор; измерительные предназначены для определения параметров движения основания (измеряемыми параметрами могут быть углы поворота основания, проекции вектора угловой скорости и тому подобное).

Впервые уравновешенный гироскоп нашёл практическое применение в 1898 году в приборе для стабилизации курса торпеды, изобретённом австрийским инженером Л. Обри. Аналогичные приборы в различных вариантах исполнения начали использовать в 1920-х годах на самолётах для указания курса (гироскоп направления, гирополукомпасы), а позднее для управления движением ракет. На рисунке 3 показан пример применения гироскопа с тремя степенями свободы в авиационном указателе курса (гирополукомпасе). Вращение ротора в шарикоподшипниках создаётся и поддерживается струёй сжатого воздуха, направленной на рифлёную поверхность обода. По шкале азимута, прикреплённой к наружной рамке, можно, установив ось собственного вращения ротора параллельно плоскости основания прибора, ввести требуемое значение азимута. Трение в подшипниках незначительно, поэтому ось вращения ротора сохраняет заданное положение в пространстве. Пользуясь стрелкой, скреплённой с основанием, по шкале азимута можно контролировать поворот самолёта.

Гирогоризонт, или искусственный горизонт, позволяющий пилоту поддерживать свой самолёт в горизонтальном положении, когда естественный горизонт не виден, основан на использовании гироскопа с вертикальной осью вращения, сохраняющей своё направление при наклонах самолёта. В автопилотах применяются два гироскопа с горизонтальной и вертикальной осями вращения; первый служит для сохранения курса самолёта и управляет вертикальными рулями, второй - для сохранения горизонтального положения самолёта и управляет горизонтальными рулями.

С помощью гироскопа созданы автономные инерциальные навигационные системы (ИНС), предназначенные для определения координат, скорости и ориентации подвижного объекта (корабля, самолёта, космического аппарата и тому подобное) без использования какой-либо внешней информации. В состав ИНС кроме гироскопа входят акселерометры, предназначенные для измерения ускорения (перегрузки) объекта, а также компьютер, интегрирующий по времени выходные сигналы акселерометров и выдающий навигационную информацию с учётом показания гироскопа. К началу 21 века созданы настолько точные ИНС, что дальнейшего повышения точностей для решения многих задач уже не требуется.

Развитие гироскопической техники последних десятилетий сосредоточилось на поиске нетрадиционных областей применения гироскопических приборов - разведка полезных ископаемых, предсказание землетрясений, сверхточное измерение координат железнодорожных путей и нефтепроводов, медицинская техника и многое другое.

Неклассические виды гироскопов. Высокие требования к точности и эксплутационным характеристикам гироскопических приборов привели не только к дальнейшим усовершенствованиям классического гироскопа с вращающимся ротором, но и к поискам принципиально новых идей, позволяющих решить проблему создания чувствительных датчиков для индикации и измерения угловых движений объекта в пространстве. Этому способствовали успехи квантовой электроники, ядерной физики и других областей точных наук.

В гироскопе с воздушной опорой шариковые подшипники, используемые в традиционном кардановом подвесе, заменены «газовой подушкой» (газодинамической опорой). Это полностью устранило износ материала опор во время работы и позволило почти неограниченно увеличить время службы прибора. К недостаткам газовых опор относятся довольно большие потери энергии и возможность внезапного отказа при случайном контакте ротора с поверхностью опоры.

Поплавковый гироскоп представляет собой роторный гироскоп, в котором для разгрузки подшипников подвеса все подвижные элементы взвешиваются в жидкости с большой плотностью так, чтобы вес ротора вместе с кожухом уравновешивался гидростатическими силами. Благодаря этому на много порядков снижается сухое трение в осях подвеса и увеличивается ударная и вибрационная стойкость прибора. Герметичный кожух, выполняющий роль внутренней рамки карданового подвеса, называется поплавком. Ротор гироскопа внутри поплавка вращается на воздушной подушке в аэродинамических подшипниках со скоростью порядка 30-60 тысяч оборотов в минуту. Для повышения точности прибора необходимо использование системы термостабилизации. Поплавковый гироскоп с большим вязким трением жидкости называется также интегрирующим гироскопом.

Динамически настраиваемый гироскоп (ДНГ) принадлежит к классу гироскопа с упругим подвесом ротора, в которых свобода угловых движений оси собственного вращения обеспечивается за счёт упругой податливости конструктивных элементов (например, торсионов). В ДНГ, в отличие от классического гироскопа, используется так называемый внутренних карданов подвес (рис. 4), образованный внутренним кольцом 2, которое изнутри крепится торсионами 4 к валу электродвигателя 5, а снаружи - торсионами 3 к ротору 1. Момент трения в подвесе проявляется только в результате внутреннего трения в материале упругих торсионов. В ДНГ за счёт подбора моментов инерции рамок подвеса и угловой скорости вращения ротора осуществляется компенсация упругих моментов подвеса, приложенных к ротору. К достоинствам ДНГ относятся их миниатюрность, отсутствие подшипников со специфическими моментами трения, присутствующими в классическом кардановом подвесе, высокая стабильность показаний, относительно невысокая стоимость.

Рис. 4. Динамически настраиваемый гироскоп с внутренним кардановым подвесом: 1 - ротор; 2 - внутреннее кольцо; 3 и 4 - торсионы; 5 - электродвигатель.

Кольцевой лазерный гироскоп (КЛГ), называемый также квантовым гироскопом, создан на основе лазера с кольцевым резонатором, в котором по замкнутому оптическому контуру одновременно распространяются встречные электромагнитные волны. К достоинствам КЛГ относятся отсутствие вращающегося ротора, подшипников, подверженных действию сил трения, высокая точность.

Волоконно-оптический гироскоп (ВОГ) представляет собой волоконно-оптический интерферометр, в котором распространяются встречные электромагнитные волны. ВОГ является аналоговым преобразователем угловой скорости вращения основания, на котором он установлен, в выходной электрической сигнал.

Волновой твердотельный гироскоп (ВТГ) основан на использовании инертных свойств упругих волн в твёрдом теле. Упругая волна может распространяться в сплошной среде, не изменяя своей конфигурации. Если возбудить стоячие волны упругих колебаний в осесимметричном резонаторе, то вращение основания, на котором установлен резонатор, вызывает поворот стоячей волны на меньший, но известный угол. Соответствующее движение волны как целого называется прецессией. Скорость прецессии стоячей волны пропорциональна проекции угловой скорости вращения основания на ось симметрии резонатора. К достоинствам ВТГ относятся: высокое отношение точность/цена; способность переносить большие перегрузки, компактность и небольшая масса, низкая энергоёмкость, малое время готовности, слабая зависимость от температуры окружающей среды.

Вибрационный гироскоп (ВГ) основан на свойстве камертона сохранять плоскость колебаний своих ножек. В ножке колеблющегося камертона, установленного на платформе, вращающейся вокруг оси симметрии камертона, возникает периодических момент сил, частота которого равна частоте колебания ножек, а амплитуда пропорциональна угловой скорости вращения платформы. Поэтому, измеряя амплитуду угла закрутки ножки камертона, можно судить об угловой скорости платформы. К недостаткам ВГ относится нестабильность показаний из-за сложностей высокоточного измерения амплитуды колебаний ножек, а также то, что они не работают в условиях вибрации, которая практически всегда сопровождает места установки приборов на движущихся объектах. Идея камертонного гироскопа стимулировала целое направление поисков новых типов гироскопов, использующих пьезоэлектрический эффект либо вибрацию жидкостей или газов в специально изогнутых трубках и тому подобное.

Микромеханический гироскоп (ММГ) относится к гироскопам низких точностей (ниже 10 -1 °/ч). Эта область традиционно считалась малоперспективной для задач управления движущимися объектами и навигации. Но в конце 20 века разработка ММГ стала одним из наиболее интенсивно разрабатываемых направлений гироскопической техники, тесно связанным с современными кремниевыми технологиями. ММГ представляет собой своеобразный электронный чип с кварцевой подложкой площадью в несколько квадратных миллиметров, на которую методом фотолитографии наносится плоский вибратор типа камертона. Точность современных ММГ невелика и достигает 10 1 -10 2 °/ч, однако решающее значение имеет исключительно низкая стоимость микромеханических чувствительных элементов. Благодаря использованию хорошо отработанных современных технологий массового производства микроэлектроники открывается возможность применения ММГ в совершенно новых областях: автомобили и бинокли, телескопы и видеокамеры, мыши и джойстики персональных компьютеров, мобильные робототехнические устройства и даже детские игрушки.

Неконтактный гироскоп относится к гироскопическим устройствам сверхвысоких точностей (10 -6 -5·10 -4 °/ч). Разработка гироскопа с неконтактными подвесами началась в середине 20 века. В неконтактных подвесах реализуется состояние левитации, т. е. состояние, при котором ротор гироскопа «парит» в силовом поле подвеса без какого-либо механического контакта с окружающими телами. Среди неконтактных гироскопов выделяют гироскопы с электростатическим, магнитным и криогенным подвесами ротора. В электростатическом гироскопе проводящий бериллиевый сферический ротор подвешен в вакуумированной полости в регулируемом электрическом поле, создаваемом системой электродов. В криогенном гироскопе сверхпроводящий ниобиевый сферический ротор подвешен в магнитном поле; рабочий объём гироскопа охлаждается до сверхнизких температур, так, чтобы ротор перешёл в сверхпроводящее состояние. Гироскоп с магниторезонансным подвесом ротора является аналогом гироскопа с электростатическим подвесом ротора, в котором электрическое поле заменено магнитным, а бериллиевый ротор - ферритовым. Современные гироскопы с неконтактными подвесами - это сложнейшие приборы, которые вобрали в себя новейшие достижения техники.

Кроме перечисленных выше типов гироскопов проводились и проводятся работы над экзотическими типами гироскопа, такими, как ионный гироскоп, ядерный гироскоп и др.

Математические задачи в теории гироскопа. Математические основы теории гироскопа заложены Л. Эйлером в 1765 году в его работе «Theoria motus corporum solidorum sue rigidorum». Движение классического гироскопа описывается системой дифференциальных уравнений 6-го порядка, решение которой стало одной из самых знаменитых математических задач. Эта задача относится к разделу теории вращательного движения твёрдого тела и является обобщением задач, решаемых до конца простыми средствами классического анализа. Однако при этом она настолько трудна, что ещё далека от завершения, несмотря на результаты, полученные крупнейшими математиками 18-20 века. Современные гироскопические приборы потребовали решения новых математических задач. Движение неконтактных гироскопов с высокой точностью подчиняется законам механики, поэтому, решая уравнения движения гироскопа с помощью компьютера, можно точно предсказывать положение оси гироскопа в пространстве. Благодаря этому разработчикам неконтактных гироскопов не приходится балансировать ротор с точностью 10 -10 м, которую невозможно достичь при современном уровне технологии. Достаточно точно измерять погрешности изготовления ротора данного гироскопа и вводить соответствующие поправки в программы обработки сигналов гироскопа. Получающиеся с учётом этих поправок уравнения движения гироскопа оказываются очень сложными, и для их решения приходится применять весьма мощные компьютеры, использующие алгоритмы, основанные на последних достижениях математики. Разработка программ расчёта движения гироскопа с неконтактными подвесами позволяет существенно повысить точность гироскопа, а следовательно, и точность определения местоположения объекта, на котором установлены эти гироскопы.

Лит.: Магнус К. Гироскоп. Теория и применение. М., 1974; Ишлинский А. Ю. Ориентация, гироскопы и инерциальная навигация. М., 1976; Климов Д. М., Харламов С. А. Динамика гироскопа в кардановом подвесе. М., 1978; Ишлинский А. Ю., Борзов В. И., Степаненко Н. П. Лекции по теории гироскопов. М., 1983; Новиков Л. З., Шаталов М. Ю. Механика динамически настраиваемых гироскопов. М., 1985; Журавлев В. Ф., Климов Д. М. Волновой твердотельный гироскоп. М., 1985; Мартыненко Ю. Г. Движение твердого тела в электрических и магнитных полях. М., 1988.