История развития операционных систем насчитывает четыре периода

Первый период (1945 -1955)

Создание первых цифровых вычислительных машин произошло после второй мировой войны. В середине 40-х были созданы первые ламповые вычислительные устройства. В то время одна и та же группа людей участвовала и в проектировании, и в эксплуатации, и в программировании вычислительной машины. Это была скорее научно-исследовательская работа в области вычислительной техники, а не использование компьютеров в качестве инструмента решения каких-либо практических задач из других прикладных областей. Программирование осуществлялось исключительно на машинном языке. Об операционных системах не было и речи, все задачи организации вычислительного процесса решались вручную каждым программистом с пульта управления. Не было никакого другого системного программного обеспечения, кроме библиотек математических и служебных подпрограмм. Первые машины были очень дорогими, и было важно использовать их как можно эффективней. Первые системы имели основные проблемы:

– машинное время стоило очень дорого, и возникали трудности с определением необходимого количества машинного времени для выполнения той или иной задачи. Необходимо было рассчитать время работы компьютера, таким образом, чтоб его хватило на выполнение программы, и при этом компьютер не простаивал бы, если выполнение программы заканчивалось быстрее, чем было запланировано.

Запуск программы (задание – job) требовал большой подготовительной работы – загрузки в память компилятора и программы, сохранения, загрузки и компоновки объектного кода с библиотечными функциями. При возникновении ошибки на одном из этапов весь подготовительный процесс приходилось начинать заново.

Такой режим работы назывался последовательной обработкой данных.

Второй период (1955 - 1965)

С середины 50-х годов начался новый период в развитии вычислительной техники, связанный с появлением новой технической базы - полупроводниковых элементов. Компьютеры второго поколения стали более надежными, теперь они смогли непрерывно работать настолько долго, чтобы на них можно было возложить выполнение действительно практически важных задач. Чтобы повысить эффективность работы была предложена концепция пакетной обработки данных. Суть концепции состоит в том, что все программы на перфоносителе (карте или ленте) передавались оператору компьютера, который собирал задания в пакеты и помещал их в устройства ввода данных. Программы передавались в управление монитору (monitor), который автоматизировал запуск одной программы за другой. Его работа основана на возможности процессора выбирать команды из различных областей основной памяти. Системы пакетной обработки явились прообразом современных операционных систем и стали первыми системными программами, предназначенными для управления вычислительным процессом. В ходе реализации систем пакетной обработки был разработан формализованный язык управления заданиями, с помощью которого программист сообщал системе и оператору, какую работу он хочет выполнить на вычислительной машине. Первые пакетные системы были разработаны в середине 50-х годов компанией General Motors для машин IBM 701. В начале 60-х годов была разработана пакетная операционная система IBSYS фирмы IBM, разработанная для компьютеров 7090/7094.

Третий период (1965 - 1981)

В это время в технической базе произошел переход от отдельных полупроводниковых элементов типа транзисторов к интегральным микросхемам, что дало гораздо большие возможности новому, третьему поколению компьютеров. Для этого периода характерно также создание семейств программно-совместимых машин. Первым семейством программно-совместимых машин, построенных на интегральных микросхемах, явилась серия машин IBM/360. Построенное в начале 60-х годов это семейство значительно превосходило машины второго поколения по критерию цена/производительность. Вскоре идея программно-совместимых машин стала общепризнанной. Программная совместимость требовала и совместимости операционных систем. Такие операционные системы должны были бы работать и на больших, и на малых вычислительных системах, с большим и с малым количеством разнообразных периферийных устройств. Первые подобные ОС создавались на машинно-ориентированных языках и содержали огромное количество ошибок. Однако, несмотря на огромные размеры исходных кодов и множество проблем, OS/360 и другие ей подобные операционные системы машин третьего поколения действительно удовлетворяли большинству требований потребителей. Важнейшим достижением ОС данного поколения явилась реализация мультипрограммирования. Мультипрограммирование - это способ организации вычислительного процесса, при котором на одном процессоре попеременно выполняются несколько программ . Пока одна программа выполняет операцию ввода-вывода, процессор не простаивает, как это происходило при последовательном выполнении программ (однопрограммный режим), а выполняет другую программу (многопрограммный режим). При этом каждая программа загружается в свой участок оперативной памяти, называемый разделом.

Другое нововведение - спулинг (spooling). Спулинг в то время определялся как способ организации вычислительного процесса, в соответствии с которым задания считывались с перфокарт на диск в том темпе, в котором они появлялись в помещении вычислительного центра, а затем, когда очередное задание завершалось, новое задание с диска загружалось в освободившийся раздел.

Наряду с мультипрограммной реализацией систем пакетной обработки появился новый тип ОС - системы разделения времени . Вариант мультипрограммирования, применяемый в системах разделения времени, нацелен на создание для каждого отдельного пользователя иллюзии единоличного использования вычислительной машины. Одной из первых ОС разделения времени была система CTSS, разработанная в Массачусетском технологическом университете. Первоначально разработана для IBM 709.

Четвертый период (1981 - настоящее время)

Следующий период в эволюции операционных систем связан с появлением больших интегральных схем (БИС). В эти годы произошло резкое возрастание степени интеграции и удешевление микросхем. Компьютер стал доступен каждому пользователю - наступила эра персональных компьютеров. С точки зрения архитектуры персональные компьютеры ничем не отличались от класса миникомпьютеров типа PDP-11, но их цена была значительно ниже. Компьютеры стали широко использоваться неспециалистами, что потребовало разработки "дружественного" программного обеспечения, то есть такого пользовательского интерфейса, который удовлетворил бы большинство пользователей - неспециалистов.

На рынке операционных систем доминировали две системы: MS-DOS и UNIX. Однопрограммная однопользовательская ОС MS-DOS широко использовалась для компьютеров, построенных на базе микропроцессоров Intel 8088, а затем 80286, 80386 и 80486. Мультипрограммная многопользовательская ОС UNIX доминировала в среде компьютеров, построенных на базе высокопроизводительных RISC-процессоров.

В середине 80-х стали бурно развиваться сети персональных компьютеров, работающие под управлением сетевых или распределенных ОС. При работе сетевых ОС на первый план выходит задача реализации пользовательского интерфейса и подмена реальной аппаратуры компьютерной сети.

Конец работы -

Эта тема принадлежит разделу:

Конспект лекций по дисциплине Операционные системы и среды

Астраханской области среднего профессионального образования.. Астраханский колледж вычислительной техники.. Конспект лекций по дисциплине Операционные системы и среды семестр..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Определение операционной системы
Операционная система определяет облик всей вычислительной системы. Сегодня существует большое количество операционных систем, каждая из которых обладает своими особенностями реализации пользователь

Требования к современным операционным системам
Современные операционные системы отвечают требованиям постоянно развивающегося аппаратного и программного обеспечения. Они способны управлять работой мультипроцессорных систем, сетевых компонентов

Ядро и вспомогательные модули ОС
Современные ОС имеют архитектуру, основанную на разделении всех ее модулей на две группы: - ядро – модули, выполняющие основные функции ОС; - модули, выполняющие вспомог

Работа ядра в привилегированном режиме
Для того чтобы обеспечить высокую надежность и стабильность работы операционная системадолжна занимать более привилегированное положение по отношению к обычным приложениям. Операционная система дол

Многослойная структура ОС
Вычислительная система, работающая под управлением ОС на основе ядра, может быть изображена в виде трех иерархически расположенных слоев: нижний слой - аппаратура, промежуточный - ядро, а верхний -

Концепция микроядерной архитектуры
Микроядерная архитектура является альтернативой рассмотренному выше способу построения операционной системы, в соответствии с которой все основные функции операционной системы, составляющие многосл

Понятия вычислительного процесса и ресурса
Процесс (или задача) - абстракция, описывающая выполняющуюся программу. Для операционной системы процесс представляет собой единицу работы, заявку на потребление системных ресурсов. После

Создание процессов и потоков
К созданию процесса могут привести следующие события - необходимость выполнения некоторой функции, которая требуется для программы пользователя (создание процесса операционной системой) или распара

Управляющая информация процесса
o Информация по планированию и состоянию – включает информацию о состоянии процесса, приоритете процесса, об используемом алгоритме планирования, информация о событии, из-за которого процесс находи

Состояния процессов
В многозадачной (многопроцессной) системе процесс может находиться в одном из пяти основных состояний (рис.2.2.): - ВЫПОЛНЕНИЕ - активное состояние процесса, во время которого процесс обла

Вытесняющие и невытесняющие алгоритмы планирования
Non-preemptive multitasking - невытесняющая многозадачность - это способ планирования процессов, при котором активный процесс выполняется до тех пор, пока он по собственной инициативе, не от

Алгоритмы планирования, основанные на квантовании
В основе многих вытесняющих алгоритмов планирования лежит концепция квантования. В соответствии ней каждому процессу поочередно для выполнения предоставляется ограниченный непрерывный период процес

Алгоритмы планирования, основанные на приоритетах
Обслуживание процессов на основании приоритетов предполагает наличие у потоков некоторой изначально известной характеристики – приоритета, на основании которой определяется порядок их выполнения.

Управление процессами и потоками в Windows 2000
Процессы в ОС W2K организованы так, чтобы обеспечить поддержку различных операционных сред. К важным характеристикам процессов в ОС относят реализацию процессов как объектов, возможность порождения

Процессы в Linux
В ОС Linux используются две категории процессов: системные и пользовательские. Для их выполнения требуются два режима - пользовательский и режим ядра. Пользовательские процессы выполняются как в по

Типы прерываний
Во всех компьютерах предусмотрена реализация механизма прерываний, с помощью которого устройства могут прервать нормальную работу процессора. В зависимости от источника прерывания делятся

Обработка прерываний
Прерывание вызывает ряд событий, которые происходят как в аппаратном, так и в программном обеспечении. На рис. 1.6 показана типичная последовательность этих событий. После завершения работы устройс

Цели и средства синхронизации
Основные вопросы, возникающие перед разработчиками операционных систем, связаны, в основном, с управлением процессами и потоками. Необходимо учитывать, что к современным ОС предъявляются, как миним

Методы борьбы с тупиками
Проблема тупиков является чрезвычайно серьезной и сложной. Борьба с тупиковыми ситуациями основывается на одной из трех стратегий: - предотвращение тупиков; - обход тупиков;

Типы адресов
Для идентификации переменных и команд используются символьные имена (метки), виртуальные адреса и физические адреса. Символьные имена присваивает пользователь при написании программ

Понятие виртуальной памяти
Необходимым условием для того, чтобы программа могла выполняться, является ее расположение в оперативной памяти. Большое количество задач, необходимое для высокой загрузки процессора, требует больш

Страничное распределение памяти
На рисунке 3.3. показана схема страничного распределения памяти. Виртуальное адресное пространство каждого процесса делится на части одинакового, фиксированного размера, называемые виртуальными стр

Сегментное распределение памяти
При страничной организации виртуальное адресное пространство процесса делится механически на равные части. Это не позволяет дифференцировать способы доступа к разным частям программы (сегментам), а

Организация ввода - вывода данных
Конфигурация памяти компьютера определяется тремя основными параметрами: объем, быстродействие и стоимость. Объем памяти является такой характеристикой, что в любом случае хотелось бы иметь ее как

Принцип действия кэш-памяти
Рассмотрим одну из возможных схем кэширования (рис. 1.8.). Содержимое кэш-памяти представляет собой совокупность записей обо всех загруженных в нее элементах данных из основной памяти. Каждая запис

Внутреннее устройство кэша
Рассмотрим основные элементы кэша. При изучении вопросов внутреннего устройства кэша имеет значение: - размер кэша; - размер блока; - функция отображения; - алго

Ввод-вывод с использованием прерываний
Проблема программируемого ввода-вывода состоит в том, что процессор должен долго ждать, пока контроллер ввода-вывода будет готов читать или принимать новые данные. Во время ожидания процессор долже

Прямой доступ к памяти
Хотя ввод-вывод, управляемый прерываниями, более эффективен, чем простой программируемый ввод-вывод, он все еще занимает много процессорного времени для передачи данных между памятью и контроллером

Физическая организация устройств ввода-вывода
Устройства ввода-вывода делятся на два типа: блок-ориентированные устройства и байт-ориентированные устройства. Блок-ориентированные устройства хранят информацию в блоках фиксированного разм

Согласование скоростей обмена и кэширование данных
При обмене данными всегда возникает задача согласования скорости. Например, если один пользовательский процесс вырабатывает некоторые данные и передает другому процессу через оперативную память, то

Физическая организация накопителей на МД
Любой накопитель на магнитном диске имеет один или несколько физических дисков на одной оси с перемещающимся вдоль радиуса блоком головок, по одной на каждую рабочую поверхность (рис. 4.4).

Принципы записи информации на МД
Дисковая память для файлов не резервируется, а выделяется по мере необходимости. Такоймеханизм распределения памяти называется динамическим. Чем больше размер кластера, тем нерациональнее используе

Системы управления файлами
Файл - это именованная область памяти на каком-либо физическом носителе, предназначенная для хранения информации. Систему управления файлами составляет программное обеспечение, пред

Файловая система FAT
Жесткий диск, имея значительно больший объем, чем гибкий МД, имеет и более сложную структуру - он может быть разбит на несколько разделов, выступающих в системе как самостоятельные (логические) дис

Основные логические области диска
Стартовый сектор (сектор начальной загрузки, Вооt - сектор), Таблица размещения файлов (FAT - File Allocation Table), Корневой Каталог (Root-Directory), Область данных (о

Ключевые возможности NTFS
NTFS представляет собой гибкую и мощную файловую систему, которая, как мы увидим, построена на простой и элегантной модели. К наиболее достойным внимания особенностям NTFS относятся следующие:

Том NTFS и файловая структура
NTFS использует следующие концепции дискового хранения: Сектор. Наименьшая единица физического хранения на диске. Размер данных в байтах является степенью двойки и почти всегда раве

Физическая организация s5 и ufs
Файловые системы s5 и ufs используют очень близкую физическую модель. Это не удивительно, так как ufs является развитием системы s5. При изучении данной темы вместо понятия кластер будет и

Проверка доступности сетевых служб
В случае обнаружения проблем с той или иной сетевой службой, для проверки ее доступности используют различные средства диагностики, в зависимости от их наличия в данной ОС.

Настройка имени компьютера и рабочей группы
В сетевом окружении каждый компьютер имеет своё имя. Это имя можно Вы можете выбрать сами. Рекомендуется ассоциировать имя компьютера с Вашими именем или фамилией, никнеймом, однако, в общем случае

Диагностика сетевых настроек
В случае обращения пользователя в службу поддержки по какой либо причине связанной с функционированием сети, инженер службы поддержки может запросить у пользователя настройки его компьютера связанн

Системный подход к обеспечению безопасности
Построение и поддержка безопасной системы требует системного подхода. В соответствии с этим подходом прежде всего необходимо осознать весь спектр возможных угроз для конкретной сети и для каждой из

Политика безопасности
Важность и сложность проблемы обеспечения безопасности требует выработки политики информационной безопасности, которая подразумевает ответы на следующие вопросы: Какую информацию защищать?

Обзор Windows 2000
Windows 2000 - это многоцелевая ОС со встроенной поддержкой одноранговых сетей и сетей с выделенным сервером. Реализованные в ней техтехнологии позволяют снизить совокупную стоимость владения (tota

Управление
Windows 2000 позволяет создать более согласованную среду для конечных пользователей, обеспечив их необходимыми программами, данными и параметрами ОС. Следует отметить следующие новинки в у

Поддержка аппаратуры
Microsoft Windows 2000 Professional в настоящее время поддерживает более 7 тыс. моделей устройств, включая устройства инфракрасной связи, сканеры, цифровые камеры и современные мультимедийные устро

Асимметричная многопроцессорная обработка
Также существуют асимметричные многопроцессорные ОС, в которых процессоры используют разные области физической памяти или имеют другие отличия. Эти системы могут выполнять только отдельный процесс

Безопасность
Windows 2000 Professional - наиболее защищенная настольная ОС семейства Windows. Вот некоторые отличительные особенности и усовершенствования в области безопасности, которыми она отличается.

Домены и рабочие группы
Windows 2000 поддерживает защищенную сетевую среду, в которой пользователю может быть предоставлен доступ к общим ресурсам, вне зависимости от размера сети. Windows 2000 поддерживает сети двух типо

Перед началом установки
Прежде всего изучите аппаратные требования для установки Windows 2000 Professional и убедитесь, что ваш компьютер удовлетворяет этим требованиям; определите, входят ли ваши аппаратные средства в сп

Файловые системы
После создания установочного раздела Setup предложит выбрать файловую систему под которую будет отформатирован этот раздел. Windows 2000 поддерживает три файловые системы: NTFS, FAT и FAT32.

Лицензирование
Помимо лицензий на использование Windows 2000 Server и лицензий на использование ОС на каждом клиентском компьютере, каждое клиентское подключение к серверу должно быть также лицензировано.

Использование консоли управления и Task Scheduler
Основными средствами администрирования Microsoft Windows 2000 являются консоль управления (ММС), Task Scheduler (Планировщик задач) и Control Panel (Панель управления). Консоль упр

Папка Administrative Tools
По умолчанию Windows 2000 сохраняет файлы пользовательских консолей с расширением.msc в папке Administrative Tools (Администрирование). Даже после того, как для нового пользователя, зарегистрирова

Оснастки
Оснастка- это средство администрирования, включенное в ММС. Существует два вида оснасток: изолированные и расширения. Изолированная оснастка применяется для выполнения задач

Создание и изменение профиля оборудования
Для создания и изменения профилей оборудования применяется программа System (Система) из Control Panel (Панель управления). Чтобы посмотреть список доступных профилей дважды щелкните значок System

Активизация профиля оборудования
Если в списке Available Hardware Profiles (Имеющиеся профили оборудования) присутствует два или более профилей, то во время загрузки вам будет предложено выбрать один из них. Вы можете задать время

Виртуальная память
Модель памяти Windows 2000 основана на плоском линейном 32-разряд- ном адресном пространстве. Для управления памятью Windows 2000 использует систему управления виртуальной памятью (virtual memory m

Виртуальное адресное пространство
Виртуальный адрес (virtual address) - это адресное пространство, которое приложение использует для ссылки на память. Когда в Windows 2000 запускается процесс, VMM предоставляет ему 4 Гб виртуальног

Подкачка
Процесс перемещения данных в ОЗУ и обратно называется подкачкой (paging). Когда физическая память заполняется и потоку требуется доступ к коду или данным, отсутствующим в настоящий момент в ОЗУ, VM

Размер файла подкачки
Когда вы устанавливаете Windows 2000, Setup создает файл подкачки виртуальной памяти Pagefile.sys; в системном разделе. Минимальный размер файла подкачки составляет 2 Мб, Рекомендуемый размер файла

Повышение производительности
Вы можете улучшить производительность вашей системы несколькими способами. Во-первых, если на компьютере установлено несколько жестких дисков, можно создать файл подкачки для каждого из них. Распре

Поддеревья реестра
Чтобы быстро найти определенные разделы и значения в реестре, следует знать назначение каждого поддерева. На рис. 5-3 редактором реестра отображаются следующие пять поддеревьев: HKEY_LOCAL

Программа Regedt32.exe
Setup размещает редактор реестра (программу Regedt32.exe) в папке systemroot\&yst&m32. Однако, поскольку большинство пользователей не редактирует реестр, он не появляется в меню Stan (Пуск)

Базовая структура
Традиционный промышленный стандарт предусматривает разбиение жесткого диска на разделы (рис. 6-1). Раздел (partition) - это часть диска, функционирующая как самостоятельное хранилище данных. В Wind

Установка и конфигурирование сетевых протоколов
Пакет протоколов TCP/IP Пакет протоколов TCP/IP обеспечивает межсетевое взаимодействие компьютеров с разной аппаратной архитектурой и операционными системами. Реализация протокола TCP/IP,

Совместное использование утилит ipconfig и ping
Совместно применяя ipconng и ping, можно проверять конфигурацию компьютера и тестировать соединения с маршрутизатором.

Пространство имен
Active Directory, как и любая другая служба каталогов, прежде всего представляет собой пространство имен. Пространство имен (namespace) - это любая ограниченная область, в которой может быть разреш

Локальные учетные записи
Локальная учетная запись позволяет пользователю войти в систему и получить доступ к ресурсам только того компьютера, на котором создана эта запись (рис. 10-1). При создании локальной учетной записи

Правила именования учетных записей
Прежде всего, нужно знать, как пользователи идентифицируются в домене. Логичные и последовательные правила помогут вам и вашим пользователям запомнить имена для входа в систему и найти их в списках

Требования к паролям
Чтобы упорядочить доступ к ресурсам системы, каждой учетной записи надо сопоставить пароль. Перечислим основные принципы назначения паролей. - Всегда назначайте пароль для учетной записи A

Локальные группы
Локальная группа (Local group) - это набор учетных записей пользователей на локальном компьютере, предназначенный для предоставления разрешений доступа к ресурсам на компьютере, где эта группа созд

Разрешения доступа к общим папкам
Change Создавать палки, добавлять к ним файлы, изменять и (Изменение) добавлять данные в файлах, изменять атрибуты файла, удалять папки (файлы) и выполнять действия, допускаемые разрешением Read.

Применение разрешений доступа к общей папке
Вид доступа к обшей папке зависит от разрешений, назначенных учетным записям пользователей и групп. Далее рассматриваются последствия применения разных разрешений. - Несколько разрешений с

Основные правила назначения разрешений на доступ к общей папке
Основные правила назначения разрешений на доступ к общей папке можно сформулировать следующим образом. Определите группы, которым необходим доступ к данному ресурсу, и требуемый уров

Папки программ
Общие папки программ (application folders) применяют для серверных приложений, к которым может обращаться компьютер клиента. Главный плюс общих приложений в том, что вам не нужно устанавливать и по

Назначение разрешений доступа к общей папке
Открыв доступ к папке, надо назначить соответствующие разрешения учетным записям пользователей и группам. 1. На вкладке Sharing (Доступ) диалогового окна свойств папки щелкните кнопку Perm

Подключение к общей папке
Подключаться к общей папке можно с помощью команды Run (Выполнить), значка My Network Places (Мое сетевое окружение) или мастера Map Network Drive (Подключение сетевого диска). В последнем случае с

Основы политики аудита
Планируя политику аудита, вы должны определить, на каких компьютерах будете устанавливать аудит. По умолчанию аудит отключен. По мере выбора компьютеров для аудита вы можете также запланировать, ка

Существуют следующие основные направления политики аудита
1. Определитесь, нужно ли отслеживать тенденции использования системы. Если да, то планируйте архивировать журналы событий. Это позволит, например, просмотреть, как используются системные ресурсы,

Архивация Windows
В Windows 2000 имеются инструменты архивации и восстановления - программа Backup. В состав программы входит Backup Wizard (Мастер архивации) - служебная программа, существенно облегчающая архивиров

Планирование архивации
Архивация планируется и проводится в соответствии с потребностями и нуждами предприятия. Основная цель резервного копирования - возможность при необходимости восстановить данные, поэтому любой план

Типы архивации
Backup Wizard (Мастер архивации) предоставляет пять типов архивии, отличающихся выбором данных. Например, можно архивировать только файлы, которые изменились со времени последнего резервного копиро

Восстановление данных
Обеспечить успешное восстановление данных можно, только придерживаясь определенных правил, например таких, как полное документирование всех мероприятий по архивации. Подгот

Выбор архивов и подлежащих восстановлению данных
Перед запуском восстановления необходимо выбрать нужные данные. Можно выбирать как отдельные файлы или папки, так и целое задание архивации или несколько наборов. Архивный набор (backup se

Изучение возможностей утилиты cmd
Командная оболочка - это отдельный программный продукт, который обеспечивает прямую связь между пользователем и операционной системой (ОС). Текстовый пользовательский интерфейс в виде командной стр

Режимы работы
COMMAND.COM имеет два режима работы. Первый режим - интерактивный, когда пользователь вводит с клавиатуры команды, которые немедленно выполняются. Второй режим -пакетный, когда COMMAND.COM выполняе

Создание командных файлов
До сих пор, приводя примеры, мы считали, что всякий раз вводим команды вручную. При обработке большого количества файлов или при систематическом выполнении одних и тех же команд это становится обре

Здравствуйте, Хабралюди!
Не многие знают и не многие помнят, с чего началась история компьютерного софта - операционные системы. Именно эту тему и выбрал школьник для своей МАН-овской работы (МАН - малая академия наук). Звучит оно так - эволюция операционных систем. Сразу скажу, что более 90% из Тырнета, но откопано далеко не в первых 2-х страницах поиска в Гугле.

Вступление
Компьютерные технологии в последнее время сделали значительный скачок вперед, и скоро невозможно будет представить наши жизни без помощи компьютера. Но без операционной системы компьютер - лишь набор микросхем. Именно на базе операционной системы работают все программы, которые мы используем, именно от ОС в первую очередь будет зависеть скорость и производительность нашего труда на компьютере.

Современный компьютер состоит из одного или нескольких процессоров, оперативной памяти, дисков, принтера, клавиатуры, мыши, монитора, сетевых интерфейсов и других различных устройств ввода-вывода. В итоге получается довольно сложная система. Если каждому программисту, который создает приложение, нужно будет разбираться во всех тонкостях работы всех этих устройств, то он не напишет ни строки кода. Более того, управление всеми этими компонентами и их оптимальное использование представляет собой очень непростую задачу. По этой причине компьютеры оснащены специальным уровнем программного обеспечения, который называется операционной системой, в задачу которого входит управление пользовательскими программами, а также управление всеми ресурсами железа.
Первая ОС
GM-НАА была первой операционной системой для компьютеров. Она была создана в 1955 году Робертом Патриком с General Motors и Оуэном Моком с North American Aviation. Она была основана на системном мониторе и работала на больших машинах. Основная функция GM-НАА - автоматическое выполнение новой программы, когда старая программа завершилась.
Возникновение Плато
В 1972 году была разработана система PLATO, которая имела ряд инноваций, таких как оранжевая плазменная панель. Она включала в себя память и функции растровой графики. Плазменный дисплей PLATO поддерживал возможность быстрой отрисовки векторных линий.Многие инноваций, ввела ОС PLATO, стали в дальнейшем фундаментом для разработки других компьютерных систем. Например, некоторые технологии были заимствованы и усовершенствованные компанией Apple.
Возникновение UNIX
Первая система UNIX была разработана в 1969 году в подразделении Bell Labs компании AT & T. С тех пор было создано большое количество различных UNIX-систем.Некоторые отличительные признаки UNIX-систем включают в себя:
1) Использование текстовых файлов для настройки и управления системой;
2) Широкое применение утилит, запускаемых в командной строке;
3) Взаимодействие с пользователем посредством виртуального устройства - терминала;
4) Представление физических и виртуальных устройств как файлов.
Идеи, заложенные в основу UNIX, оказали огромное влияние на развитие компьютерных операционных систем. В настоящее время UNIX-системы признаны одними из самых исторически важных ОС. Эта операционная система популяризирует идею иерархической файловой системы с произвольной глубиной вложенности.
Linux
Linux была создана в 1991 году Линусом Торвальдсом, финским студентом. Тот факт, что Линус сразу после создания ОС выложил исходный код своей ОС в Интернет, был решающим в дальнейшей судьбе Linux. Хотя в 1991 году Интернет еще не был так широко распространен, как в наши дни, зато пользовались им в основном люди, которые имеют достаточную техническую подготовку. И уже с самого начала Торвальдс получил несколько заинтересованных отзывов с предложением помочь в разработке, на что Линус ответил согласием, и уже через полгода к разработке присоединились сотни, потом сотни тысяч добровольных помощников.В силу того, что исходные коды Linux распространяются свободно и общедоступно, к развитию системы с самого начала подключилось большое число независимых разработчиков.
MS-DOS
MS-DOS - коммерческая операционная система фирмы Microsoft для IBM PC-совместимых персональных компьютеров. MS-DOS работает в режиме реального времени процессора x86. Обеспечивается единовременное выполнение только одной программы. MS-DOS была спроектирована так, чтобы пользователи могли легко заменить встроенный интерпретатор посторонними интерпретаторами командной строки, например 4DOS.
Windows, куда ж без нее

В 1985 году появляется первая версия Windows, которая не была оценена пользователями и ее проигнорировали. Возможно потому, что она всего лишь дополняла возможности DOS, будучи фактически графической оболочкой и надстройкой над комплектом MS-DOS.
Со временем, система Windows все более совершенствовалась, появилась полноценная графика, лишила пользователей от видения системных файлов, был преодолен барьер многозадачности, что позволяет запустить 2-3 программы.В 1992 году с момента возникновения Windows 3.1, по мнению многих пользователей и профессионалов, новые возможности ОС были оценены по достоинству. С версии Windos3.1 ОС получила начало 32-разрядная доступность к жесткому диску.
В 1998 году, 25 июня, новая OC Windows 98 вышла на рынок потребителей. Преимуществом, по сравнению с предыдущими образцами, были: полная интеграция с Интернетом, более совершенное управление интерфейсом, новый процессор Pentium II, графический портал AGP, шина USB.
Параллельно с предыдущими, началась разработка системы Windows XP, где окончательно решено отказаться от 16-разрядности в ядре системы, и перейти на 32-разрядную, с новой архитектурой и строением. Из преимуществ новой системы необходимо отметить следующее: это первая из систем с полностью настраиваемым интерфейсом, внедрением интеллектуального меню «Пуск». Также оптимально переработана панель - управляющая ПК.
Появление после Widows XP новой системы Windows Vista считают самым неудачным вариантом после всех предыдущих выпусков ОС. Ее представляют, как «генеральную репетицию» перед Windows 7. Казалось бы, неплохие качества новой системы должны были заинтересовать пользователей. Такие новшевства как встроенный поиск, трехмерность интерфейса Aero с красивыми заставками, хорошую защиту - ничего не помогло, все выполнено крайне неудачно, по мнению пользователей.
Windows 7 мало чем кроме нового интерфейса отменялась от Vista. Вариантов Windows 7 выпущено 5: Starter Edition, домашняя базовая, домашняя расширенная, профессиональная, максимальная.
Windows 8 в отличие от своих предшественников - Windows 7 и Windows XP использует новый интерфейс под названием Modern(Metro). Также в системе присутствует и рабочий стол, но уже в виде отдельного приложения.

Мобильные ОС
Сейчас все больший интерес пользователей привлекают смартфоны на различных операционных системах: Windows Phone, Boda, IOS. Самыми популярными из них являются IOS и AndroidOS.
IOS
IOS - мобильная операционная система, созданная на ядре Linux и разрабатываемой и выпускаемой американской компанией Apple. Была выпущена в 2007 году изначально - для iPhone и iPod Touch. Сейчас же она установлена ​​на всех устройствах Apple. Такие нововведения как мобильный браузер Safari, визуальная голосовая почта, виртуальная клавиатура сделали IOS одной из наиболее популярных систем для смартфонов.
Андроид
Андроид - система, которая наиболее динамично развивается, разработанна для смартфонов(изначально для коммунникаторов(Айфон и его тачскрин изменили мнение Гугла)). Она является упрощенным вариантом аналогичных систем Windows и Linux, используемых на стационарных ПК и ноутбуках, ориентированной для тачскрина. Платформа Андроид состоит из операционной системы, интерфейса, связывающего ПО и мощных приложений.
Google Chrome OS (облачная ОС)
Chrome OS позиционируется как операционная система для различных устройств - от маленьких нетбуков до полноразмерных настольных систем и поддерживает x86-и ARM-архитектуры процессоров.
Новая ОС Google Chrome имеет открытый исходный код, основанный на оптимизированном Linux-ядре и управляется браузером Chrome.Главной особенностью будет доминирование веб-приложений над обычными функциями ОС. Ключевая роль при этом отводится браузеру.
Стратегия создания нового продукта подразумевает архитектуру, нетребовательную к аппаратным ресурсам персонального компьютера, используемого для выхода в сеть Интернет.
Все приложения, которые запускает система - веб-сервисы. Фактически, все действия, проходящих в на компьютере, выполняются в Интернете - нет необходимости устанавливать никаких офлайновых приложений. В связи с этим работа в Chrome OS не требует наличия у компьютера мощных ресурсов, ведь все процессы запускаются не на самом компьютере, а на серверах соответствующих служб.
Предсказания ворожеи
Операционная система пользователя становится чем-то похожим на веб-браузер, установленной на голое железо. Современный классический интерфейс (разработанный в Xerox PARC и впервые внедрен Apple почти 30 лет назад) отойдет в прошлое. Многие современные составных частей ОС станут просто не нужны, другие уйдут от пользователя и превратятся в сервисы API для программистов. Основным задачей ОС станет предоставление возможности запуска клиентской части облачных сервисов. И преимущества, которыми Microsoft в современном мире ОС, будет значительно уменьшены. Им придется придумывать новые способы привязки к себе пользователей и программистов в новом среде, более конкурентной, в сравнению с нынешней.
Многое зависит от решений, успехов и неудач крупных софтверных компаний, таких как Microsoft, Google. В отличие от той эволюции софта, которую мы наблюдали в девяностых и двухтысячных, новая эволюция все меньше зависет от производителей железа, и все больше - от производителей конечного ПО для пользователей.

За криворукость не ругать, если что - поправлять, автора не матюкать.

Теги: операционные системы, история ит


  1. Понятие операционной системы; эволюция развития операционных систем; функции операционных систем и подходы к построению операционных систем.
ОС – базовый комплекс компьютерных программ, обеспечивающий управление аппаратными средствами компьютера, работу с файлами, ввод и вывод данных, а также выполнение прикладных программ и утилит.

В основном эволюцию развития ОС разделяют на 5 поколений:

Первое поколение (1940 – 50). Только появились ламповые вычислительные устройства. Разработан принцип программы. ОС отсутствуют, вся работа по управлению ведется разработчиками.

Второе поколение (1950 – 60). Вычислительные устройства работают на полупроводниковых элементах. Появляется прообраз ОС - системы пакетной обработки , которые просто автоматизируют запуск одной программы из пакета за другой и тем самым увеличивают коэффициент загрузки процессора.

Третье поколение (1960 - 70) . Полупроводниковые элементы объединяются в интегральные микросхемы. Появляются ОС с поддержкойаппарата прерывания,планирования заданий, мультипрограммирования. Одна и та жеОС начинает работать на различных устройствах, но она по-прежнему остается пакетной. Также появляетсяоперационная система реального времени (ОСРВ), в которой ЭВМ применяется для управления техническими объектами. Характерным свойством для ОСРВ является реактивность- готовность системы вырабатывать управляющие воздействия незамедлительно.

Четвертое поколение (1970-80) . ОС были многорежимными системами, обеспечивающими пакетную обработку, разделение времени, режим реального времени и мультипроцессорный режим. Появляется вытесняющая многозадачность и приоритетное планирование, а также выделение квот на использование ограниченных ресурсов компьютеров. Реализуется механизм виртуальной памяти и развитых файловых систем.

Пятое поколение (с середины 1980-х гг. по н.в.) . ОС используют возможности сетевых технологий, в том числе технологии клиент – сервер, интерфейс становится графическим и дружественным.

Также существует 5 основных подходов к построению ОС


  • Монолитное ядро

  • Микроядернаяархитектура

  • Многоуровневая система

  • Виртуальная машина

  • Смешанная система

  1. Архитектура операционной системы. Классификация операционных систем. Эффективность и требования, предъявляемые к ОС.
Рассмотрим существующие архитектуры ОС.

Монолитное ядро - это такая схема операционной системы, при которой все ее компоненты являются составными частями одной программы, используют общие структуры данных и взаимодействуют друг с другом путем непосредственного вызова процедур. Для монолитной операционной системы ядро совпадает со всей системой.Примером систем с монолитным ядром является большинство Unix-систем.

Многоуровневые системы. Всю вычислительную системуможно разбить на ряд более мелких уровней с хорошо определенными связями между ними, так чтобы объекты уровня N могли вызывать только объекты уровня N-1. Нижним уровнем в таких системах обычно является hardware, верхним уровнем – интерфейс пользователя. Чем ниже уровень, тем более привилегированные команды и действия может выполнять модуль, находящийся на этом уровне.

Виртуальными машинами называют программную или аппаратную среду, исполняющую некоторый код. Зачастую виртуальная машина эмулирует работу реального компьютера. Примерами служит VMWareWorkstation и VirtualBox.

Микроядерная архитектура. Это такая архитектура, когда большинство составляющих ОCявляются самостоятельными программами.Взаимодействие между ними обеспечивает микроядро, которое работает в привилегированном режиме. Также оно осуществляет планирование использования процессора, первичную обработку прерываний, операции ввода-вывода и базовое управление памятью.

Смешанные системы. В большинстве случаев современные операционные системы используют различные комбинации вышеприведенных подходов.

У ОС сформировалась своя классификация:


  • по назначению (общего, специального),

  • по режиму обработки задач (однозадачные, мультипрограммные),

  • по способу взаимодействия с системой (диалоговые, с пакетной обработкой)

  • по способам построения (рассмотрены выше)
К операционным системам современных компьютеров предъявляется ряд требований. Главным требованием является выполнение основных функций эффективного управления ресурсами и обеспечения удобного интерфейса для пользователя и прикладных программ. Современная ОС должна поддерживать мультипрограммную обработку, виртуальную память, свопинг, развитый интерфейс пользователя (многооконный графический, аудио -, менюориентированный и т.д.), высокую степень защиты, удобство работы, а также выполнять многие другие необходимые функции и услуги. Кроме этих требований функциональной полноты, к ОС предъявляется ряд важных эксплуатационных требований.

  • Эффективность.

  • Надежность и отказоустойчивость.

  • Безопасность (защищенность).

  • Предсказуемость.

  • Расширяемость.

  • Переносимость.

  • Совместимость.

  • Удобство.

  • Масштабируемость.

  1. Понятие процесса, его состояния, модель представления процесса в операционной системе и операции, которые могут выполняться над процессами операционной системой.
Понятие процесса характеризует некоторую совокупность набора исполняющихся команд, ассоциированных с ним ресурсов и текущего момента его выполнения, находящуюся под управлением операционной системы. В любой момент процесс полностью описывается своим контекстом, состоящим из регистровой, системной и пользовательской частей.

Процессы могут находиться в пяти основных состояниях:


  • рождение,

  • готовность,

  • исполнение,

  • ожидание,

  • закончил исполнение
В операционной системе процессы представляются определенной структурой данных, которая содержит следующую информацию (для разных ОС различается):

  • состояние, в котором находится процесс;

  • адрес команды, которая должна быть выполнена для него следующей;

  • содержимое регистров процессора;

  • данные, необходимые для планирования использования процессора и управления памятью;

  • учетные данные;

  • сведения об устройствах ввода-вывода, связанных с процессом.
Из состояния в состояние процесс переводится операционной системой в результате выполнения над ним операций. Операционная система может выполнять над процессами следующие пары операций:

  • создание процесса - завершение процесса,

  • приостановка процесса - запуск процесса,

  • блокирование процесса - разблокирование процесса,

  • изменение приоритета процесса.


  1. Уровни планирования процессов в операционных системах. Основные цели и критерии планирования и параметры, на которых оно основывается. Алгоритмы планирования.
Планирование – это работа по определению того, в какой момент времени прервать выполнение одного процесса и какому процессу предоставить возможность выполняться.

При построении алгоритмов планирования выделяют три различных уровня:


  • долгосрочное;

  • краткосрочное;

  • среднесрочное.
К числу целей можно отнести следующие:

  • Справедливость.

  • Эффективность.

  • Сокращение полного времени выполнения.

  • Сокращение времени ожидания.

  • Сокращение времени отклика.
Критерии планирования:

  • Предсказуемость.

  • Минимальные накладные расходы.

  • Равномерная загрузка ресурсов вычислительной системы

  • Масштабируемость
Параметры планирования:

  • Статические – предельные значения ресурсов системы: размер оперативной памяти, максимальное количество памяти на диске для осуществления свопинга, количество подключенных устройств ввода-вывода и т.п.

  • Динамические – значения ресурсов системы на текущий момент.
Алгоритмы планирования

FCFS. Работает по принципу первым пришел, первым обслужен. Преимуществом алгоритма FCFS является легкость его реализации, недостатками – среднее время ожидания и среднее полное время выполнения для этого алгоритма существенно зависят от порядка расположения процессов в очереди.

RoundRobin. По сути, это алгоритм FCFS , только реализованный в режиме вытесняющего планирования (очередной процесс передается на исполнение по таймеру по истечении определенного кванта времени).

ShortestJobFirst. Если выбирать процесс не по порядку (как в FCFS и RR ), а основываясь на его минимальном времени непрерывного использования процессора, то это позволит повысить производительность алгоритма планирования использования процессора. Описанный алгоритм получил название «кратчайшая работа первой» (англ. ShortestJobFirst , SJF ).

Основную сложность при реализации алгоритма SJF представляет невозможность точно знать в каждом случае время исполнения очередного процесса.


  1. Кооперация процессов и основные аспекты ее логической организации (санкционированное взаимодействие процессов)
Для нормального функционирования процессов операционная система старается максимально обособить их друг от друга. Тем не менее существуют причины для их взаимодействия:

  • Повышение скорости работы.

  • Совместное использование данных.

  • Модульная конструкция какой-либо системы.

  • Удобства работы пользователя
Категории средств обмена информацией

  • Сигнальные.

  • Канальные.

  • Разделяемая память.
Логическая организация механизма передачи информации

Установление связи. При использовании прямой адресации связь между процессами в классической операционной системе устанавливается автоматически, без дополнительных инициализирующих действий. При использовании непрямой адресации инициализация средства связи может и не требоваться. Информация, которой должен обладать процесс для взаимодействия с другими процессами, – это некий идентификатор промежуточного объекта для хранения данных, если он, конечно, не является единственным и неповторимым в вычислительной системе для всех.

Информационная валентность процессов и сре дств св язи. При прямой адресации только одно фиксированное средство связи может быть задействовано для обмена данными между двумя процессами, и только эти два процесса могут быть ассоциированы с ним. При непрямой адресации может существовать более двух процессов, использующих один и тот же объект для данных, и более одного объекта может быть использовано двумя процессами.

Особенности передачи информации с помощью линий связи

Буферизация


  • Буфер нулевой емкости или отсутствует.

  • Буфер ограниченной емкости.

  • Буфер неограниченной емкости.
Поток ввода/вывода и сообщения

  • Поток ввода-вывода. Операции передачи/приема не интересуются содежимим данных

  • Сообщения. Процессы налагают на передаваемые данные некоторую структуру. Весь поток информации они разделяют на отдельные сообщения.
Надежность сре дств св язи. Передача данных через разделяемую память является надежным способом связи. В остальных случаях нужно повышать надежность.

Завершение связи. Для способов связи, которые не подразумевали никаких инициализирующих действий, обычно ничего специального для окончания взаимодействия предпринимать не надо. Если установление св. требовало некоторой инициализации, то необходимо выполнить операции освобождения ресурса.


  1. Алгоритмы синхронизации (алгоритмы корректной организации взаимодействия процессов).
Критическая секция

Критическая секция – часть программы, результат выполнения которой может непредсказуемо меняться, если переменные, относящиеся к ней, изменяются другими потоками в то время, когда выполнение этой части еще не завершено. В примере критическая секция – файл “заказов”, являющийся разделяемым ресурсом для процессов R и S.

Алгоритм Деккера - первое известное корректное решение проблемы взаимного исключения.

Если два процесса пытаются перейти в критическую секцию одновременно, алгоритм позволит это только одному из них, основываясь на том, чья в этот момент очередь. Если один процесс уже вошёл в критическую секцию, другой будет ждать, пока первый покинет её. Это реализуется при помощи использования двух флагов (индикаторов "намерения" войти в критическую секцию) и переменной turn (показывающей, очередь какого из процессов наступила).

Процессы объявляют о намерении войти в критическую секцию; это проверяется внешним циклом «while». Если другой процесс не заявил о таком намерении, в критическую секцию можно безопасно войти (вне зависимости от того, чья сейчас очередь). Взаимное исключение всё равно будет гарантировано, так как ни один из процессов не может войти в критическую секцию до установки этого флага (подразумевается, что, по крайней мере, один процесс войдёт в цикл «while»). Это также гарантирует продвижение, так как не будет ожидания процесса, оставившего «намерение» войти в критическую секцию. В ином случае, если переменная другого процесса была установлена, входят в цикл «while» и переменная turn будет показывать, кому разрешено войти в критическую секцию. Процесс, чья очередь не наступила, оставляет намерение войти в критическую секцию до тех пор, пока не придёт его очередь (внутренний цикл «while»). Процесс, чья очередь пришла, выйдет из цикла «while» и войдёт в критическую секцию.

Не требует специальных Test-and-set инструкций, по этому легко переносим на разные языки программирования и архитектуры компьютеров

Действует только для двух процессов

Алгоритм Петерсона - программный алгоритм взаимного исключения потоков исполнения кода.

Перед тем как начать исполнение критической секции кода (то есть кода, обращающегося к защищаемым совместно используемым ресурсам), поток должен вызвать специальную процедуру (назовем ее EnterRegion) со своим номером в качестве параметра. Она должна организовать ожидание потока своей очереди входа в критическую секцию. После исполнения критической секции и выхода из нее, поток вызывает другую процедуру (назовем ее LeaveRegion), после чего уже другие потоки смогут войти в критическую область. Если оба процесса подошли к прологу практически одновременно, то они оба объявят о своей готовности и предложат выполняться друг другу. При этом одно из предложений всегда следует после другого. Тем самым работу в критическом участке продолжит процесс, которому было сделано последнее предложение.

Как и алгоритм Деккера, действует только для 2 процессов

Более простая реализация, чем у алгоритма Деккера

Алгоритм булочной. Алгоритм Петерсона дает нам решение задачи корректной организации взаимодействия двух процессов. Давайте рассмотрим теперь соответствующий алгоритм для n взаимодействующих процессов.

Каждый вновь прибывающий процесс получает метку с номером. Процесс с наименьшим номером метки обслуживается следующим. К сожалению, из-за неатомарности операции вычисления следующего номера алгоритм булочной не гарантирует, что у всех процессов будут метки с разными номерами. В случае равенства номеров меток у двух или более процессов первым обслуживается клиент с меньшим значением имени (имена можно сравнивать в лексикографическом порядке). Разделяемые структуры данных для алгоритма – это два массива


  1. Специальные механизмы синхронизации – семафоры Дейкстры, мониторы Хора, очереди сообщений.
Семафоры

Для устранения этого недостатка во многих ОС предусматриваются специальные системные вызовы (аппарат для работы с критическими секциями.

В разных ОС аппарат событий реализован по своему, но в любом случае используются системные функции, которые условно называют WAIT(x) и POST(x), где x – идентификатор некоторого события (например, освобождение ресурса).

Обобщающее средство синхронизации процессов предложил Дейкстра, который ввел новые примитивы, обозначаемые V (“открытие”) и P (“закрытие”), оперирующие над целыми неотрицательными переменными, называемыми семафорами.

Доступ любого процесса к семафору, за исключением момента его инициализации, может осуществляться только через эти две атомарные операции.

Смысл P(S) заключается в проверке текущего значения семафора S, и если S>0, то осуществляется переход к следующей за примитивом операции, иначе процесс переходит в состояние ожидания.

Процесс блокируется; S=S-1;

Операция V(S) связана с увеличением значения S на 1 и переводом одного или нескольких процессов в состояние готовности к исполнению процессором.

В простом случае, когда семафор работает в режиме 2-х состояний (S>0 и S=0), ео алгоритм работы полностью совпадает с алгоритмом работs мьютекса, а S выполняет роль блокирующей переменной.

“+”: пассивное ожидание (постановка в очередь и автоматическая выдача ресурсов)


  • возможность управления группой однородных ресурсов
“-”: не указывают непосредственно на критический ресурс

  • некорректное использование операций может привести к нарушению работоспособности (например, переставив местами операции P(e) и P(b) в функции Writer()).
Мониторы

Для облегчения работы программистов при создании параллельных программ без усилий на доказательства правильности алгоритмов и отслеживание взаимосвязанных объектов (что характерно при использовании семафоров) предложено высокоуровневое средство синхронизации, называемое мониторами.

Мониторы – тип данных, обладающий собственными переменными, значения которых могут быть изменены только с помощью вызова функций-методов монитора.

Функции-методы могут использовать в работе только данные, находящиеся внутри монитора, и свои параметры.

Доступ к мониторам в каждый момент времени имеет только один процесс.

Для организации не только взаимоисключений, но и очередности процессов, подобно семафорам f(full) и e(empty), было введено понятие условных переменных, над которыми можно совершать две операции wait и signal, отчасти похожие на операции P и V над семафорами.

Функция монитора выполняет операцию wait над какой-либо условной переменной. При этом процесс, выполнивший операцию wait, блокируется, становится неактивным, и другой процесс получает возможность войти в монитор.

Когда ожидаемое событие происходит, другой процесс внутри функции совершает операцию signal над той же самой условной переменной. Это приводит к пробуждению ранее заблокированного процесса, и он становится активным.

Исключение входа нескольких процессов в монитор реализуется компилятором, а не программистом, что делает ошибки менее вероятными.

Требуются специальные языки программирования и компиляторы (встречаются в языках, “параллельный Евклид”,”параллельный Паскаль”,Java).

Следует отметить, что условные переменные мониторов не запоминают предысторию, поэтому операцию signal всегда должна выполняться после операции wait(иначе выполнение операции wait всегда будет приводить к блокированию процесса).

Очереди сообщений

Механизм очередей сообщений позволяет процессам и потокам обмениваться структурированными сообщениями. Один или несколько процессов независимым образом могут посылать сообщения процессу – приемнику.

Очередь сообщений представляет возможность использовать несколько дисциплин обработки сообщений (FIFO, LIFO, приоритетный доступ, произвольный доступ).

При чтении сообщения из очереди удаления сообщения из очереди не происходит, и сообщение может быть прочитано несколько раз.

В очереди присутствуют не сами сообщения, а их адреса в памяти и размер. Эта информация размещается системой в сегменте памяти, доступном для всех задач, общающихся с помощью данной очереди

Основные функции управления очередью:


  • Создание новой очереди

  • Открытие существующей очереди

  • Чтение и удаление сообщений из очереди

  • Чтение без последующего удаления

  • Добавление сообщения в очередь

  • Завершение использование очереди

  • Удаление из очереди всех сообщений

  • Определение числа элементов в очереди

  1. Взаимоблокировки, тупиковые ситуации, "зависания" системы

страница 1

Рассматривая эволюцию ОС, следует иметь в виду, что разница во времени реализации некоторых принципов организации отдельных операционных систем до их общего признания, а также терминологическая неопределенность не позволяют дать точную хронологию развития ОС. Однако сейчас уже достаточно точно можно определить основные вехи на пути эволюции операционных систем.

Существуют также различные подходы к определению поколений ОС. Известно разделение ОС на поколения в соответствии с поколениями вычислительных машин и систем [5 , 9 , 10 , 13 ]. Такое деление нельзя считать полностью удовлетворительным, так как развитие методов организации ОС в рамках одного поколения ЭВМ, как показал опыт их создания, происходит в достаточно широком диапазоне. Другая точка зрения не связывает поколение ОС с соответствующими поколениями ЭВМ. Так, например, известно определение поколений ОС по уровням входного языка ЭВМ, режимам использования центральных процессоров, формам эксплуатации систем и т.п. [5 , 13 ].

Видимо, наиболее целесообразным следует считать выделение этапов развития ОС в рамках отдельных поколений ЭВМ и ВС.

Первым этапом развития системного программного обеспечения можно считать использование библиотечных программ, стандартных и служебных подпрограмм и макрокоманд. Концепция библиотек подпрограмм является наиболее ранней и восходит к 1949 году [4 , 17 ]. С появлением библиотек получили развитие автоматические средства их сопровождения – программы-загрузчики и редакторы связей. Эти средства применялись в ЭВМ первого поколения, когда операционных систем как таковых еще не существовало.

Стремление устранить несоответствие между производительностью процессоров и скоростью работы электромеханических устройств ввода-вывода, с одной стороны, и использование достаточно быстродействующих накопителей на магнитных лентах и барабанах (НМЛ и НМБ), а затем на магнитных дисках (НМД), с другой стороны, привело к необходимости решения задач буферизации и блокирования-деблокирования данных. Возникли специальные программы методов доступа, которые вносились в объекты модулей редакторов связей (впоследствии стали использоваться принципы полибуферизации). Для поддержания работоспособности и облегчения процессов эксплуатации машин создавались диагностические программы. Таким образом было создано базовое системное программное обеспечение.

С улучшением характеристик ЭВМ и ростом их производительности стало ясно, что существующего базового программного обеспечения (ПО) недостаточно. Появились операционные системы ранней пакетной обработки – мониторы. В рамках системы пакетной обработки во время выполнения любой работы в пакете (трансляция, сборка, выполнение готовой программы) никакая часть системного ПО не находилась в оперативной памяти, так как вся память предоставлялась текущей работе. Затем появились мониторные системы, в которых оперативная память делилась на три области: фиксированная область мониторной системы, область пользователя и область общей памяти (для хранения данных, которыми могут обмениваться объектные модули).

Началось интенсивное развитие методов управления данными, возникала такая важная функция ОС, как реализация ввода-вывода без участия центрального процесса – так называемый спулинг (от англ. SPOOL – Simultaneous Peripheral Operation on Line).

Появление новых аппаратных разработок (1959-1963 гг.) – систем прерываний, таймеров, каналов – стимулировало дальнейшее развитие ОС [4 , 5 , 9 ]. Возникли исполнительные системы, которые представляли собой набор программ для распределения ресурсов ЭВМ, связей с оператором, управления вычислительным процессом и управления вводом-выводом. Такие исполнительные системы позволили реализовать довольно эффективную по тому времени форму эксплуатации вычислительной системы – однопрограммную пакетную обработку. Эти системы давали пользователю такие средства, как контрольные точки, логические таймеры, возможность построения программ оверлейной структуры, обнаружение нарушений программами ограничений, принятых в системе, управление файлами, сбор учетной информации и др.

Однако однопрограммная пакетная обработка с ростом производительности ЭВМ не могла обеспечить экономически приемлемый уровень эксплуатации машин. Решением стало мультипрограммирование – способ организации вычислительного процесса, при котором в памяти компьютера находится несколько программ, попеременно выполняющихся одним процессором, причем для начала или продолжения счета по одной программе не требовалось завершения других. В мультипрограммной среде проблемы распределения ресурсов и защиты стали более острыми и трудноразрешимыми.

Теория построения операционных систем в этот период обогатилась рядом плодотворных идей. Появились различные формы мультипрограммных режимов работы, в том числе разделение времени – режим, обеспечивающий работу многотерминальной системы. Была создана и развита концепция виртуальной памяти, а затем и виртуальных машин. Режим разделения времени позволил пользователю интерактивно взаимодействовать со своими программами, как это было до появления систем пакетной обработки.

Одной из первых ОС, использующих эти новейшие решения, была операционная система МСР (главная управляющая программа), созданная фирмой Burroughs для своих компьютеров В5000 в 1963 году. В этой ОС были реализованы многие концепции и идеи, ставшие впоследствии стандартными для многих операционных систем:

    мультипрограммирование;

    мультипроцессорная обработка;

    виртуальная память;

    возможность отладки программ на исходном языке;

    написание операционной системы на языке высокого уровня.

Известной системой разделения времени того периода стала система CTSS (Compatible Time Sharing System) – совместимая система разделения времени, разработанная в Массачусетском технологическом институте (1963 год) для компьютера IBM-7094 [37 ]. Эта система была использована для разработки в этом же институте совместно с Bell Labs и General Electric системы разделения времени следующего поколения MULTICS (Multiplexed Information And Computing Service). Примечательно, что эта ОС была написана в основном на языке высокого уровня EPL (первая версия языка PL/1 фирма IBM).

Одним из важнейших событий в истории операционных систем считается появление в 1964 году семейства компьютеров под названием System/360 фирмы IBM, а позже – System/370 [11 ]. Это было первой в мире реализацией концепции семейства программно и информационно совместимых компьютеров, ставшей впоследствии стандартной для всех фирм компьютерной отрасли.

Нужно отметить, что основной формой использования ЭВМ, как в системах разделения времени, так и в системах пакетной обработки, стал многотерминальный режим. При этом не только оператор, но и все пользователи получали возможность формулировать свои задания и управлять их выполнением со своего терминала. Поскольку терминальные комплексы скоро стало возможным размещать на значительных расстояниях от компьютера (благодаря модемным телефонным соединениям), появились системы удаленного ввода заданий и телеобработки данных. В ОС добавились модули, реализующие протоколы связи [10 , 13 ].

К этому времени произошло существенное изменение в распределении функций между аппаратными и программными средствами компьютера. Операционная система становится "неотъемлемой частью ЭВМ", как бы продолжением аппаратуры. В процессорах появился привилегированный (Супервизор в OS/360) и пользовательский (Задача в OS/360) режимы работы, мощная система прерываний, защита памяти, специальные регистры для быстрого переключения программ, средства поддержки виртуальной памяти и др.

В начале 70-х годов появились первые сетевые ОС, которые позволили не только рассредоточить пользователей, как в системах телеобработки данных, но и организовать распределенное хранение и обработку данных между компьютерами, соединенных электрическими связями. Известен проект ARPANET MO США. В 1974 году IBM объявила о создании собственной сетевой архитектуры SNA для своих мэйнфреймов, обеспечивающей взаимодействие типа "терминал-терминал", "терминал-компьютер", "компьютер-компьютер". В Европе активно разрабатывалась технология построения сетей с коммутацией пакетов на основе протоколов Х.25.

К середине 70-х годов наряду с мэйнфреймами широкое распространение получили мини-компьютеры (PDP-11, Nova, HP). Архитектура мини-компьютеров была значительно проще, многие функции мультипрограммных ОС мэйнфреймов были усечены. Операционные системы мини-ЭВМ стали делать специализированными (RSX-11M – разделение времени, RT-11 – OC реального времени) и не всегда многопользовательскими.

Важной вехой в истории мини-компьютеров и вообще в истории операционных систем явилось создание ОС UNIX. Написал эту систему Кен Томпсон (Ken Thompson), один из специалистов по компьютерам в BELL Labs, работавший над проектом MULTICS. Собственно, его UNIX – это усеченная однопользовательская версия системы MULTICS. Первоначальное название этой системы – UNICS (UNiplexed Information and Computing Service – примитивная информационная и компьютерная служба). Так в шутку была названа эта система, поскольку MULTICS (MULTiplexed Information and Computing Service) – мультиплексная информационная и компьютерная служба. С середины 70-х годов началось массовое использование ОС UNIX, написанной на 90% на языке С. Широкое распространение С-компиляторов сделало UNIX уникальной переносимой OC, а поскольку она поставлялась вместе с исходными кодами, она стала первой открытой операционной системой. Гибкость, элегантность, мощные функциональные возможности и открытость позволили ей занять прочные позиции во всех классах компьютеров – от персональных до супер-ЭВМ.

Доступность мини-компьютеров послужила стимулом для создания локальных сетей. В простейших ЛВС компьютеры соединялись через последовательные порты. Первое сетевое приложение для ОС UNIX – программа UUCP (Unix to Unix Copy Program) – появилось в 1976 году.

Дальнейшее развитие сетевых систем со стеком протоколов TCP/IP: в 1983 году он был принят MO США в качестве стандарта и использован в сети ARPANET. В этом же году ARPANET разделилась на MILNET (для военного ведомства США) и новую ARPANET, которую стали называть Internet.

Все восьмидесятые годы характерны появлением все более совершенных версий UNIX: Sun OS, HP-UX, Irix, AIX и др. Для решения проблемы их совместимости были приняты стандарты POSIX и XPG, определяющие интерфейсы этих систем для приложений.

Еще одним знаменательным событием для истории операционных систем было появление в начале 80-х годов персональных компьютеров. Они послужили мощным толчком для распределения локальных сетей, в результате поддержка сетевых функций стала для ОС ПК необходимым условием. Однако и дружественный интерфейс, и сетевые функции появились у ОС ПК не сразу [13 ].

Наиболее популярной версией ОС раннего этапа развития персональных компьютеров была MS-DOS компании Microsoft – однопрограммная, однопользовательская ОС с интерфейсом командной строки. Многие функции, обеспечивающие удобство работы пользователю, в этой ОС предоставлялись дополнительными программами – оболочкой Norton Commander, PC Tools и др. Наибольшее влияние на развитие программного обеспечения ПК оказала операционная среда Windows, первая версия которой появилась в 1985 году. Сетевые функции также реализовались с помощью сетевых оболочек и появились в MS-DOS версии 3.1. В это же время появились сетевые продукты Microsoft – MS-NET, а позже – LAN Manager, Windows for Workgroup, а затем и Windows NT.

Другим путем пошла компания Novell: ее продукт NetWare – операционная система со встроенными сетевыми функциями. ОС NetWare распространялась как операционная система для центрального сервера локальной сети и за счет специализации функций файл-сервера обеспечивала высокую скорость удаленного доступа к файлам и повышенную безопасность данных. Однако эта ОС имела специфический программный интерфейс (API), что затрудняло разработку приложений.

В 1987 году появилась первая многозадачная ОС для ПК – OS/2, разработанная Microsoft совместно с IBM. Эта была хорошо продуманная система с виртуальной памятью, графическим интерфейсом и возможностью выполнять DOS-приложения. Для нее были созданы и получили распространение сетевые оболочки LAN Manager (Microsoft) и LAN Server (IBM). Эти оболочки уступали по производительности файловому серверу NetWare и потребляли больше аппаратных ресурсов, но имели важные достоинства. Они позволяли выполнять на сервере любые программы, разработанные для OS/2, MS-DOS и Windows, кроме того, можно было использовать компьютер, на котором они работали, в качестве рабочей станции. Неудачная рыночная судьба OS/2 не позволила системам LAN-Manager и LAN-Server захватить заметную долю рынка, но принципы работы этих сетевых систем во многом нашли свое воплощение в ОС 90-х годов – MS Windows NT.

В 80-е годы были приняты основные стандарты на коммуникационные технологии для локальных сетей: в 1980 г. – Ethernet, в 1985 г. – Token Ring, в конце 80-х –FDDI (Fiber Distributed Data Interface), распределенный интерфейс передачи данных по волоконно-оптическим каналам, двойное кольцо с маркером. Это позволило обеспечить совместимость сетевых ОС на нижних уровнях, а также стандартизировать операционные системы с драйверами сетевых адаптеров.

Для ПК применялись не только специально разработанные для них ОС (MS-Dos, NetWare, OS/2), но и адаптировались уже существующие ОС, в частности UNIX. Наиболее известной системой этого типа была версия UNIX компании Santa Cruz Operation (SCO UNIX).

В 90-е годы практически все операционные системы, занимающие заметное место на рынке, стали сетевыми. Сетевые функции встраиваются в ядро ОС, являясь ее неотъемлемой частью. В ОС используются средства мультиплексирования нескольких стеков протоколов, за счет которого компьютеры могут поддерживать одновременную работу с разнородными серверами и клиентами. Появились специализированные ОС, например, сетевая ОС IOS компании Cisco System, работающая в маршрутизаторах. Во второй половине 90-х годов все производители ОС усилили поддержку средств работы с интерфейсами. Кроме стека протоколов TCP/IP в комплект поставки начали включать утилиты, реализующие популярные сервисы Интернета: telnet, ftp, DNS, Web и др.

Особое внимание уделялось в последнем десятилетии и уделяется в настоящее время корпоративным сетевым операционным системам. Это одна из наиболее важных задач в обозримом будущем. Корпоративные ОС должны хорошо и устойчиво работать в крупных сетях, которые характерны для крупных организаций (предприятий, банков и т.п.), имеющих отделения во многих городах и, возможно, в разных странах. Корпоративная ОС должна без проблем взаимодействовать с ОС разного типа и работать на различных аппаратных платформах. Сейчас определились лидеры в классе корпоративных ОС – это MS Windows 2000/2003, UNIX и Linux-системы, а также Novell NetWare 6.5.


Всероссийский Заочный Финансово – Экономический Институт

Факультет: финансово – кредитный

Специальность: финансы и кредит группа вечерняя

Курсовая работа

По дисциплине «Информатика»

На тему «Назначение, классификация и эволюция операционных систем»

Москва – 2008г.

Введение
1 Назначение операционных систем 5

2 Перечислим основные функции операционных систем 9

2.2 Обслуживание всех операций ввода-вывода 9

3 Эволюция и классификация ОС
Заключение 2
Список использованной литературы 22

Введение

Операционная система (ОС) является основой системного ПО, под управлением которыми осуществляется начальная загрузка компьютера, управление работой всех его устройств и проверка их работоспособности, управление файловой системой компьютера, загрузка пользовательских приложений и распределение ресурсов компьютера между ними, поддержка пользовательского интерфейса и др. К числу широко известных семейств операционных систем относятся DOS, WINDOWS, UNIX, NETWARE и др.

Операционная система (ОС) представляет собой совокупность программ, выполняющих две функции: предоставление пользователю удобств виртуальной машины и повышение эффективности использования компьютера при рациональном управлении его ресурсами.

Процессор компьютера выполняет команды, заданные на машинном языке. Непосредственная подготовка таких команд требует от пользователя знаний языка и специфики построения и взаимодействия аппаратных средств. Так, например, для доступа к хранящейся на магнитном носителе информации необходимо указать номера блоков на диске и номера секторов на дорожке, определить состояние двигателя механизма перемещения головок записи считывания, обнаружить наличие и типы ошибок, выполнить их анализ и пр. Требовать этих знаний от всех пользователей практически невозможно. Поэтому и возникла необходимость в создании ОС – совокупности программ, скрывающих от пользователя особенности физического расположения информации и выполняющих обработку прерываний, управление таймерами и оперативной памятью. В результате пользователю предоставляется виртуальная машина, реализующая работу на логическом уровне.

1 Назначение операционных систем

Операционные системы относятся к системному программному обеспечению. Все программное обеспечение разделяется на системное и прикладное. К системному программному обеспечению принято относить такие программы и комплексы программ, которые являются общими, без которых невозможно выполнение или создание других программ. История появления и развития системного программного обеспечения началась с того момента, когда люди осознали, что любая программа требует операций ввода-вывода данных. Это произошло в далекие 50-е годы прошлого столетия. Собственно операционные системы появились чуть позже.

Аналогично, и вывод результатов может быть организован, например, на соответствующие устройства и в форме, удобной для восприятия ее человеком. Либо результаты расчетов будут отправляться программой на какие-нибудь исполнительные устройства, которые управляются компьютером. Наконец, мы можем организовать запись полученных значений на некие устройства хранения данных (с целью их дальнейшей обработки).

Программирование операций ввода-вывода относится к одной из самых трудоемких областей создания программного обеспечения. Здесь речь идет не об использовании операторов типа READ или WRITE в языках высокого уровня. Речь идет о необходимости создать подпрограмму в машинном виде, уже готовую к выполнению на компьютере, а не написанную с помощью некоторой системы программирования (систем программирования тогда еще не было), подпрограмму, вместо обычных вычислений управляющую тем устройством, которое должно участвовать в операциях ввода исходных данных или выводов результатов. При наличии такой подпрограммы программист может обращаться к ней столько раз, сколько операций ввода-вывода с этим устройством ему требуется. Для выполнения этой работы программисту недостаточно хорошо знать архитектуру вычислительного комплекса и уметь создавать программы на языке ассемблера. Он должен отлично знать и интерфейс, с помощью которого устройство подключено к центральной части компьютера, и алгоритм функционирования устройства управления устройства ввода-вывода.

Очевидно, что имело смысл создать набор подпрограмм управления операциями ввода-вывода и использовать его в своих программах, чтобы не заставлять программистов каждый раз заново программировать все эти операции. С этого и началась история системного программного обеспечения. Впоследствии набор подпрограмм ввода-вывода стали организовывать в виде специальной библиотеки ввода-вывода, а затем появились и сами операционные системы. Основной причиной их появления было желание автоматизировать процесс подготовки вычислительного комплекса к выполнению программы.

В 50-е годы взаимодействие пользователей с вычислительным комплексом было совершенно иным, чем ныне. Программист-кодер (от англ. coder – кодировщик) – специально подготовленный специалист, знающий архитектуру компьютера и язык(и) программирования, - по заказу составлял текст программы, часто по уже готовому алгоритму, разработанному программистом-алгоритмистом. Текст этой программы затем отдавался оператору, который набирал его на специальных устройствах и переносил на соответствующие носители. Чаще всего в качестве носителей использовались перфокарты или перфолента. Далее колода с перфокартами передавалась в вычислительный зал, где для вычислений по этой программе требовать следующие действия:

1. Оператор вычислительного комплекса с пульта вводил в рабочие регистры центрального процессора и в оперативную память компьютера ту первоначальную программу, которая позволяла считать в память программу для трансляции исходных кодов и получения машинной (двоичной) программы (проще говоря, транслятор, который тоже хранился на перфокартах или перфоленте).

2. Транслятор считывал исходную программу, осуществлял лексический разбор исходного текста, и промежуточные результаты процесса трансляции зачастую так же выводили на перфокарты (перфоленту). Трансляция – сложный процесс, часто требующий нескольких проходов. Порой для выполнения очередного прохода приходилось в память компьютера загружать с перфокарт и следующую часть транслятора, и промежуточные результаты трансляции. Ведь результат трансляции выводился также на носители информации, поскольку объем оперативной памяти был небольшим, а задача трансляции – это очень сложная задача.

3. Оператор загружал в оперативную память компьютера полученные двоичные коды, оттранслированной программы и подгружал двоичные коды тех системных подпрограмм, которые реализовывали управлениями операциями ввода-вывода. После этого готовая программа, расположенная в памяти, могла сама считывать исходные данные и осуществлять необходимые вычисления. В случае обнаружения ошибок на одном из этих этапов или после анализа полученных результатов весь цикл необходимо было повторить.

Для автоматизации труда программиста (кодера) стали разрабатывать специальные алгоритмические языки высокого уровня, а для автоматизации труда оператора вычислительного комплекса была разработана специальная управляющая программа, загрузив которую в память один раз оператор мог ее далее использовать неоднократно и более не обращаться к процедуре программирования ЭВМ через пульт оператора. Именно эту управляющую программу и стали называть операционной системой. Со временем на нее стали возлагать все больше и больше задач, она стала расти в объеме. Прежде всего разработчики стремились к тому, чтобы операционная система как можно более эффективно распределяла вычислительные ресурсы компьютера, ведь в 60-е годы операционные системы уже позволяли организовать параллельное выполнение нескольких программ. Помимо задач распределения ресурсов появились задачи обеспечения надежности вычислений. К началу 70-х годов диалоговый режим работы с компьютером стал преобладающим, и у операционных систем стремительно начали развиваться интерфейсные возможности. Термин интерфейс (interface) обозначает целый комплекс спецификаций, определяющих конкретный способ взаимодействия пользователя с компьютером.

На сегодняшний день можно констатировать, что операционная система (ОС) представляет собой комплекс системных управляющих и обрабатывающих программ, которые, с одной стороны, выступают как интерфейс между аппаратурой компьютера и пользователем с его задачами, а с другой стороны, предназначены для наиболее эффективного расходования ресурсов вычислительной системы и организации надежных вычислений.

2 Перечислим основные функции операционных систем

Прием пользователя (или оператора системы) заданий, или команд, сформулированных на соответствующем языке, и их обработка. Задания могут передаваться в виде текстовых директив (команд) оператора или в форме указаний, выполняемых с помощью манипулятора (например, с помощью мыши). Эти команды связаны с запуском (приостановкой, остановкой) программ, с операциями над файлами (получить перечень файлов в текущем каталоге, создать, переименовать, скопировать, переместить тот или иной файл и др.), хотя имеются и иные команды.

Распределение памяти, а в большинстве современных систем и организация виртуальной памяти.

Запуск программы (передача ей управления, в результате чего процессор исполняет программу).

Прием и использование различных запросов от выполняющихся приложений. Операционная система умеет выполнять очень большое количество системных функций (сервисов), которые могут быть запрошены из выполняющейся программы. Обращение к этим сервисам осуществляется по соответствующим правилам, которые и определяют интерфейс прикладного программирования (Application Program Interface, API) этой операционной системы.

2.2 Обслуживание всех операций ввода-вывода

Обеспечение работы систем управлений файлами (СУФ) и/или систем управления базами данных (СУБД), что позволяет резко увеличить эффективность всего программного обеспечения.

Обеспечение режима мультипрограммирования, то есть организация параллельного выполнения двух или более программ на одном процессоре, создающая видимость их одновременного исполнения.

Планирование и диспетчеризация задач в соответствии с заданными между выполняющимися программами.

Для сетевых операционных систем характерной является функция обеспечения взаимодействия связанных между собой компьютеров.

Организация механизмов обмена сообщениями и данными между выполняющимися программами.

Защита одной программы от влияния другой, обеспечение сохранности данных, защита самой операционной системы от исполняющихся на компьютере приложений.

Аутентификация и авторизация пользователей (для большинства диалоговых операционных систем). Под аутентификацией понимается процедура проверки имени пользователя и его пароля на соответствие тем значениям, которые хранятся в его учетной записи. Очевидно, что если входное имя (login) пользователя и его пароль совпадают, то, скорее всего, это и будет тот самый пользователь. Термин авторизация означает, что в соответствии с учетной записью пользователя, который прошел аутентификацию, ему (и всем запросам, которые будут идти к операционной системе от его имени) назначаются определенные права (привилегии), определяющие, что он может делать на компьютере.

Удовлетворение жестким ограничениям на время ответа в режиме реального времени (характерно для ОС реального времени).

Обеспечение работы систем программирования, с помощью которых пользователи готовят свои программы.

Предоставление услуг на случай частичного сбоя системы.

Операционная система изолирует аппаратное обеспечение компьютера от прикладных программ пользователей. И пользователь, и его программы взаимодействуют с компьютером через интерфейсы операционной системы.

3 Эволюция и классификация ОС

Эволюция ОС во многом обусловлена совершенствование аппаратной базы ЭВМ.

Программирование ламповых вычислительных устройств, ориентированных на решение специализированных прикладных задач, выполнялось на машинном языке (языке программирования, представляющем программу в форме, позволяющей непосредственно выполнять ее техническими средствами обработки данных). Организация вычислительного процесса в этом случае осуществлялась обслуживающим персоналом вручную с пульта управления. ОС для этих ЭВМ практически отсутствовали.

Компьютеры, построенные на полупроводниковых элементах, стали более компактными, надежными и применялись при решении более широкого класса прикладных задач. Появились первые алгоритмические языки, компиляторы (компиляторы – программы, используемые для компиляции – перевода написанной на алгоритмическом языке программы на язык, близкий к машинному) и системы пакетной обработки. Эти системы явились прообразом современных ОС. Основное их назначение – увеличение загрузки процессора.

Переход от отдельных полупроводниковых элементов типа транзисторов к интегральным микросхемам сопровождался созданием семейств программно-совместимых машин, например, семейства IBM/360, EC ЭВМ. ОС этих компьютеров ориентировались на обслуживание вычислительных систем с разнообразными периферийными устройствами и в различных областях деятельности. Особенностью таких ОС стало мультипрограммирование – способ организации вычислительного процесса, при котором на одном процессоре попеременно выполняются несколько приложений. Например, пока одно приложение осуществляет операции ввода-вывода, процессор выполняет вычислительные операции другого. Образовался новый тип ОС – системы разделения времени, которая позволяет создать для каждого пользователя иллюзию единоличной работы с компьютером. Появление больших (БИС) и сверхбольших интегральных схем (СБИС) обеспечило широкое распространение компьютеров и их использование неспециалистами в области программирования. Это потребовало разработки дружественного, интуитивно понятного программного интерфейса. Развитие средств коммуникаций обусловило развитие сетевых ОС.

К современным ОС предъявляются следующие требования:

Совместимости – ОС должна включать средства для выполнения приложений, подготовленных для других ОС;

Переносимости – обеспечение возможности переноса ОС с одной аппаратурной платформы на другую;

Надежности и отказоустойчивости – предполагает защиту ОС от внутренних и внешних ошибок, сбоев и отказов;

Безопасности – ОС должна содержать средства защиты ресурсов одних пользователей от других;

Расширяемости – ОС должна обеспечивать удобства внесения последующих изменений и дополнений;

Производительности – система должна обладать достаточным быстродействием.

Классификация ОС. Обычно общение пользователя с машиной протекает в интерактивном режиме. При этом темп решения задачи определяется реакцией пользователя. Если принять время реакции пользователя постоянным, то можно считать, что сложность задачи ограничивается быстродействием технических средств (при необходимости оно повышается экстенсивными методами: применением более быстродействующей элементной базы, использованием многопроцессорных или многомашинных систем). Но это односторонний подход. Огромные возможности таятся в организационных мероприятиях, к которым относится выбор оптимальных режима работы и дисциплин обслуживания; и то и другое реализуется операционными системами.

Режимы работы ПЭВМ в первую очередь определяются количеством задач, параллельно решаемых на машине (реализуемых программ). По этому признаку ОС разделяются на многозадачные и однозадачные, поддерживающие и не поддерживающие многонитевую обработку, многопользовательские и однопользовательские, на многопроцессорные и однопроцессорные.

По числу одновременно выполняемых задач выделяют ОС:

Однозадачные ОС (MS-DOS, ранние версии PS DOS);

Многозадачные (OS/2, UNIX, Windows).

Однозадачные ОС предоставляют пользователю виртуальной машины и включают средствами управления файлами, периферийными устройствами и средства общения с пользователем. Многозадачные ОС дополнительно управляют разделением между задачами совместно используемых ресурсов. Среди вариантов реализации многозадачности выделяют две группы алгоритмов распределения процессорного времени:

Невытесняющая многозадачность (NetWare, Windows 3. x и 9. х);

Вытесняющая многозадачность (Windows NT, OS/2, UNIX).

В первом случае активный процесс по окончании сам передает управление ОС для выбора из очереди другого процесса. Во втором – решение о переключении процесса с одного процесса с одного процесса на другой принимает не активный процесс, а ОС.

Поддержка многонитевости предполагает возможность выполнения некоторых команд программы практически в один и тот же момент. Многонитевая ОС разделяет процессорное время не между задачами, а между отдельными ветвями (нитями) алгоритмов их решения (многозадачность внутри одной задачи).

По числу одновременно работающих пользователей выделяют ОС:

Однопользовательские (MS-DOS, Windows 3. x, ранние версии OS/2);

Многопользовательские (UNIX, Windows NT).

Отличием многопользовательских систем является наличие средств защиты информации пользователей от несанкционированного доступа.

Многопроцессорная обработка предполагает поддержку работы нескольких процессоров и приветствует в ОС Solaris 2. x фирмы Sun, OS/2 фирмы IBM, Windows NT фирмы Microsoft, NetWare 4.1. фирмы Novell и др.

Многопроцессорные ОС делятся на асимметричные и симметричные. Асимметричная ОС выполняется на одном из процессоров системы, распределяя прикладные задачи по остальным процессорам. Симметричные ОС децентрализована и использует все процессоры, разделяя между ними системные и прикладные задачи.

Очевидно, что ОС персонального компьютера менее сложна, чем ОС мэйнфреймов и суперЭВМ. Отличием сетевой ОС от локальной являются средства передачи данных между компьютерами по линиям связи и реализации протоколов передачи данных, например IP, IPX и др.

Кроме ОС, ориентированных на определенный тип аппаратной платформы, существуют мобильные ОС, легко переносимые на разные типы компьютеров. В таких ОС (например, UNIX) аппаратно-зависимые места локализованы и при переносе системы на новую платформу переписываются. Аппаратно-независимая часть реализуется на языке программирования высокого уровня на языке С, и перекомпилируется при переходе на другую платформу.

Динамическое перераспределение ресурсов ПЭВМ между несколькими задачами (способ коллективного пользования) обеспечивает либо сокращение суммарного времени решения нескольких задач, либо уменьшение времени начала обработки задачи. И то и другое при одном «обслуживающем приборе», например процессоре или принтере, достигается за счет увеличения времени решения одной (каждой) задачи. Порядок прохождения задач в машине определяет режимы реализации способа коллективного пользования: пакетной обработки и разделения времени. Пакетная обработка предполагает решение нескольких задач примерно в том же режиме, в каком работает преподаватель во время устного экзамена – его внимание занимает один из студентов. По завершении опроса внимание переключается на следующего (полагаем, что обслуживание студентов и есть решение задачи).

В режиме разделения времени процесс выполнения программ разбивается на циклы. Внутри каждого цикла обязательно появляется (если она еще не решена) та базовая задача, для которой выделен данный цикл. Остальные задачи могут решаться в этом же цикле, если их решение не препятствует решению базовой. Соседние циклы выделяются для решения разных задач, поэтому существенно увеличивается время решения каждой из них. Вместе с тем на ожидание выполнения очередной части задачи затрачивается не более чем N-1 циклов (N – число разноименных циклов, выделенных для решения N различных задач). При соответствующем выборе длительности цикла у пользователя (из-за его инерционности) создается иллюзия работы в реальном масштабе времени. Работой в реальном масштабе времени называется режим работы, при котором существуют предельные ограничения на время решения задачи, накладываемые внешней средой. Для системы управления это означает, что обработка информации должна протекать со скоростью, превышающей скорость реально протекающего управляемого процесса, с тем, чтобы имелся определенный запас времени для принятия решений и формирования соответствующих управляющих воздействий.

Для реальных условий работы характерно то, что моменты поступления задач на обработку определяются не темпом работы обслуживающего прибора (ПЭВМ, принтера и пр), а процессами, протекающими вне его. В соответствии с этим обслуживающий прибор должен решать определенную совокупность задач (реакция на сбои оборудования, заявка на связь в сети, принудительное создание резервной копии и т.д.).

При конечном быстродействии обслуживающего прибора поступающие заявки не могут быть выполнены сразу, а становятся в очередь. Процесс выбора заявки из множества ожидающих обслуживания называется диспетчеризацией, а правило диспетчеризации – дисциплиной обслуживания. Дисциплин обслуживания много, например «в порядке поступления» (FIFO – First Input First Output), «в обратном порядке» (LIFO – Last Input First Output) и др. Для сокращения времени ожидания (времени пребывания в очереди) отдельным заявкам предоставляется преимущественное право на обслуживание, называемое приоритетом, который характеризуется целым положительным числом. Наивысший приоритет назначается ОС.

Итак, при создании двоичных машинных программ прикладные программисты могут вообще не знать многих деталей управления конкретными ресурсами вычислительной системы, а должны только обращаться к некоторой программной подсистеме с соответствующими вызовами и получать от нее необходимые функции и сервисы. Эта программная подсистема и есть операционная система, а набор ее функций и сервисов, а также правила обращения к ним как раз и образуют то базовое понятие, которое мы называем операционной средой. Можно сказать, что термин «операционная среда» означает соответствующие интерфейсы, необходимые программам и пользователям для обращения к управляющей (супервизорной) части операционной системы с целью получить определенные сервисы.

Системных функций бывает много, они определяют те возможности, которые операционная система предоставляет выполняющимся под ее управлением приложениям. Такого рода системные запросы (вызовы системных операций, или функций) либо явно прописываются в тексте программы программистами, либо подставляются автоматически самой системой программирования на этапе трансляции исходного текста разрабатываемой программы. Каждая операционная система имеет свое множество системных функций; они вызываются соответствующим образом, по принятым в системе правилам. Совокупность системных вызовов и правил, по которым их следует использовать, как раз и определяет интерфейс прикладного программирования (API). Очевидно, что программа, созданная для работы в некоторой операционной системе, скорее всего не будут работать в другой операционной системе, поскольку API у этих операционных систем различаются. Стараясь преодолеть это ограничение, разработчики операционных систем стали создавать так называемое программные среды. Программную (системную) среду следует понимать как некоторое системное программное окружение, позволяющее выполнить все системные запросы от прикладной программы. Та системная программная среда, которая непосредственно образуется кодом операционной системы, называется основной, естественной, или нативной (native). Помимо основной операционной среды в операционной системе могут быть организованы (путем эмуляции иной операционной среды) дополнительные программные среды. Если в операционной системе организована работа с различными операционными средами, то в такой системе можно выполнять программы, созданные не только для данной, но и для других операционных систем. Можно сказать, что программы создаются для работы в некоторой заданной операционной среде. Например, можно создать программу для работы в среде DOS. Если такая программа все функции, связанные с операциями с операциями ввода-вывода и с запросами памяти, выполняет не сама, а за счет обращения к системным функциям DOS, то она будет (в абсолютном большинстве случаев) успешно выполняться и в MS DOS, и в PS DOS, и в Windows 9x, и в Windows 2000, и в OS/2, и даже в Linux.

Итак, параллельное существование терминов «операционная система» и «операционная среда» вызвано тем, что операционная система может поддерживать несколько операционных сред. Почти все современные 32-разрядные операционные системы, созданные для персональных компьютеров, поддерживают по нескольку операционных сред. Так операционная система OS/2 Warp, которая в свое время была одной из лучших в этом отношении, может выполнять следующие программы:

Основные программы, созданные с учетом соответствующего «родного» 32-разрядного программного интерфейса этой операционной системы;

16-разрядные программы, созданные для систем OS/2 первого поколения;

16-разрядные приложения, разработанные для выполнения в операционной системе MS DOS или PS DOS;

16-разрядные приложения, созданные для операционной среды Windows 3. x;

Саму оперативную оболочку Windows 3. x и уже в ней – созданные для нее программы.

А операционная система Windows XP позволяет выполнять помимо основных приложений, созданных с использованием Win32API, 16-разрядные приложения для Windows 3. x, 16-разрядные DOS-приложения, 16-разрядные приложения для первой версии OS/2.

Операционная среда может включать несколько интерфейсов: пользовательские и программные. Если говорить о пользовательских, то например, система Linux имеет для пользователя как интерфейсы командной строки (можно использовать различные «оболочки» - shell), наподобие Norton Commander, например X-Window с различными менеджерами окон - KDE, Gnome и др. Если же говорить о программных интерфейсах, то в тех же операционных системах с общим названием Linux программы могут обращаться как к операционной системе за соответствующими сервисами и функциями, так и к графической подсистеме (если она используется). С точки зрения архитектуры процессора (и персонального компьютера в целом) двоичная программа, созданная для работы в среде Linux, использует те же команды и форматы данных, что и программа, созданная для работы в среде Windows NT. Однако в первом случае мы имеем обращение к одной операционной среде, а во втором – к другой. И программа, созданная непосредственно для Windows, не будет выполняться в Linux; если в ОС Linux организовать полноценную операционную среду Windows, то наша Windows-программа может быть выполнена. В общем, операционная среда – это то системное программное окружение, в котором могут выполняться программы, созданные по правилам работы этой среды.

Заключение

Итак, операционная система выполняет функции управления вычислениями в компьютере, распределяет ресурсы вычислительной системы между различными вычислительными процессами и образует ту программную среду, в которой выполняются прикладные программы пользователей. Такая среда называется операционной. Последнее следует понимать в том плане, что при запуске программы она будет обращаться к операционной системе с соответствующими запросами на выполнение определенных действий, или функций. Эти функции операционная система выполняет, запуская специальные системные программные модули, входящие в ее состав.

В настоящий момент около 90% персональных компьютеров используют ОС Windows, которая имеет ряд достоинств и вытеснила конкурентов из этого сегмента рынка. Более широкий класс ОС ориентирован для использования на серверах. К этому классу ОС относят: семейство Unix, разработки фирмы Microsoft, сетевые продукты Novell и корпорации IBM.

К ресурсами компьютера относятся: процессоры, память, дисковые накопители, сетевые коммуникационные средства, принтеры и другие устройства. Функцией ОС является рациональное распределение этих ресурсов между процессами с целью обеспечения максимальной эффективности функционирования компьютера.

Список использованной литературы

Гордеев А.В. Операционные системы: Учебник для вузов.2-е изд. – СПб.: Питер, 2005.

Основы информатики: Учеб. пособие / А.Н. Морозевич, Н.Н. Говядинова, В.Г. Левашенко и др.; Под ред.А.Н. Морозевича. – 2-е изд., испр. – Мн.: Новое знание, 2003.

Евсюков В.В. Экономическая информатика: Учеб. пособие – Тула: Издательство «Граф и К», 2003.

Информатика в экономике: Учеб. пособие /Под ред. проф. Б.Е. Одинцова, проф.А.Н. Романова. – М.: Вузовский учебник, 2008.