Что такое языки программирования. Обзор языков программирования. Список языков программирования

Программирование - это целая наука, позволяющая создавать компьютерные программы. Она включает в себя огромное количество различных операций и алгоритмов, которые образуют единый язык программирования. Итак, что же это такое и какими бывают языки программирования? В статье даны ответы, а также приведен обзорный список языков программирования.

Историю возникновения и изменения программных языков следует изучать наравне с историей развития компьютерных технологий, ведь эти понятия связаны между собой напрямую. Без языков программирования невозможно было бы создать никакую программу для работы компьютера, а значит, создание вычислительных машин стало бы бессмысленным занятием.

Первый машинный язык был придуман в 1941 году Конрадом Цузе, который является изобретателем аналитической машины. Чуть позже, в 1943 г., Говард Эйкен создал машину "Марк-1", способную считывать инструкцию на уровне машинного кода.

В 1950-х годах начался активный спрос на разработку программного обеспечения, а машинный язык не выдерживал большие объемы кода, поэтому был создан новый способ общения с компьютерами. "Ассемблер" является первым мнемоническим языком, заменившим машинные команды. С годами список языков программирования только увеличивается, ведь область применения компьютерных технологий становится обширнее.

Классификация языков программирования

На данный момент существует более 300 языков программирования. Каждый из них имеет свои особенности и подходит для одной определенной задачи. Все языки программирования можно условно разделить на несколько групп:

  • Аспектно-ориентированные (основная идея - разделение функциональности для увеличения эффективности программных модулей).
  • Структурные (в основе лежит идея создания иерархической структуры отдельных блоков программы).
  • Логические (в основе лежит теория аппарата математической логики и правил резолюции).
  • Объектно-ориентированные (в таком программировании используются уже не алгоритмы, а объекты, которые принадлежат определенному классу).
  • Мультипарадигмальные (сочетают в себе несколько парадигм, и программист сам решает, каким языком воспользоваться в том или ином случае).
  • Функциональные (в качестве основных элементов выступают функции, которые меняют значение в зависимости от результатов вычислений исходных данных).

Программирование для начинающих

Многие задаются вопросом, что же такое программирование? По сути, это способ общения с компьютером. Благодаря языкам программирования мы можем ставить перед различными устройствами определенные задачи, создавая специальные приложения или программы. При изучении данной науки на начальном этапе самое главное - это выбрать подходящие (интересные для вас) языки программирования. Список для начинающих приведен ниже:

  • Basic придуман в 1964 году, относится к семейству высокоуровневых языков и используется для написания прикладных программ.
  • Python ("Питон") довольно легко выучить благодаря простому читаемому синтаксису, преимущество же в том, что на нем можно создавать как обычные десктопные программы, так и веб-приложения.
  • Pascal ("Паскаль") - один из древнейших языков (1969 г.), созданных для обучения студентов. Его современная модификация имеет строгую типизацию и структурированность, однако "Паскаль" - вполне логичный язык, который понятен на интуитивном уровне.

Это не полный список языков программирования для начинающих. Существует огромное количество синтаксисов, которые доступны для понимания, и обязательно будут востребованы в ближайшие годы. Каждый вправе самостоятельно выбрать то направление, которое будет интересным для него.

Новички имеют возможность ускорить изучение программирования и его основ благодаря специальным инструментам. Основной помощник - это интегрированная среда разработки программ и приложений Visual Basic («Визуал Бейсик» одновременно является и языком программирования, который унаследовал стиль языка Basic 1970-х годов).

Уровни языков программирования

Все формализованные языки, предназначенные для создания, описания программ и алгоритмов для решения задач на компьютерах, делятся на две основных категории: языки программирования низкого уровня (список приведен ниже) и высокого уровня. Поговорим о каждом из них отдельно.

Низкоуровневые языки предназначены для создания машинных команд для процессоров. Главное их преимущество в том, что они используют мнемонические обозначения, т. е. вместо последовательности нулей и единиц (из двоичной системы счисления) компьютер запоминает осмысленное сокращенное слово из английского языка. Самые известные языки низкого уровня - это "Ассемблер" (существует несколько подвидов этого языка, каждый из которых имеет много общего, а отличается лишь набором дополнительных директив и макросов), CIL (доступен в платформе.Net) и Байт-код JAVA.

Языки программирования высокого уровня: список

Высокоуровневые языки созданы для удобства и большей эффективности приложений, они являются полной противоположностью низкоуровневых языков. Их отличительная черта - наличие смысловых конструкций, которые емко и кратко описывают структуры и алгоритмы работы программ. В языках низкого уровня их описание на машинном коде было бы слишком длинным и непонятным. Языки же высокого уровня обладают независимостью от платформы. Вместо них функцию транслятора совершают компиляторы: они переводят текст программы в элементарные машинные команды.

Следующий список языков программирования: C ("Си"), C# ("Си-шарп"), "Фортран", "Паскаль", Java ("Ява") - входит в число самых используемых высокоуровневых синтаксисов. Он обладает следующими свойствами: эти языки работают с комплексными структурами, поддерживают строковые типы данных и операции с файлами ввода-вывода информации, а также имеют преимущество - с ними гораздо проще работать благодаря читабельности и понятному синтаксису.

Самые используемые языки программирования

В принципе, написать программу можно на любом языке. Вопрос в том, будет ли она работать эффективно и без сбоев? Вот почему для решения различных задач следует выбирать наиболее подходящие языки программирования. Список по популярности можно охарактеризовать так:

  • языки ООП: Java, C++, Python, PHP, VisualBasic и JavaScript;
  • группа структурных языков: Basic, Fortran и Pascal;
  • мультипарадигмальные: C#, Delphi, Curry и Scala.

Область применения программ и приложений

Выбор языка, на котором написана та или иная программа, во многом зависит от области ее применения. Так, например, для работы с самим "железом" компьютера (написания драйверов и поддерживающих программ) лучшим вариантом станет C ("Си") или С++, которые входят в основные языки программирования (список смотрите выше). А для разработки мобильных приложений, в том числе игр, следует выбрать Java или С# ("Си-шарп").

Если вы еще не определились, в каком направлении работать, то рекомендуем начать изучение с языков C или C++. Они имеют весьма понятный синтаксис, четкое структурное разделение на классы и функции. К тому же, зная C или С++, можно с легкостью выучить любой другой язык программирования.

Классификация языков программирования

На заре компьютерной эры машинный код был единственным средством общения человека с компьютером. Огромным достижением создателей языков программирования было то, что они сумели заставить сам компьютер работать переводчиком с этих языков на машинный код.

Существующие языки программирования можно разделить на две группы: процедурные и непроцедурные (см. рис. 4.1).

Процедурные (или алгоритмические) программы представляют из себя систему предписаний для решения конкретной задачи. Роль компьютера сводится к механическому выполнению этих предписаний.

Процедурные языки разделяют на языки низкого и высокого уровня.

Разные типы процессоров имеют разные наборы команд. Если язык программирования ориентирован на конкретный тип процессора и учитывает его особенности, то он называется языком программирования низкого уровня.
Имеется в виду, что операторы языка близки к машинному коду и ориентированы на конкретные команды процессора.

Рис. 4.1. Общая классификация языков программирования

Языки низкого уровня (машинно-ориентированные) позволяют создавать программы из машинных кодов, обычно в шестнадцатеричной форме. С ними трудно работать, но созданные с их помощью высококвалифицированным программистом программы занимают меньше места в памяти и работают быстрее. С помощью этих языков удобнее разрабатывать системные программы, драйверы (программы для управления устройствами компьютера), некоторые другие виды программ.

Языком низкого уровня (машинно-ориентированным) является Ассемблер , который просто представляет каждую команду машинного кода, но не в виде чисел, а с помощью условных символьных обозначений, называемых
мнемониками.

С помощью языков низкого уровня создаются очень эффективные и компактные программы, так как разработчик получает доступ ко всем возможностям процессора.

Языки программирования высокого уровня значительно ближе и понятнее человеку, нежели компьютеру. Особенности конкретных компьютерных архитектур в них не учитываются, поэтому создаваемые программы на уровне исходных текстов легко переносимы на другие платформы, для которых создан транслятор этого языка. Разрабатывать программы на языках высокого уровня с помощью понятных и мощных команд значительно проще, а ошибок при создании программ допускается гораздо меньше.

Основное достоинство алгоритмических языков высокого уровня - возможность описания программ решения задач в форме, максимально удобной для восприятия человеком. Но так как каждое семейство ЭВМ имеет свой собственный, специфический внутренний (машинный) язык и может выполнять лишь те команды, которые записаны на этом языке, то для перевода исходных программ на машинный язык используются специальные программы-трансляторы.

Работа всех трансляторов строится по одному из двух принципов: интерпретация или компиляция.

Интерпретация подразумевает пооператорную трансляцию и последующее выполнение оттранслированного оператора исходной программы. В связи с этим можно отметить два недостатка метода интерпретации: во-первых, интерпретирующая программа должна находиться в памяти ЭВМ в течение всего процесса выполнения исходной программы, т. е. занимать определенный объем памяти; во-вторых, процесс трансляции одного и того же оператора повторяется столько раз, сколько раз должна исполняться эта команда в программе, что резко снижает производительность работы программы.

Несмотря на указанные недостатки, трансляторы-интерпретаторы получили достаточное распространение, так как они удобны при разработке и отладке исходных программ.

При компиляции процессы трансляции и выполнения разделены во времени: сначала исходная программа полностью переводится на машинный язык (после чего наличие транслятора в оперативной памяти становится ненужным), а затем оттранслированная программа может многократно исполняться. Следовательно, для одной и той же программы трансляция методом компиляции обеспечивает более высокую производительность вычислительной системы при сокращении требуемой оперативной памяти.

Большая сложность в разработке компилятора по сравнению с интерпретатором с того же самого языка объясняется тем, что компиляция программы включает два действия: анализ, т. е. определение правильности записи исходной программы в соответствии с правилами построения языковых конструкций входного языка, и синтез – генерирование эквивалентной программы в машинных кодах. Трансляция методом компиляции требует неоднократного «просмотра» транслируемой программы, т. е. трансляторы-компиляторы являются многопроходными: при первом проходе они проверяют корректность синтаксиса языковых конструкций отдельных операторов независимо друг от друга, при последующем проходе – корректность синтаксических взаимосвязей между операторами и т. д.

Полученная в результате трансляции методом компиляции программа называется объектным модулем , который представляет собой эквивалентную программу в машинных кодах, но не «привязанную» к конкретным адресам оперативной памяти. Поэтому перед исполнением объектный модуль должен быть обработан специальной программой операционной системы (редактором связей – Link) и преобразован в загрузочный модуль .

Наряду с рассмотренными выше трансляторами-интерпретаторами и трансляторами-компиляторами на практике используются также трансляторы интерпретаторы-компиляторы, которые объединяют в себе достоинства обоих принципов трансляции: на этапе разработки и отладки программ транслятор работает в режиме интерпретатора, а после завершения процесса отладки исходная программа повторно транслируется в объектный модуль (т. е. уже методом компиляции). Это позволяет значительно упростить и ускорить процесс составления и отладки программ, а за счет последующего получения объектного модуля обеспечить более эффективное исполнение программы.

Классическое процедурное программирование требует от программиста детального описания того, как решать задачу, т. е. формулировки алгоритма и его специальной записи. При этом ожидаемые свойства результата обычно не указываются. Основные понятия языков этих групп – оператор и данные.
При процедурном подходе операторы объединяются в группы – процедуры. Структурное программирование в целом не выходит за рамки этого направления, оно лишь дополнительно фиксирует некоторые полезные приемы
технологии программирования.

Принципиально иное направление в программировании связано с методологиями (иногда говорят «парадигмами») непроцедурного программирования. К ним можно отнести объектно-ориентированное и декларативное программирование. Объектно-ориентированный язык создает окружение в виде множества независимых объектов. Каждый объект ведет себя подобно отдельному компьютеру, их можно использовать для решения задач как «черные ящики», не вникая во внутренние механизмы их функционирования. Из языков объектного программирования, популярных среди профессионалов, следует назвать прежде всего Си++, для более широкого круга программистов предпочтительны среды типа Delphi и Visual Basic.



При использовании декларативного языка программист указывает исходные информационные структуры, взаимосвязи между ними и то, какими свойствами должен обладать результат. При этом процедуру его получения («алгоритм») программист не строит (по крайней мере, в идеале). В этих языках отсутствует понятие «оператор» («команда»). Декларативные языки можно подразделить на два семейства – логические (типичный представитель – Пролог) и функциональные (Лисп).

Охарактеризуем наиболее известные языки программирования.

1.Фортран (FORmula TRANslating system – система трансляции формул); старейший и по сей день активно используемый в решении задач математической ориентации язык. Является классическим языком для программирования на ЭВМ математических и инженерных задач

2.Бейсик (Beginner"s All-purpose Symbolic Instruction Code – универсальный символический код инструкций для начинающих); несмотря на многие недостатки и изобилие плохо совместимых версий – самый популярный по числу пользователей. Широко употребляется при написании простых программ.

3.Алгол (ALGOrithmic Language – алгоритмический язык); сыграл большую роль в теории, но для практического программирования сейчас почти не используется.

4.ПЛ/1 (PL/1 Programming Language – язык программирования первый); многоцелевой язык; сейчас почти не используется.

5.Паскаль (Pascal – назван в честь ученого Блеза Паскаля); чрезвычайно популярен как при изучении программирования, так и среди профессионалов. Создан в начале 70-х годов швейцарским ученым Никлаусом Виртом. Язык Паскаль первоначально разрабатывался как учебный, и, действительно, сейчас он является одним из основных языков обучения программированию в школах и вузах. Однако качества его в совокупности оказались столь высоки, что им охотно пользуются и профессиональные программисты. Не менее впечатляющей, в том числе и финансовой, удачи добился Филип Кан, француз, разработавший систему Турбо-Паскаль. Суть его идеи состояла в объединении последовательных этапов обработки программы – компиляции, редактирования связей, отладки и диагностики ошибок – в едином интерфейсе. Версии Турбо-Паскаля заполонили практически все образовательные учреждения, программистские центры и частные фирмы. На базе языка Паскаль созданы несколько более мощных языков (Модула, Ада, Дельфи).

6.Кобол (COmmon Business Oriented Language – язык, ориентированный на общий бизнес); в значительной мере вышел из употребления. Был задуман как основной язык для массовой обработки данных в сферах управления
и бизнеса.

7.АДА ;является языком, победившим (май 1979 г.) в конкурсе по разработке универсального языка, проводимым Пентагоном с 1975 году. Разработчики – группа ученых во главе с Жаном Ихбиа. Победивший язык окрестили АДА, в честь Огасты Ады Лавлейс. Язык АДА – прямой наследник языка
Паскаль. Этот язык предназначен для создания и длительного (многолетнего) сопровождения больших программных систем, допускает возможность параллельной обработки, управления процессами в реальном времени и многое другое, чего трудно или невозможно достичь средствами более простых языков.

8.Си (С – «си»); широко используется при создании системного программного обеспечения. Наложил большой отпечаток на современное программирование (первая версия – 1972 г.), является очень популярным в среде разработчиков систем программного обеспечения (включая операционные системы). Си сочетает в себе черты как языка высокого уровня, так и машинно-ориентированного языка, допуская программиста ко всем машинным ресурсам, чего не обеспечивают такие языки, как Бейсик и Паскаль.

9.Си++ (С++);объектно-ориентированное расширение языка Си, созданное Бьярном Страуструпом в 1980 году. Множество новых мощных возможностей, позволивших резко повысить производительность программистов, наложилось на унаследованную от языка Си определенную низкоуровневость.

10.Дельфи (Delphi); язык объектно-ориентированного «визуального» программирования; в данный момент чрезвычайно популярен. Созданный на базе языка Паскаль специалистами фирмы Borland язык Delphi, обладая мощностью и гибкостью языков Си и Си++, превосходит их по удобству и простоте интерфейса при разработке приложений, обеспечивающих взаимодействие с базами данных и поддержку различного рода работ в рамках корпоративных сетей и сети Интернет.

11.Ява (Java); платформенно-независимый язык объектно-ориентированного программирования, чрезвычайно эффективен для создания интерактивных веб-страниц. Этот язык был создан компанией Sun в начале 90-х годов на основе СИ++. Он призван упростить разработку приложений на основе Си++ путем исключения из него всех низкоуровневых возможностей.

12.Лисп (Lisp) – функциональный язык программирования. Ориентирован на структуру данных в форме списка и позволяет организовать эффективную обработку больших объемов текстовой информации.

13.Пролог (PROgramming in LOGic – логическое программирование). Главное назначение языка – разработка интеллектуальных программ и систем. Пролог – это язык программирования, созданный специально для работы с базами знаний, основанными на фактах и правилах (одного из элементов систем искусственного интеллекта). В языке реализован механизм возврата для выполнения обратной цепочки рассуждений, при котором предполагается, что некоторые выводы или заключения истинны, а затем эти предположения проверяются в базе знаний, содержащей факты и правила логического вывода.
Если предположение не подтверждается, выполняется возврат и выдвигается новое предположение. В основу языка положена математическая модель теории исчисления предикатов.

Языки программирования для Интернета:

1. HTML. Общеизвестный язык для оформления документов. Он очень прост и содержит элементарные команды форматирования текста, добавления рисунков, задания шрифтов и цветов, организации ссылок и таблиц.

2. PERL. Он задумывался как средство эффективной обработки больших текстовых файлов, генерации текстовых отчетов и управления задачами.
По мощности Perl значительно превосходит языки типа Си. В него введено много часто используемых функций работы со строками, массивами, управление процессорами, работа с системной информацией.

3. Tcl/Tk. Этот язык ориентирован на автоматизацию рутинных процессов и состоит из мощных команд. Он независим от системы и при этом позволяет создавать программы с графическим интерфейсом.

4. VRML. Создан для организации виртуальных трехмерных интерфейсов в Интернете. Он позволяет описывать в текстовом виде различные трехмерные сцены, освещение и тени, текстуры.

Выбор языка программирования зависит от многих факторов: назначения, удобства написания исходных программ, эффективности получаемых объектных программ и т. п. Разнотипность решаемых компьютером задач и определяет многообразие языков программирования.

Контрольные вопросы

1. Что такое системы программирования и к какому классу программ они относятся?

2. Что входит в состав систем программирования?

3. На каком языке программирования создавались первые программы?

4. На какие языки подразделяются процедурные языки?

5. Охарактеризуйте языки низкого уровня.

6. Какой язык относится к языку низкого уровня?

7. Достоинства языков низкого уровня.

8. Охарактеризуйте языки высокого уровня.

9. Достоинства языков высокого уровня.

10. Приведите примеры языков высокого уровня.

11. Для чего предназначены трансляторы?

12. Чем отличается компилятор от интерпретатора?

13. Недостатки интерпретации (как вид транслятора).

14. Что представляет собой процесс компиляции программы?

15. Какие действия выполняются при компиляции?

16. Чем отличается загрузочный модуль от объектного?

17. Чем отличается процедурное программирование от непроцедурного?

18. Какие виды программирования относятся к непроцедурному
программированию?

19. Особенность декларативных языков.

20. Охарактеризуйте кратко языки программирования: Фортран, Бейсик, Паскаль, Кобол.

21. Охарактеризуйте кратко языки программирования: Ада, Си, Си++, Delphi, Java.

22. Приведите примеры объектно-ориентированных языков.

23. К какому классу языков относится язык Лисп?

24. К какому классу языков относится язык Пролог?

Внедрение ЭВМ во все сферы человеческой деятельности требует от специалистов разного профиля овладения навыками использования вычислительной техники. Повышается уровень подготовки студентов вузов, которые уже с первых курсов приобщаются к использованию ЭВМ и простейших численных методов, не говоря уже о том, что при выполнении курсовых и дипломных проектов применение вычислительной техники становится нормой в подавляющем большинстве вузов.

Вычислительная техника используется сейчас не только в инженерных расчетах и экономических науках, но и таких традиционно нематематических специальностях, как медицина, лингвистика, психология. В связи с этим можно констатировать, что применение ЭВМ приобрело массовый характер. Возникла многочисленная категория специалистов - пользователей ЭВМ, которым необходимы знания по применению ЭВМ в своей отрасли - навыки работы с уже имеющимся программным обеспечением, а так же создания своего собственного ПО, приспособленного для решения конкретной задачи. И здесь на помощь пользователю приходят описания языков программирования.

2. Что такое язык программирования

Язык программирования - формальная знаковая система, предназначенная для описания алгоритмов в форме, которая удобна для исполнителя (например, компьютера). Язык программирования определяет набор лексических, синтаксических и семантических правил, используемых при составлении компьютерной программы. Он позволяет программисту точно определить то, на какие события будет реагировать компьютер, как будут храниться и передаваться данные, а также какие именно действия следует выполнять над этими при различных обстоятельствах.

Со времени создания первых программируемых машин человечество придумало уже более двух с половиной тысяч языков программирования. Каждый год их число пополняется новыми. Некоторыми языками умеет пользоваться только небольшое число их собственных разработчиков, другие становятся известны миллионам людей. Профессиональные программисты иногда применяют в своей работе более десятка разнообразных языков программирования.

Создатели языков по-разному толкуют понятие язык программирования . Среди общиx мест, признаваемых большинством разработчиков, находятся следующие:

· Функция: язык программирования предназначен для написания компьютерных программ, которые применяются для передачи компьютеру инструкций по выполнению того или иного вычислительного процесса и организации управления отдельными устройствами.

· Задача: язык программирования отличается от естественных языков тем, что предназначен для передачи команд и данных от человека компьютеру, в то время как естественные языки используются лишь для общения людей между собой. В принципе, можно обобщить определение "языков программирования" - это способ передачи команд, приказов, чёткого руководства к действию; тогда как человеческие языки служат также для обмена информацией.

· Исполнение: язык программирования может использовать специальные конструкции для определения и манипулирования структурами данных и управления процессом вычислений.

3. Этапы решения задачи на ЭВМ.

Наиболее эффективное применение ВТ нашла при проведении трудоемких расчетов в научных исследованиях и инженерных расчетах. При решении задачи на ЭВМ основная роль все-таки принадлежит человеку. Машина лишь выполняет его задания по разработанной программе. роль человека и машины легко уяснить, если процесс решения задачи разбить на перечисленные ниже этапы.

Постановка задачи. Этот этап заключается в содержательной (физической) постановке задачи и определении конечных решений.

Построение математической модели. Модель должна правильно (адекватно) описывать основные законы физического процесса. Построение или выбор математической модели из существующих требует глубокого понимания проблемы и знания соответствующих разделов математики.

Разработка ЧМ. Поскольку ЭВМ может выполнять лишь простейшие операции, она «не понимает» постановки задачи, даже в математической формулировке. Для ее решения должен быть найден численный метод, позволяющий свести задачу к некоторому вычислительному алгоритму. В каждом конкретном случае необходимо выбрать подходящее решение из уже разработанных стандартных.

Разработка алгоритма. Процесс решения задачи(вычислительный процесс) записывается в виде последовательности элементарных арифметических и логических операций, приводящей к конечному результату и называемой алгоритмом решения задачи.

Программирование. Алгоритм решения задачи записывается на понятном машине языке в виде точно определенной последовательности операций - программы. Процесс обычно производится с помощью некоторого промежуточного языка, а ее трансляция осуществляется самой машиной и ее системой.

Оладка программы. Составленная программа содержит разного рода ошибки, неточности, описки. Отладка включает контроль программы, диагностику (поиск и определение содержания) ошибок, и их устранение. Программа испытывается на решении контрольных (тестовых) задач для получения уверенности в достоверности результатов.

Проведение расчетов. На этом этапе готовятся исходные данные для расчетов и проводится расчет по отлаженной программе. при этом для уменьшения ручного труда по обработке результатов можно широко использовать удобные формы выдачи результатов в виде текстовой и графической информации, в понятном для человека виде.

Анализ результатов. Результаты расчетов тщательно анализируются, оформляется научно-техническая документация.

4. Для чего нужны языки программирования

Процесс работы компьютера заключается в выполнении программы, то есть набора вполне определённых команд во вполне определённом порядке. Машинный вид команды, состоящий из нулей и единиц, указывает, какое именно действие должен выполнить центральный процессор. Значит, чтобы задать компьютеру последовательность действий, которые он должен выполнить, нужно задать последовательность двоичных кодов соответствующих команд. Программы в машинных кодах состоят из тысячи команд. Писать такие программы – занятие сложное и утомительное. Программист должен помнить комбинацию нулей и единиц двоичного кода каждой программы, а также двоичные коды адресов данных, используемых при её выполнении. Гораздо проще написать программу на каком-нибудь языке, более близком к естественному человеческому языку, а работу по переводу этой программы в машинные коды поручить компьютеру. Так возникли языки, предназначенные специально для написания программ, - языки программирования.

Имеется много различных языков программирования. Вообще-то для решения большинства задач можно использовать любой из них. Опытные программисты знают, какой язык лучше использовать для решения каждой конкретной задачи, так как каждый из языков имеет свои возможности, ориентацию на определённые типы задач, свой способ описания понятий и объектов, используемых при решении задач.

Всё множество языков программирования можно разделить на две группы: языки низкого уровня и языки высокого уровня.

К языкам низкого уровня относятся языки ассемблера (от англ. toassemble – собирать, компоновать). В языке ассемблера используются символьные обозначения команд, которые легко понятны и быстро запоминаются. Вместо последовательности двоичных кодов команд записываются их символьные обозначения, а вместо двоичных адресов данных, используемых при выполнении команды, - символьные имена этих данных, выбранные программистом. Иногда язык ассемблера называют мнемокодом или автокодом.

Большинство программистов пользуются для составления программ языками высокого уровня. Как и обычный человеческий язык, такой язык имеет свой алфавит – множество символов, используемых в языке. Из этих символов составляются так называемые ключевые слова языка. Каждое из ключевых слов выполняет свою функцию, так же как в привычном нам языке нам языке слова, составленные из букв алфавита данного языка, могут выполнять функции разных частей речи. Ключевые слова связываются друг с другом в предложения по определённым синтаксическим правилам языка. Каждое предложение определяет некоторую последовательность действий, которые должен выполнить компьютер.

Язык высокого уровня выполняет роль посредника между человеком и компьютером, позволяя человеку общаться с компьютером более привычным для человека способом. Часто такой язык помогает выбрать правильный метод решения задачи.

Перед тем как писать программу на языке высокого уровня, программист должен составить алгоритм решения задачи, то есть пошаговый план действий, который нужно выполнить для решения этой задачи. Поэтому языки, требующие предварительного составления алгоритма, часто называют алгоритмическими языками.

2) Что такое язык программирования стр. 2

3) Для чего нужны языки программирования стр. 3

4) Какие существуют языки программирования стр. 4 – 7

5) Что такое компилятор и интерпретатор стр. 8

6) Список использованной литературы стр. 9

Введение

До середины 60-х компьютеры были слишком дорогими машинами, использовавшимися только для особых задач, и выполнявшими только одну задачу за раз (т. н. пакетная обработка).

Языки программирования этой эры, как и компьютеры на которых они использовались, были разработаны для специфичных задач, таких как научные вычисления. Поскольку машины были дорогими и лишь одна задача выполнялась за раз, то и машинное время было дорого – поэтому скорость выполнения программы стояла на первом месте.

Однако в течение 60-х цена на компьютеры стала падать так, что даже небольшие компании могли их себе позволить; скорость компьютеров всё увеличивалась и наступило время, когда они стали часто простаивать без задач. Чтобы этого не происходило, стали вводить системы с разделением времени (time-sharing).

В таких системах процессорное время «нарезалось», и все пользователи поочерёдно получали короткие отрезки этого времени. Машины были достаточно быстрыми для того, чтобы в результате каждый пользователь за терминалом чувствовал себя так, будто работает с системой в одиночку. Машина же, в свою очередь, простаивала меньше, поскольку выполняла не одну, а сразу много задач. Разделение времени радикально снижало стоимость машинного времени, поскольку одна машина могла совместно использоваться сотнями пользователей.

В этих условиях - когда мощность стала дешева и доступна - создатели языков программирования все больше стали задумываться об удобстве написания программ, а не только скорости их выполнения. «Мелкие»(атомарные) операции, выполняемые непосредственно устройствами машины, объединили в более «крупные», высокоуровневые операции и целые конструкции, с которыми человеку куда проще и удобнее работать.

Что такое язык программирования

Язык программирования - формальная знаковая система, предназначенная для описания алгоритмов в форме, которая удобна для исполнителя (например, компьютера). Язык программирования определяет набор лексических, синтаксических и семантических правил, используемых при составлении компьютерной программы. Он позволяет программисту точно определить то, на какие события будет реагировать компьютер, как будут храниться и передаваться данные, а также какие именно действия следует выполнять над этими при различных обстоятельствах.

Со времени создания первых программируемых машин человечество придумало уже более двух с половиной тысяч языков программирования. Каждый год их число пополняется новыми. Некоторыми языками умеет пользоваться только небольшое число их собственных разработчиков, другие становятся известны миллионам людей. Профессиональные программисты иногда применяют в своей работе более десятка разнообразных языков программирования.

Создатели языков по-разному толкуют понятие язык программирования . Среди общин мест, признаваемых большинством разработчиков, находятся следующие:

  • Функция: язык программирования предназначен для написания компьютерных программ, которые применяются для передачи компьютеру инструкций по выполнению того или иного вычислительного процесса и организации управления отдельными устройствами.
  • Задача: язык программирования отличается от естественных языков тем, что предназначен для передачи команд и данных от человека компьютеру, в то время как естественные языки используются лишь для общения людей между собой. В принципе, можно обобщить определение "языков программирования" - это способ передачи команд, приказов, чёткого руководства к действию; тогда как человеческие языки служат также для обмена информацией.
  • Исполнение: язык программирования может использовать специальные конструкции для определения и манипулирования структурами данных и управления процессом вычислений.

Для чего нужны языки программирования

Процесс работы компьютера заключается в выполнении программы, то есть набора вполне определённых команд во вполне определённом порядке. Машинный вид команды, состоящий из нулей и единиц, указывает, какое именно действие должен выполнить центральный процессор. Значит, чтобы задать компьютеру последовательность действий, которые он должен выполнить, нужно задать последовательность двоичных кодов соответствующих команд. Программы в машинных кодах состоят из тысячи команд. Писать такие программы – занятие сложное и утомительное. Программист должен помнить комбинацию нулей и единиц двоичного кода каждой программы, а также двоичные коды адресов данных, используемых при её выполнении. Гораздо проще написать программу на каком-нибудь языке, более близком к естественному человеческому языку, а работу по переводу этой программы в машинные коды поручить компьютеру. Так возникли языки, предназначенные специально для написания программ, - языки программирования.

Имеется много различных языков программирования. Вообще-то для решения большинства задач можно использовать любой из них. Опытные программисты знают, какой язык лучше использовать для решения каждой конкретной задачи, так как каждый из языков имеет свои возможности, ориентацию на определённые типы задач, свой способ описания понятий и объектов, используемых при решении задач.

Всё множество языков программирования можно разделить на две группы: языки низкого уровня и языки высокого уровня.

К языкам низкого уровня относятся языки ассемблера (от англ. toassemble – собирать, компоновать). В языке ассемблера используются символьные обозначения команд, которые легко понятны и быстро запоминаются. Вместо последовательности двоичных кодов команд записываются их символьные обозначения, а вместо двоичных адресов данных, используемых при выполнении команды, - символьные имена этих данных, выбранные программистом. Иногда язык ассемблера называют мнемокодом или автокодом.

Большинство программистов пользуются для составления программ языками высокого уровня. Как и обычный человеческий язык, такой язык имеет свой алфавит – множество символов, используемых в языке. Из этих символов составляются так называемые ключевые слова языка. Каждое из ключевых слов выполняет свою функцию, так же как в привычном нам языке нам языке слова, составленные из букв алфавита данного языка, могут выполнять функции разных частей речи. Ключевые слова связываются друг с другом в предложения по определённым синтаксическим правилам языка. Каждое предложение определяет некоторую последовательность действий, которые должен выполнить компьютер.

Язык высокого уровня выполняет роль посредника между человеком и компьютером, позволяя человеку общаться с компьютером более привычным для человека способом. Часто такой язык помогает выбрать правильный метод решения задачи.

Перед тем как писать программу на языке высокого уровня, программист должен составить алгоритм решения задачи, то есть пошаговый план действий, который нужно выполнить для решения этой задачи. Поэтому языки, требующие предварительного составления алгоритма, часто называют алгоритмическими языками.

Какие существуют языки программирования

Фортран

Языки программирования стали появляться уже с середины 50-х годов. Одним из первых языков такого типа стал язык Фортран (англ. FORTRAN от FORmulaTRANslator – переводчик формул), разработанный в 1957 году. Фортран применяется для описания алгоритма решения научно-технических задач с помощью ЦВМ. Так же, как и первые вычислительные машины, этот язык предназначался, в основном, для проведения естественно-научных и математических расчётов. В усовершенствованном виде этот язык сохранился до нашего времени. Среди современных языков высокого уровня он является одним из наиболее используемых при проведении научных исследований. Наиболее распространены варианты Фортран-II, Фортран-IV, EASICFortran и их обобщения.

Алгол

После Фортрана в 1958-1960 годах появился язык Алгол (Алгол-58, Алгол-60) (англ. ALGOL от ALGOrithmicLanguage – алгоритмический язык).Алгол был усовершенствован в 1964-1968 годах – Алгол-68.Алгол был разработан комитетом, в который входили европейские и американские учёные.Он относится к языкам высокого уровня (high-level language) и позволяет легко переводить алгебраические формулы в программные команды. Алгол был популярен в Европе, в том числе СССР, в то время как сравнимый с ним Фортран был распространен в США и Канаде. Алгол оказал заметное влияние на все разработанные позднее языки программирования, и, в частности, на язык Pascal. Этот язык так же, как и Фортран, предназначался для решения научно-технических задач. Кроме того, этот язык применялся как средство обучения основам программирования – искусства составления программ.

Обычно под понятием Алгол подразумевается язык Алгол-60 , в то время как Алгол-68 рассматривается как самостоятельный язык. Даже когда язык Алгол почти перестал использоваться для программирования, он ещё оставался официальным языком для публикации алгоритмов.

Кобол

В 1959 – 1960 годах был разработан язык Кобол (англ. COBOL от COmmom Business Oriented Language – общий язык, ориентированный на бизнес). Это язык программирования третьего поколения, предназначенный, в первую очередь, для разработки бизнес приложений.Также Кобол предназначался для решения экономических задач, обработки данных для банков, страховых компаний и других учреждений подобного рода. Разработчиком первого единого стандарта Кобола являлась Грейс Хоппер (бабушка Кобола ).

Кобол обычно критикуется за многословность и громоздкость, поскольку одной из целей создателей языка было максимально приблизить конструкции к английскому языку. (До сих пор Кобол считается языком программирования, на котором было написано больше всего строк кода). В то же время, Кобол имел прекрасные для своего времени средства для работы со структурами данных и файлами, что обеспечило ему долгую жизнь в бизнес приложениях, по крайней мере, в США.

ЯЗЫК ПРОГРАММИРОВАНИЯ И ЕГО ВИДЫ

Язык программирования - формальная знаковая система, предназначенная для записи компьютерных программ. Язык программирования определяет набор лексических, синтаксических и семантических правил, задающих внешний вид программы и действия, которые выполнит исполнитель (компьютер) под её управлением.

Высокоуровневый язык программирования - язык программирования, разработанный для быстроты и удобства использования программистом. Основная черта высокоуровневых языков - это абстракция, то есть введение смысловых конструкций, кратко описывающих такие структуры данных и операции над ними, описания которых на машинном коде (или другом низкоуровневом языке программирования) очень длинны и сложны для понимания.

Низкоуровневый язык программирования (язык программирования низкого уровня) - язык программирования, близкий к программированию непосредственно в машинных кодах используемого реального или виртуального (например, Java, Microsoft .NET) процессора. Для обозначения машинных команд обычно применяется мнемоническое обозначение. Это позволяет запоминать команды не в виде последовательности двоичных нулей и единиц, а в виде осмысленных сокращений слов человеческого языка (обычно английских).

ЯЗЫКИ ПРОГРАММИРОВАНИЯ НИЗКОГО УРОВНЯ

Первым компьютерам приходилось программировать двоичными машинными кодами. Однако программировать таким образом - достаточно трудоемкая и сложная задача. Для упрощения этой задачи стали появляться языки программирования низкого уровня, которые позволяли задавать машинные команды в более понятном для человека виде. Для преобразования их в двоичный код были созданы специальные программы - трансляторы.

Рис.1. Пример машинного кода и представления его на ассемблере

Трансляторы делятся на:

    компиляторы - превращают текст программы в машинный код, который можно сохранить и затем использовать уже без компилятора (примером являются исполняемые файлы с расширением *. exe);

    интерпретаторы - превращают часть программы в машинный код, выполняют и после этого переходят к следующей части. При этом каждый раз при выполнении программы используется интерпретатор.

Примером языка низкого уровня является ассемблер. Языки низкого уровня ориентированы на конкретный тип процессора и учитывают его особенности, поэтому для переноса программы на ассемблере на другую аппаратную платформу ее нужно почти полностью переписать. Определенные различия имеются и в синтаксисе программ под разные компиляторы. Правда, центральные процессоры для компьютеров фирм AMD и Intel практически совместимы и отличаются лишь некоторыми специфическими командами. А вот специализированные процессоры для других устройств, например, видеокарт, телефонов содержат существенные различия.

Преимущества

С помощью языков низкого уровня создаются эффективные и компактные программы, поскольку разработчик получает доступ ко всем возможностям процессора.

Недостатки

    Программист, работающий с языками низкого уровня, должен быть высокой квалификации, хорошо понимать устройство микропроцессорной системы, для которой создается программа. Так, если программа создается для компьютера, нужно знать устройство компьютера и, особенно, устройство и особенности работы его процессора;

    результирующая программа не может быть перенесена на компьютер или устройство с другим типом процессора;

    значительное время разработки больших и сложных программ.

Языки низкого уровня, как правило, используют для написания небольших системных программ, драйверов устройств, модулей стыков с нестандартным оборудованием, программирование специализированных микропроцессоров, когда важнейшими требованиями являются компактность, быстродействие и возможность прямого доступа к аппаратным ресурсам.

Ассемблер - язык низкого уровня, что широко применяется до сих пор.

ЯЗЫКИ ПРОГРАММИРОВАНИЯ ВЫСОКОГО УРОВНЯ

Первым языком программирования высокого уровня считается компьютерный язык Plankalkül, разработанный немецким инженером Конрадом Цузе ещё в период 1942-1946 годах. Однако транслятора для него не существовало до 2000 г. Первым в мире транслятором языка высокого уровня является ПП (Программирующая Программа), он же ПП-1, успешно испытанный в 1954 г. Транслятор ПП-2 (1955 г., 4-й в мире транслятор) уже был оптимизирующим и содержал собственный загрузчик и отладчик, библиотеку стандартных процедур, а транслятор ПП для ЭВМ Стрела-4 уже содержал и компоновщик (linker) из модулей. Однако, широкое применение высокоуровневых языков началось с возникновением Фортрана и созданием компилятора для этого языка (1957).

Высокоуровневые языки стремятся не только облегчить решение сложных программных задач, но и упростить портирование программного обеспечения. Использование разнообразных трансляторов и интерпретаторов обеспечивает связь программ, написанных при помощи языков высокого уровня, с различными операционными системами и оборудованием, в то время как их исходный код остаётся, в идеале, неизменным.

Такого рода оторванность высокоуровневых языков от аппаратной реализации компьютера помимо множества плюсов имеет и минусы. В частности, она не позволяет создавать простые и точные инструкции к используемому оборудованию. Программы, написанные на языках высокого уровня, проще для понимания программистом, но менее эффективны, чем их аналоги, создаваемые при помощи низкоуровневых языков. Одним из следствий этого стало добавление поддержки того или иного языка низкого уровня (язык ассемблера) в ряд современных профессиональных высокоуровневых языков программирования.

Примеры: C, C++,C#, Java, Python, PHP, Ruby, Perl, Паскаль, Delphi, Lisp . Языкам высокого уровня свойственно умение работать с комплексными структурами данных. В большинстве из них интегрирована поддержка строковых типов, объектов, операций файлового ввода-вывода и т. п.Недостатком языков высокого уровня является больший размер программ по сравнению с программами на языке низкого уровня. Поэтому в основном языки высокого уровня используются для разработок программного обеспечения компьютеров и устройств, которые имеют большой объем памяти. А разные подвиды ассемблера применяются для программирования других устройств, где критичным является размер программы.

В основе императивных языков лежат несколько важных идей, в их числе представление действий в виде математических формул, концепция типа данных и теорема о структурном преобразовании.

Пpогpамма на императивном языке стpоится из функций (подпpогpамм). Пpогpаммы на языке ассемблеpа тоже могут состоять из подпpогpамм и в этом нет ничего нового, но языки высокого уpовня позволяют не думать о таких вопpосах как оpганизация вызовов, пеpедача исходных данных и возвpат pезультатов. Описание функции состоит из имени, списка паpаметpов (исходных данных), типа pезульта и действий, пpиводящих к получению этого pезультата. Одна из функций пpогpаммы является главной, ее выполнение и есть pабота пpогpаммы.

Простой пример - функция, вычисляющая синус числа. Она может называться sin, ее исходные данные состоят из одного вещественного числа, pезультат - тоже вещественное число, получаемое путем суммиpования отpезка известного бесконечного pяда (или выполнения команды fsin математического сопроцессора).

Набоp действий, котоpые могут выполняться внутpи функции очень огpаничен. Он состоит из вычисления фоpмульных выpажений, вызовов дpугих функций (что не является отдельным действием - вызов функции часто входит в выpажение), присваиваний, ветвлений (гpуппа действий, котоpая выполняется лишь при истинности некоторого условия) и циклов (гpуппа действий, выполняемых многокpатно, число повтоpений зависит от некотоpого условия). Действия могут быть вложены дpуг в дpуга. Может показаться, что набоp из ветвлений и циклов слишком мал, но это не так. Доказано, что любой алгоpитм, составленный из функциональных блоков (на низком уpовне - арифметических команд и команд пеpесылки данных), условных и безусловных пеpеходов может быть пpеобpазован в эквивалентный алгоpитм, составленный только из стpуктуpных блоков - функциональных блоков, ветвлений и циклов с пpовеpкой условия в конце. Это утвеpжение было сфоpмулиpовано в статье Бома и Джакопини (Corrado Bohm and Giuseppe Jacopini) "Flow diagrams, turing mashines and languages with only two formation rules" (Communications of ACM, Volume 9 / Number 5 / May, 1965).

Если для выполнения необходимых действий нужно где-то хpанить пpомежуточные pезультаты, внутpи функции помещаются специальные описания, содеpжащие имена переменных и, возможно, другую информацию. Адpеса ячеек опеpативной памяти будут назначены им автоматически. В некоторых языках внутри функций также могут содержаться определения констант и типов. В Pascal-подобных языках функция подобна программе и может включать определения не только констант, типов и переменных, но и других функций.

Объявление данных пpедставляет собой список именованых объектов. Эти объекты называются пеpеменными. В ряде языков должен задаваться тип переменной, определяющий необходимый для ее pазмещения объем памяти и набоp опеpаций, в котоpых она может участвовать. Но это не обязательно так, существуют языки, в которых тип переменной не задается и может меняться по ходу выполнения программы.

Обычно языки пpогpаммиpования пpедоставляют достаточно огpаниченный набоp пpедопpеделенных типов пеpеменных и сpедства создания новых типов. Пpедопpеделены некотоpые из следующих типов:

    натуpальные и целые числа pазличной pазpядности;

    вещественные числа;

    символы - буквы, цифpы, знаки аpифметических действий и пp.;

    стpоки символов;

    логические значения;

    указатели

Действия над данными могут выполняться с помощью функций и операторов.

В языке C, напpимеp, не опpеделены символы, строки и логические значения. Его тип char на самом деле является коpотким целым и допускает аpифметические действия.

Новые типы обpазуются путем объединения в единое целое нескольких элементов одного типа (массив, каждый его элемент имеет поpядковый номеp) или элементов pазных типов (стpуктуpа, каждый ее элемент имеет собственное имя). Напpимеp, в большинстве языков комплексные числа не опpеделены, но их можно опpеделить:

В некоторых языках (например, в C++) для создаваемых типов могут быть определены и операторы, что позволяет использовать переменные этих типов так же, как и переменные предопределенных типов.

Есть и другие способы создания новых типов. Например, в языке Pascal возможно создание:

    типов-диапазонов (посредством задания диапазона значений);

    типов-перечислений (посредством перечисления возможных значений);

    типов-множеств

Переменные типов-множеств могут быть использованы для хранения информации о наборе свойств каких-либо объектов. Нечто подобное можно сделать с помощью переменных целого типа, установленные биты которых озачают наличие соответствующих совойств. По-видимому, использование множеств более устойчиво к ошибкам программиста.