Компьютерное моделирование физических процессов. Как выполняется компьютерное моделирование

Компьютерное моделирование достаточно широко применяется в различных отраслях науки и техники, постепенно вытесняя реальные эксперименты и опыты. Оно настолько прочно вошло в нашу жизнь, что уже достаточно сложно представить себе ситуацию, когда придется от этого способа изучения реального мира отказаться. Это явление объясняется достаточно легко: с помощью данного процесса можно достичь значительных результатов в самые кротчайшие сроки, позволяя проникнуть в ту область реальности, которая для человека не достижима.

Компьютерное позволяет на компьютере создать модель, которая с некоторым допущением обладает свойствами реального объекта или процесса, и исследование проводится именно на этой созданной модели. Для проведения изысканий необходимо точно представлять для чего они выполняются, какова их цель, какие именно свойства, стороны изучаемого объекта вас интересуют. Только в таком случае можно быть уверенными в положительном результате.

Как и любой другой процесс, компьютерное моделирование строится по определенным принципам, среди которых можно выделить следующие:

· принцип информационной достаточности. Если сведений о реальном процессе или объекте будет недостаточно, провести исследования с помощью данного метода скорее всего не получится;

· принцип осуществимости. Созданная модель должна позволять достичь поставленных перед исследователем целей;

· принцип множественности моделей, который опирается на то, что для исследования всех свойств реального объекта необходимо разработать несколько моделей, так как объединить все реальные свойства в одной не представляется возможным;

· принцип агрегированности. В этом случае сложный объект представляется в виде отдельных блоков, которые можно определенным образом перестраивать;

· принцип паратмеризации, который позволяет параметры определенной подсистемы заменять числовыми значениями, что сокращая объем и продолжительность моделирования, снижает также адекватность полученной модели. Поэтому применение данного принципа должно быть полностью обоснованным.

Компьютерное моделирование должно выполняться в определенной, строго заданной последовательности. На первом этапе определяется цель, после чего производится разработка Затем выполняется формализация модели, позволяющая осуществить ее программную реализацию. После этого можно приступать к планированию модельных экспериментов и реализовывать ранее составленный После того, как все предыдущие пункты будут выполнены, можно будет анализировать и интерпретировать полученные результаты.

В последнее время компьютерное моделирование физических процессов выполняется с применением различных Можно встретить большое количество работ, выполненных в Matlab. Такие исследования позволяют изучить всевозможные физические процессы, которые в реальности человек наблюдать не сможет.

Компьютерное моделирование находит достаточно широкое применение в промышленности. С его помощью разрабатываются новые изделия, проектируются новые машины, задаются условия их работы и проводятся виртуальные испытания. Если составленная модель обладает достаточной степенью адекватности, можно утверждать, что результаты реальных испытаний будут аналогичны виртуальным. Помимо изучения свойств той или иной системы, на компьютере можно разработать внешний вид готового изделия, задать его параметры. Это минимизирует количество брака, который может образоваться в результате неточности инженерных расчетов.

Компьютерное моделирование является одним из эффективных методов изучения физических систем. Часто компьютерные модели проще и удобнее исследовать, они позволяют проводить вычислительные эксперименты, реальная постановка которых затруднена или может дать непредсказуемый результат. Логичность и формализованность компьютерных моделей позволяет выявить основные факторы, определяющие свойства изучаемых объектов, исследовать отклик физической системы на изменения ее параметров и начальных условий.

Компьютерное моделирование требует абстрагирования от конкретной природы явлений, построения сначала качественной, а затем и количественной модели. За этим следует проведение серии вычислительных экспериментов на компьютере, интерпретация результатов, сопоставление результатов моделирования с поведением исследуемого объекта, последующее уточнение модели и т.д.

К основным этапам компьютерного моделирования относятся: постановка задачи, определение объекта моделирования; разработка концептуальной модели, выявление основных элементов системы и элементарных актов взаимодействия; формализация, то есть переход к математической модели; создание алгоритма и написание программы; планирование и проведение компьютерных экспериментов; анализ и интерпретация результатов.

Различают аналитическое и имитационное моделирование. Аналитическими называются модели реального объекта, использующие алгебраические, дифференциальные и другие уравнения, а также предусматривающие осуществление однозначной вычислительной процедуры, приводящей к их точному решению. Имитационными называются математические модели, воспроизводящие алгоритм функционирования исследуемой системы путем последовательного выполнения большого количества элементарных операций.

Принципы моделирования состоят в следующем:

  • 1. Принцип информационной достаточности. При полном отсутствии информации об объекте построить модель невозможно. При наличии полной информации моделирование лишено смысла. Существует уровень информационной достаточности, при достижении которого может быть построена модель системы.
  • 2. Принцип осуществимости. Создаваемая модель должна обеспечивать достижение поставленной цели исследования за конечное время.
  • 3. Принцип множественности моделей. Любая конкретная модель отражает лишь некоторые стороны реальной системы. Для полного исследования необходимо построить ряд моделей исследуемого процесса, причем каждая последующая модель должна уточнять предыдущую.
  • 4. Принцип системности. Исследуемая система представима в виде совокупности взаимодействующих друг с другом подсистем, которые моделируются стандартными математическими методами. При этом свойства системы не являются суммой свойств ее элементов.
  • 5. Принцип параметризации. Некоторые подсистемы моделируемой системы могут быть охарактеризованы единственным параметром: вектором, матрицей, графиком, формулой.

Компьютерное моделирование систем часто требует решения дифференциальных уравнений. Важным методом является метод сеток, включающий в себя метод конечных разностей Эйлера. Он состоит в том, что область непрерывного изменения одного или нескольких аргументов заменяют конечным множеством узлов, образующих одномерную или многомерную сетку, и работают с функцией дискретного аргумента, что позволяет приближенно вычислить производные и интегралы. При этом бесконечно малые приращения функции f = f(x, y, z, t) и приращения ее аргументов заменяются малыми, но конечными разностями.

В последнее десятилетие компьютерный эксперимент занял заметное место в физических исследованиях. Компьютерное моделирование физических систем позволяет получать числовую информацию о них, а также на основе графических изображений дает возможность составить представление об объекте, с помощью которого могут быть разработаны оптимальные пути исследования объекта. Среди математических методов описания физических систем и явлений и их численного анализа одним из основных становится моделирование этих объектов и процессов на основе метода Монте-Карло. Этот метод особенно полезен для сложных физических систем с громоздким математическим описанием. Серьезный прогресс в использовании метода Монте-Карло связан в большой степени с новыми возможностями современной вычислительной техники. Если двадцать лет назад на начальной стадии моделирования исследуемый объект мог быть разбит в одном измерении примерно на сотню шагов Монте-Карло, то теперь в простых моделях масштаб одного измерения составляет миллионы шагов Монте-Карло. Существенно возросли и скорости получения информации. В результате этого имеется возможность исследовать свойства физических систем на реалистичных моделях. В настоящее время возможности компьютерного моделирования при решении целого ряда задач существенно превышают возможности эксперимента как по скорости получения информации, так и по ее стоимости. Это повышает роль компьютерного эксперимента в современной физике, и в ряде направлений физики наши современные представления опираются главным образом на информацию, полученную на основе компьютерного моделирования.

Ясно, что для прогресса в рассматриваемой области наряду с совершенной вычислительной техникой необходимо иметь алгоритмы и подходы, позволяющие эффективно ею распорядиться. Эти проблемы вместе с анализом соответствующих физических систем и составляют современное содержание компьютерного моделирования методом Монте-Карло.

Физическая наука неразрывно связана с математическим моделированием со времен Исаака Ньютона (XVII–XVIII вв.). И.Ньютон открыл фундаментальные законы механики, закон всемирного тяготения, описав их на языке математики. И.Ньютон (наряду с Г.Лейбницем) разработал дифференциальное и интегральное исчисления, ставшие основой математического аппарата физики. Все последующие физические открытия (в термодинамике, электродинамике, атомной физике и пр.) представлялись в форме законов и принципов, описываемых на математическом языке, т.е. в форме математических моделей.

Можно сказать, что решение любой физической задачи теоретическим путем есть математическое моделирование. Однако возможность теоретического решения задачи ограничивается степенью сложности ее математической модели. Математическая модель тем сложнее, чем сложнее описываемый с ее помощью физический процесс, и тем сложнее становится использование такой модели для расчетов.

В простейшей ситуации решение задачи можно получить “вручную” аналитически. В большинстве же практически важных ситуаций найти аналитическое решение не удается из-за математической сложности модели. В таком случае используются численные методы решения задачи, эффективная реализация которых возможна только на компьютере. Иначе говоря, физические исследования на основе сложных математических моделей производятся путем компьютерного математического моделирования. В связи с этим в ХХ веке наряду с традиционным делением физики на теоретическую и экспериментальную возникло новое направление - “вычислительная физика”.

Исследование на компьютере физических процессов называют вычислительным экспериментом. Тем самым вычислительная физика прокладывает мост между теоретической физикой, из которой она черпает математические модели, и экспериментальной физикой, реализуя виртуальный физический эксперимент на компьютере. Использование компьютерной графики при обработке результатов вычислений обеспечивает наглядность этих результатов, что является важнейшим условием для их восприятия и интерпретации исследователем.

Физика, как учебная дисциплина, предоставляет наиболее широкий спектр применения ЭВТ в качестве средства обучения. Это моделирование физических процессов (демонстрационное и лабораторное), обучающие системы, компьютерный контроль, тренажеры, генераторы индивидуальных заданий при решении задач. Также это могут быть справочно-информационные системы, системы управления экспериментом и, наконец, проведение различных расчетов (в частности, при обработке результатов лабораторного практикума).

Компьютер позволяет строить динамические модели, т. к. он реагирует на действия пользователя подобно реакции реального объекта. Компьютерные модели обеспечивают большую гибкость при проведении эксперимента во время решения экспериментальных задач, позволяют замедлить или ускорить ход времени, сжать или растянуть пространство, дополнить модель графиком, таблицей, мультипликацией, повторить или изменить ситуацию.

Компьютер, как средство управления техническим объектом, занимаю-щее особое место в совершенствовании техники и методики физического экс-перимента, может выполнять следующие функции:

Средство измерения;

Контроль над физическими процессами или поведением объекта;

Управление физическим экспериментом или техническим объектом;

Различная обработка результатов эксперимента.

Эффективность компьютерного обучения обусловлена рядом факторов: дидактическими возможностями компьютера, учебным потенциалом мульти-медийных технологий и такой организацией учебного процесса, при которой возможности новых информационных технологий обнаруживают себя наиболее полно.

Мультимедийные технологии могут быть использованы в рамках реализации таких моделей учебной деятельности, как самостоятельное и управляемое открытие знания. Существующие электронные средства разработки мультимедийных приложений могут быть использованы в учебном процессе для создания мультимедийных дидактических пособий. Применение в учебном процессе такого дидактического средства как мультимедийная учебная презентация позволяет увеличить степень усвоения студентами получаемой учебной информации.

В качестве подобного мультимедийного приложения могут быть использованы flash – технологии, использование которых в настоящее время актуально.

Flash является наиболее востребованной технологией, позволяющей со-здавать различные мультимедиа и интерактивные приложения для всевозможных сфер деятельности. Flash - это пакет для создания и формат для сохранения двумерной анимированной компьютерной графики.

Или множестве взаимодействующих компьютеров (вычислительных узлов), реализующая представление объекта, системы или понятия в форме, отличной от реальной, но приближенной к алгоритмическому описанию, включающей и набор данных, характеризующих свойства системы и динамику их изменения со временем.

Энциклопедичный YouTube

    1 / 3

    ✪ Программы 3д моделирования для начинающих. Часть вторая

    ✪ Программа компьютерного моделирования одежды InvenTexStudio 2010

    ✪ Компьютерные программы в дизайнерской работе: какие и для чего нужны

    Субтитры

О компьютерном моделировании

Компьютерные модели стали обычным инструментом математического моделирования и применяются в физике, астрофизике, механике, химии, биологии, экономике, социологии, метеорологии, других науках и прикладных задачах в различных областях радиоэлектроники, машиностроения, автомобилестроения и проч. Компьютерные модели используются для получения новых знаний об объекте или для приближенной оценки поведения систем, слишком сложных для аналитического исследования.

Компьютерное моделирование является одним из эффективных методов изучения сложных систем. Компьютерные модели проще и удобнее исследовать в силу их возможности проводить т. н. вычислительные эксперименты, в тех случаях когда реальные эксперименты затруднены из-за финансовых или физических препятствий или могут дать непредсказуемый результат. Логичность и формализованность компьютерных моделей позволяет определить основные факторы, определяющие свойства изучаемого объекта-оригинала (или целого класса объектов), в частности, исследовать отклик моделируемой физической системы на изменения её параметров и начальных условий.

Построение компьютерной модели базируется на абстрагировании от конкретной природы явлений или изучаемого объекта-оригинала и состоит из двух этапов - сначала создание качественной, а затем и количественной модели. Чем больше значимых свойств будет выявлено и перенесено на компьютерную модель - тем более приближенной она окажется к реальной модели, тем большими возможностями сможет обладать система, использующая данную модель. Компьютерное же моделирование заключается в проведении серии вычислительных экспериментов на компьютере, целью которых является анализ, интерпретация и сопоставление результатов моделирования с реальным поведением изучаемого объекта и, при необходимости, последующее уточнение модели и т. д.

Различают аналитическое и имитационное моделирование. При аналитическом моделировании изучаются математические (абстрактные) модели реального объекта в виде алгебраических, дифференциальных и других уравнений, а также предусматривающих осуществление однозначной вычислительной процедуры, приводящей к их точному решению. При имитационном моделировании исследуются математические модели в виде алгоритма(ов), воспроизводящего функционирование исследуемой системы путём последовательного выполнения большого количества элементарных операций.

Преимущества компьютерного моделирования

Компьютерное моделирование дает возможность:

  • расширить круг исследовательских объектов - становится возможным изучать не повторяющиеся явления, явления прошлого и будущего, объекты, которые не воспроизводятся в реальных условиях;
  • визуализировать объекты любой природы, в том числе и абстрактные;
  • исследовать явления и процессы в динамике их развертывания;
  • управлять временем (ускорять, замедлять и т.д);
  • совершать многоразовые испытания модели, каждый раз возвращая её в первичное состояние;
  • получать разные характеристики объекта в числовом или графическом виде;
  • находить оптимальную конструкцию объекта, не изготовляя его пробных экземпляров;
  • проводить эксперименты без риска негативных последствий для здоровья человека или окружающей среды.

Основные этапы компьютерного моделирования

Название этапа Исполнение действий
1. Постановка задачи и её анализ 1.1. Выяснить, с какой целью создается модель.

1.2. Уточнить, какие исходные результаты и в каком виде следует их получить.

1.3. Определить, какие исходные данные нужны для создания модели.

2. Построение информационной модели 2.1. Определить параметры модели и выявить взаимосвязь между ними.

2.2. Оценить, какие из параметров влиятельные для данной задачи, а какими можно пренебрегать.

2.3. Математически описать зависимость между параметрами модели.

3. Разработка метода и алгоритма реализации компьютерной модели 3.1. Выбрать или разработать метод получения исходных результатов.

3.2. Составить алгоритм получения результатов по избранным методам.

3.3. Проверить правильность алгоритма.

4. Разработка компьютерной модели 4.1. Выбрать средства программной реализации алгоритма на компьютере.

4.2. Разработать компьютерную модель.

4.3. Проверить правильность созданной компьютерной модели.

5. Проведение эксперимента 5.1. Разработать план исследования.

5.2. Провести эксперимент на базе созданной компьютерной модели.

5.3. Проанализировать полученные результаты.

5.4. Сделать выводы насчет свойств прототипа модели.

В процессы проведения эксперимента может выясниться, что нужно:

  • скорректировать план исследования;
  • выбрать другой метод решения задачи;
  • усовершенствовать алгоритм получения результатов;
  • уточнить информационную модель;
  • внести изменения в постановку задачи.

В таком случае происходит возвращение к соответствующему этапу и процесс начинается снова.

Практическое применение

Компьютерное моделирование применяют для широкого круга задач, таких как:

  • анализ распространения загрязняющих веществ в атмосфере ;
  • проектирование шумовых барьеров для борьбы с шумовым загрязнением ;
  • конструирование

Компьютерная модель (англ. computer model ), или численная модель (англ. computational model ) - компьютерная программа, работающая на отдельном компьютере , суперкомпьютере или множестве взаимодействующих компьютеров (вычислительных узлов), реализующая представление объекта, системы или понятия в форме, отличной от реальной, но приближенной к алгоритмическому описанию, включающей и набор данных, характеризующих свойства системы и динамику их изменения со временем.

О компьютерном моделировании

Компьютерные модели стали обычным инструментом математического моделирования и применяются в физике, астрофизике, механике, химии, биологии, экономике, социологии, метеорологии, других науках и прикладных задачах в различных областях радиоэлектроники, машиностроения, автомобилестроения и проч. Компьютерные модели используются для получения новых знаний о моделируемом объекте или для приближенной оценки поведения систем, слишком сложных для аналитического исследования.

Компьютерное моделирование является одним из эффективных методов изучения сложных систем. Компьютерные модели проще и удобнее исследовать в силу их возможности проводить т. н. вычислительные эксперименты, в тех случаях когда реальные эксперименты затруднены из-за финансовых или физических препятствий или могут дать непредсказуемый результат. Логичность и формализованность компьютерных моделей позволяет определить основные факторы, определяющие свойства изучаемого объекта-оригинала (или целого класса объектов), в частности, исследовать отклик моделируемой физической системы на изменения её параметров и начальных условий.

Построение компьютерной модели базируется на абстрагировании от конкретной природы явлений или изучаемого объекта-оригинала и состоит из двух этапов - сначала создание качественной, а затем и количественной модели. Чем больше значимых свойств будет выявлено и перенесено на компьютерную модель - тем более приближенной она окажется к реальной модели, тем большими возможностями сможет обладать система, использующая данную модель. Компьютерное же моделирование заключается в проведении серии вычислительных экспериментов на компьютере, целью которых является анализ, интерпретация и сопоставление результатов моделирования с реальным поведением изучаемого объекта и, при необходимости, последующее уточнение модели и т. д.

Различают аналитическое и имитационное моделирование. При аналитическом моделировании изучаются математические (абстрактные) модели реального объекта в виде алгебраических, дифференциальных и других уравнений, а также предусматривающих осуществление однозначной вычислительной процедуры, приводящей к их точному решению. При имитационном моделировании исследуются математические модели в виде алгоритма(ов), воспроизводящего функционирование исследуемой системы путём последовательного выполнения большого количества элементарных операций.

Преимущества компьютерного моделирования

Компьютерное моделирование дает возможность:

  • расширить круг исследовательских объектов - становится возможным изучать не повторяющиеся явления, явления прошлого и будущего, объекты, которые не воспроизводятся в реальных условиях;
  • визуализировать объекты любой природы, в том числе и абстрактные;
  • исследовать явления и процессы в динамике их развертывания;
  • управлять временем (ускорять,замедлять и т.д);
  • совершать многоразовые испытания модели, каждый раз возвращая её в первичное состояние;
  • получать разные характеристики объекта в числовом или графическом виде;
  • находить оптимальную конструкцию объекта, не изготовляя его пробных экземпляров;
  • проводить эксперименты без риска негативных последствий для здоровья человека или окружающей среды.

Основные этапы компьютерного моделирования

Название этапа Исполнение действий
1. Постановка задачи и её анализ 1.1. Выяснить, с какой целью создается модель.

1.2. Уточнить, какие исходные результаты и в каком виде следует их получить.

1.3. Определить, какие исходные данные нужны для создания модели.

2. Построение информационной модели 2.1. Определить параметры модели и выявить взаимосвязь между ними.

2.2. Оценить, какие из параметров влиятельные для данной задачи, а какими можно пренебрегать.

2.3. Математически описать зависимость между параметрами модели.

3. Разработка метода и алгоритма реализации компьютерной модели 3.1. Выбрать или разработать метод получения исходных результатов.

3.2. Составить алгоритм получения результатов по избранным методам.

3.3. Проверить правильность алгоритма.

4. Разработка компьютерной модели 4.1. Выбрать средства программной реализации алгоритма на компьютере.

4.2. Разработать компьютерную модель.

4.3. Проверить правильность созданной компьютерной модели.

5. Проведение эксперимента 5.1. Разработать план исследования.

5.2. Провести эксперимент на базе созданной компьютерной модели.

5.3. Проанализировать полученные результаты.

5.4. Сделать выводы насчет свойств прототипа модели.

В процессы проведения эксперимента может выясниться, что нужно:

  • скорректировать план исследования;
  • выбрать другой метод решения задачи;
  • усовершенствовать алгоритм получения результатов;
  • уточнить информационную модель;
  • внести изменения в постановку задачи.

В таком случае происходит возвращение к соответствующему этапу и процесс начинается снова.

Практическое применение

Компьютерное моделирование применяют для широкого круга задач, таких как:

  • анализ распространения загрязняющих веществ в атмосфере ;
  • проектирование шумовых барьеров для борьбы с шумовым загрязнением ;
  • конструирование транспортных средств ;
  • полетные имитаторы для тренировки пилотов ;
  • эмуляция работы других электронных устройств;
  • исследование поведения зданий, конструкций и деталей под механической нагрузкой;
  • прогнозирование прочности конструкций и механизмов их разрушения;
  • проектирование производственных процессов, например химических;
  • стратегическое управление организацией;
  • исследование поведения гидравлических систем: нефтепроводов, водопровода;
  • моделирование роботов и автоматических манипуляторов;
  • моделирование сценарных вариантов развития городов;
  • моделирование транспортных систем;
  • конечно-элементное моделирование краш-тестов ;

Различные сферы применения компьютерных моделей предъявляют разные требования к надежности получаемых с их помощью результатов. Для моделирования зданий и деталей самолетов требуется высокая точность и степень достоверности, тогда как модели эволюции городов и социально-экономических систем используются для получения приближенных или качественных результатов.

Алгоритмы компьютерного моделирования

См. также

Напишите отзыв о статье "Компьютерное моделирование"

Ссылки

Отрывок, характеризующий Компьютерное моделирование

– Да что ж такое? – спросили оба Ростова, старший и младший.
Анна Михайловна глубоко вздохнула: – Долохов, Марьи Ивановны сын, – сказала она таинственным шопотом, – говорят, совсем компрометировал ее. Он его вывел, пригласил к себе в дом в Петербурге, и вот… Она сюда приехала, и этот сорви голова за ней, – сказала Анна Михайловна, желая выразить свое сочувствие Пьеру, но в невольных интонациях и полуулыбкою выказывая сочувствие сорви голове, как она назвала Долохова. – Говорят, сам Пьер совсем убит своим горем.
– Ну, всё таки скажите ему, чтоб он приезжал в клуб, – всё рассеется. Пир горой будет.
На другой день, 3 го марта, во 2 м часу по полудни, 250 человек членов Английского клуба и 50 человек гостей ожидали к обеду дорогого гостя и героя Австрийского похода, князя Багратиона. В первое время по получении известия об Аустерлицком сражении Москва пришла в недоумение. В то время русские так привыкли к победам, что, получив известие о поражении, одни просто не верили, другие искали объяснений такому странному событию в каких нибудь необыкновенных причинах. В Английском клубе, где собиралось всё, что было знатного, имеющего верные сведения и вес, в декабре месяце, когда стали приходить известия, ничего не говорили про войну и про последнее сражение, как будто все сговорились молчать о нем. Люди, дававшие направление разговорам, как то: граф Ростопчин, князь Юрий Владимирович Долгорукий, Валуев, гр. Марков, кн. Вяземский, не показывались в клубе, а собирались по домам, в своих интимных кружках, и москвичи, говорившие с чужих голосов (к которым принадлежал и Илья Андреич Ростов), оставались на короткое время без определенного суждения о деле войны и без руководителей. Москвичи чувствовали, что что то нехорошо и что обсуждать эти дурные вести трудно, и потому лучше молчать. Но через несколько времени, как присяжные выходят из совещательной комнаты, появились и тузы, дававшие мнение в клубе, и всё заговорило ясно и определенно. Были найдены причины тому неимоверному, неслыханному и невозможному событию, что русские были побиты, и все стало ясно, и во всех углах Москвы заговорили одно и то же. Причины эти были: измена австрийцев, дурное продовольствие войска, измена поляка Пшебышевского и француза Ланжерона, неспособность Кутузова, и (потихоньку говорили) молодость и неопытность государя, вверившегося дурным и ничтожным людям. Но войска, русские войска, говорили все, были необыкновенны и делали чудеса храбрости. Солдаты, офицеры, генералы – были герои. Но героем из героев был князь Багратион, прославившийся своим Шенграбенским делом и отступлением от Аустерлица, где он один провел свою колонну нерасстроенною и целый день отбивал вдвое сильнейшего неприятеля. Тому, что Багратион выбран был героем в Москве, содействовало и то, что он не имел связей в Москве, и был чужой. В лице его отдавалась должная честь боевому, простому, без связей и интриг, русскому солдату, еще связанному воспоминаниями Итальянского похода с именем Суворова. Кроме того в воздаянии ему таких почестей лучше всего показывалось нерасположение и неодобрение Кутузову.
– Ежели бы не было Багратиона, il faudrait l"inventer, [надо бы изобрести его.] – сказал шутник Шиншин, пародируя слова Вольтера. Про Кутузова никто не говорил, и некоторые шопотом бранили его, называя придворною вертушкой и старым сатиром. По всей Москве повторялись слова князя Долгорукова: «лепя, лепя и облепишься», утешавшегося в нашем поражении воспоминанием прежних побед, и повторялись слова Ростопчина про то, что французских солдат надо возбуждать к сражениям высокопарными фразами, что с Немцами надо логически рассуждать, убеждая их, что опаснее бежать, чем итти вперед; но что русских солдат надо только удерживать и просить: потише! Со всex сторон слышны были новые и новые рассказы об отдельных примерах мужества, оказанных нашими солдатами и офицерами при Аустерлице. Тот спас знамя, тот убил 5 ть французов, тот один заряжал 5 ть пушек. Говорили и про Берга, кто его не знал, что он, раненый в правую руку, взял шпагу в левую и пошел вперед. Про Болконского ничего не говорили, и только близко знавшие его жалели, что он рано умер, оставив беременную жену и чудака отца.

3 го марта во всех комнатах Английского клуба стоял стон разговаривающих голосов и, как пчелы на весеннем пролете, сновали взад и вперед, сидели, стояли, сходились и расходились, в мундирах, фраках и еще кое кто в пудре и кафтанах, члены и гости клуба. Пудренные, в чулках и башмаках ливрейные лакеи стояли у каждой двери и напряженно старались уловить каждое движение гостей и членов клуба, чтобы предложить свои услуги. Большинство присутствовавших были старые, почтенные люди с широкими, самоуверенными лицами, толстыми пальцами, твердыми движениями и голосами. Этого рода гости и члены сидели по известным, привычным местам и сходились в известных, привычных кружках. Малая часть присутствовавших состояла из случайных гостей – преимущественно молодежи, в числе которой были Денисов, Ростов и Долохов, который был опять семеновским офицером. На лицах молодежи, особенно военной, было выражение того чувства презрительной почтительности к старикам, которое как будто говорит старому поколению: уважать и почитать вас мы готовы, но помните, что всё таки за нами будущность.
Несвицкий был тут же, как старый член клуба. Пьер, по приказанию жены отпустивший волоса, снявший очки и одетый по модному, но с грустным и унылым видом, ходил по залам. Его, как и везде, окружала атмосфера людей, преклонявшихся перед его богатством, и он с привычкой царствования и рассеянной презрительностью обращался с ними.
По годам он бы должен был быть с молодыми, по богатству и связям он был членом кружков старых, почтенных гостей, и потому он переходил от одного кружка к другому.
Старики из самых значительных составляли центр кружков, к которым почтительно приближались даже незнакомые, чтобы послушать известных людей. Большие кружки составлялись около графа Ростопчина, Валуева и Нарышкина. Ростопчин рассказывал про то, как русские были смяты бежавшими австрийцами и должны были штыком прокладывать себе дорогу сквозь беглецов.
Валуев конфиденциально рассказывал, что Уваров был прислан из Петербурга, для того чтобы узнать мнение москвичей об Аустерлице.
В третьем кружке Нарышкин говорил о заседании австрийского военного совета, в котором Суворов закричал петухом в ответ на глупость австрийских генералов. Шиншин, стоявший тут же, хотел пошутить, сказав, что Кутузов, видно, и этому нетрудному искусству – кричать по петушиному – не мог выучиться у Суворова; но старички строго посмотрели на шутника, давая ему тем чувствовать, что здесь и в нынешний день так неприлично было говорить про Кутузова.
Граф Илья Андреич Ростов, озабоченно, торопливо похаживал в своих мягких сапогах из столовой в гостиную, поспешно и совершенно одинаково здороваясь с важными и неважными лицами, которых он всех знал, и изредка отыскивая глазами своего стройного молодца сына, радостно останавливал на нем свой взгляд и подмигивал ему. Молодой Ростов стоял у окна с Долоховым, с которым он недавно познакомился, и знакомством которого он дорожил. Старый граф подошел к ним и пожал руку Долохову.
– Ко мне милости прошу, вот ты с моим молодцом знаком… вместе там, вместе геройствовали… A! Василий Игнатьич… здорово старый, – обратился он к проходившему старичку, но не успел еще договорить приветствия, как всё зашевелилось, и прибежавший лакей, с испуганным лицом, доложил: пожаловали!