Тройная звездная система. Звёздная система. Тройные звёздные системы

Сетевая топология (от греч. τόπος , - место) - способ описания конфигурации сети, схема расположения и соединения сетевых устройств.
(ВикиредиЯ )

Топология
– это схема соединения каналами связи компьютеров или узлов сети между собой .
Сетевая топология может быть

  • физической - описывает реальное расположение и связи между узлами сети.
  • логической - описывает хождение сигнала в рамках физической топологии.
  • информационной - описывает направление потоков информации, передаваемых по сети.
  • управления обменом - это принцип передачи права на пользование сетью.

Существует множество способов соединения сетевых устройств. Выделяют следующие топологии:

  • полносвязная
  • ячеистая
  • общая шина
  • звезда
  • кольцо
  • снежинка

Рассмотрим каждую из них по подробнее.

1) Полносвязная топология - топология компьютерной сети, в которой каждая рабочая станция подключена ко всем остальным. Этот вариант является громоздким и неэффективным, несмотря на свою логическую простоту. Для каждой пары должна быть выделена независимая линия, каждый компьютер должен иметь столько коммуникационных портов сколько компьютеров в сети. По этим причинам сеть

может иметь только сравнительно небольшие конечные размеры. Чаще всего эта топология используется в многомашинных комплексах или глобальных сетях при малом количестве рабочих станций.

Технология доступа в сетях этой топологии реализуется методом передачи маркера. Маркер – это пакет, снабженный специальной последовательностью бит (его можно сравнить с конвертом для письма). Он последовательно предается по кольцу от компьютера к компьютеру в одном направлении. Каждый узел ретранслирует передаваемый маркер. Компьютер может передать свои данные, если он получил пустой маркер. Маркер с пакетом передается, пока не обнаружится компьютер, которому предназначен пакет. В этом компьютере данные принимаются, но маркер движется дальше и возвращается к отправителю.
После того, как отправивший пакет компьютер убедится, что пакет доставлен адресату, маркер освобождается.

Недостаток: г ромоздкий и неэффективный вариант , т . к . каждый компьютер должен иметь большое кол - во коммуникационных портов .


2) Ячеистая топология - базовая полносвязная топология компьютерной сети, в которой каждая рабочая станция сети соединяется с несколькими другими рабочими станциями этой же сети. Характеризуется высокой отказоустойчивостью, сложностью настройки и переизбыточным расходом кабеля. Каждый компьютер имеет множество возможных путей соединения с другими компьютерами. Обрыв кабеля не приведёт к потере соединения между двумя компьютерами.

Получается из полносвязной путем удаления некоторых возможных связей. Эта топология допускает соединение большого количества компьютеров и характерна, как правило, для крупных сетей.

3) Общая шина, представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы, для предотвращения отражения сигнала.

Достоинства:


Недостатки:

  • Неполадки в сети, такие как обрыв кабеля и выход из строя терминатора, полностью блокируют работу всей сети;
  • Сложная локализация неисправностей;
  • С добавлением новых рабочих станций падает производительность сети.

Шинная топология представляет собой топологию, в которой все устройства локальной сети подключаются к линейной сетевой среде передачи данных. Такую линейную среду часто называют каналом, шиной или трассой. Каждое устройство, например, рабочая станция или сервер, независимо подключается к общему шинному кабелю с помощью специального разъема. Шинный кабель должен иметь на конце согласующий резистор, или терминатор, который поглощает электрический сигнал, не давая ему отражаться и двигаться в обратном направлении по шине.

4) Звезда - базовая топология компьютерной сети, в которой все компьютеры сети присоединены к центральному узлу (обычно коммутатор), образуя физический сегмент сети. Подобный сегмент сети может функционировать как отдельно, так и в составе сложной сетевой топологии (как правило, «дерево»). Весь обмен информацией идет исключительно через центральный компьютер, на который таким способом возлагается очень большая нагрузка, поэтому ничем другим, кроме сети, он заниматься не может. Как правило, именно центральный компьютер является самым мощным, и именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией звезда в принципе невозможны, потому что управление полностью централизовано.

Метод доступа реализуется с помощью технологии Arcnet. Этот метод доступа также использует маркер для передачи данных . Маркер передается от компьютера к компьютеру в порядке возрастания адреса . Как и в кольцевой топологии , каждый компьютер регенерирует маркер .

Сравнение с другими топологиями.

Достоинства:

  • выход из строя одной рабочей станции не отражается на работе всей сети в целом;
  • хорошая масштабируемость сети;
  • лёгкий поиск неисправностей и обрывов в сети;
  • высокая производительность сети (при условии правильного проектирования);
  • гибкие возможности администрирования.

Недостатки:

  • выход из строя центрального концентратора обернётся неработоспособностью сети (или сегмента сети) в целом;
  • для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий;
  • конечное число рабочих станций в сети (или сегменте сети) ограничено количеством портов в центральном концентраторе.

5) Кольцо - это топология, в которой каждый компьютер соединен линиями связи только с двумя другими: от одного он только получает информацию, а другому только передает. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приемник. Это позволяет отказаться от применения внешних терминаторов.

Работа в сети кольца заключается в том, что каждый компьютер ретранслирует (возобновляет) сигнал, то есть выступает в роли повторителя, потому затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Четко выделенного центра в этом случае нет, все компьютеры могут быть одинаковыми. Однако достаточно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует обмен. Понятно, что наличие такого управляющего абонента снижает надежность сети, потому что выход его из строя сразу же парализует весь обмен.

Компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии). Одни из них обязательно получают информацию от компьютера, который ведет передачу в этот момент, раньше, а другие - позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на «кольцо». В этих методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру.

Подключение новых абонентов в «кольцо» обычно совсем безболезненно, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае топологии «шина», максимальное количество абонентов в кольце может быть достаточно большое (1000 и больше). Кольцевая топология обычно является самой стойкой к перегрузкам, она обеспечивает уверенную работу с самыми большими потоками переданной по сети информации, потому что в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды).

В кольце, в отличие от других топологий (звезда, шина), не используется конкурентный метод посылки данных, компьютер в сети получает данные от стоящего предыдущим в списке адресатов и перенаправляет их далее, если они адресованы не ему. Список адресатов генерируется компьютером, являющимся генератором маркера. Сетевой модуль генерирует маркерный сигнал (обычно порядка 2-10 байт во избежание затухания) и передает его следующей системе (иногда по возрастанию MAC-адреса). Следующая система, приняв сигнал, не анализирует его, а просто передает дальше. Это так называемый нулевой цикл.

Последующий алгоритм работы таков - пакет данных GRE, передаваемый отправителем адресату начинает следовать по пути, проложенному маркером. Пакет передаётся до тех пор, пока не доберётся до получателя.

Сравнение с другими топологиями.

Достоинства:

  • Простота установки;
  • Практически полное отсутствие дополнительного оборудования;
  • Возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети, поскольку использование маркера исключает возможность возникновения коллизий.

Недостатки:

  • Выход из строя одной рабочей станции, и другие неполадки (обрыв кабеля), отражаются на работоспособности всей сети;
  • Сложность конфигурирования и настройки;
  • Сложность поиска неисправностей.
  • Необходимость иметь две сетевые платы, на каждой рабочей станции.

6) С нежинка ( Иерархическая Звезда или древовидная топология) - топология типа звезды , но используется несколько концентратов , иерархически соединенных между собой связями типа звезда . Топология "снежинка" требует меньшей длины кабеля, чем "звезда", но больше элементов.

Самый распространенный способ связей как в локальных сетях , и сайт lyceum1.perm.ru

Топология звезда

Топология очень соответствует своему названию: в центре - общее устройство, к которому подключается каждый компьютер сети, каждый компьютер подключается отдельным кабелем.

Общее устройство, к которому соединены все компьютеры, называют концентратором .

Концентратор направляет передаваемую компьютером информацию или одному, или всем компьютерам сети.

По сравнению с предыдущей - общей шиной , звезда может обеспечить существенно большую надежность сети. Это главное достоинство этой топологии: при повреждении кабеля вне сети окажется только тот компьютер, который соединен этим кабелем с концентратором, и только при неисправности самого концентратора может выйти из строя вся сеть. Мало того, концентратор способен проверять поступающую информацию, поэтому при необходимости администратор сети может запретить передачу информации, настроив концентратор на блокировку определенных передач. Так что здесь, как вы заметили уровень, защиты намного выше, чем во всех предыдущих типологиях.

С другой стороны топология звезда совсем не лишена недостатков. Самые основные более высокая стоимость сетевого оборудования из-за необходимости приобретения концентратора. Кроме того, возможности по наращиванию количества узлов в сети ограничиваются количеством портов концентратора. Но все-таки, качество этой сети вполне оправдывает денежные растраты.

В сетях с большим количеством компьютеров иногда используют топологию - иерархическая звезда . Это когда в сети присутствует несколько концентраторов, иерархически соединенных между собой связями типа звезда.

В настоящее время иерархическая звезда является самым распространенным типом топологии связей, как в локальных, так и глобальных сетях.

Кольцо

В сетях этой топологии данные передаются по кольцу от одного компьютера к другому, как правило, в одном направлении. Каждый компьютер проверяет эти данные и если распознает их как свои, то просто копирует их себе во внутренний буфер. Данные, сделав один полный оборот, возвращаются к узлу-источнику. Поэтому этот узел одновременно проверяет, получил ли информацию адресат или нет. Очевидно, здесь нужно принимать дополнительные меры, чтобы в случае выхода из строя или отключения какой-либо станции не прервался канал связи между остальными станциями.

Эта топология является самой популярной и является основой для функционирования всех современных сетей: и дома, и в офисе. Для соединения узлов сети уже требуется устройство - коммутатор, к которому подключаются все компьютеры сети. Для беспроводной сети таким коммутатором является беспроводная точка доступа.

В зависимости от поколения коммутирующего устройства, сеть может функционировать как в полудуплексном, так и дуплексном режиме. Это связано со следующими технологическими особенностями:

Беспроводная сеть, работающая по технологии WiFi - технологически может функционировать только в полудуплексном режиме с поочерёдным подключением ко всем узлам.
- сеть, использующая пассивный или активный концентратор - принцип действия такой сети похож на принцип действия сети, использующей Шинную топологию. Главное отличие состоит в том, что вместо шины используется коммутатор, который так же пропускает через себя огромное множество пакетов, транслируя их от одного компьютера всем в надежде, что кто-нибудь его примет. Терминаторы в такой сети не используются, т.к. клиентские узлы сети не отражают пакеты, а только могут отправлять "уведомление о получении" отправителю в виде контрольной суммы. В общем говоря, такая сеть функционирует быстрей, чем шина только лишь из-за более высокого качества передающей среды.

Сеть использующая свитч (switch) - это высокоскоростная сеть, в которой роль концентратора выполняет как раз вышеназванное устройство. Разница заключается в том, что в отличие от простого концентратора, свитч создает в памяти временные таблицы соответствия портов с сетевыми адресами, что позволяет свитчу направлять пакеты не всем подряд, а только получателю. Таким образом получается возможность создавать изолированные сессии и передавать данные в режиме Full Duplex (полный дуплекс), что так же позволяет избежать коллизий и существенно ускорить передачу данных между компьютерами и другими сетевыми устройствами. Более того - интеллектуальные управляемые свитчи позволяют разделить сеть на несколько изолированных подсетей, что бывает удобно при организации разделения доступов пользователей сети к различным её сегментам.

Более высокая пропускная способность сети за счет использования проводников более высокого уровня;
- легкая диагностика - всегда легко найти "диверсанта", т.к. достаточно поочерёдно отключить хосты от сети;
- выход из строя одного узла, даже если имеет место повреждение сетевого кабеля, не наносит урон всей сети;
- более дорогое, но, тем не менее, легкое масштабирование - если до основного концентратора далеко тянуть провод, то можно поставить дополнительный концентратор возле самого ближайшего и подключать новых клиентов. Хотя, конечно, тут важно учитывать, для каких целей используется сеть. Если для организации совместного доступа в интернет, то этот вариант вполне разумный, если же в сети используется программа 1С в режиме прямого доступа к файлам базы - то этот метод может быть неприемлем.

Under the topology of the network refers to the configuration of the graph, whose vertices correspond to the end nodes of the network (such as computers) and communications equipment (eg, routers), and the edges of the physical or informational communication between nodes.

Full mesh

Full mesh

This topology requires communication nodes N N (N-1) / 2 duplex physical links. The advantage of this layout is that it connects each node to each. Thus, in the event of a node failure, there is no malfunction of other nodes in the network based on this topology.

But in practice, this type of topology is not applicable, because it is a very expensive option of building a network.

The cellular topology

The cellular topology

This topology is obtained from a full mesh by removing some of the links between nodes. In terms of reliability, this topology is less reliable than the fully connected, but at the same time and cheaper, by reducing redundant links to the organization costs.

This type of topology is often used in the Global (WAN) and metropolitan area networks (MAN). Technologies which employ these types of topologies may be systems like Ethernet and SDH / SONET systems.

Ring topology

Ring topology

In a ring topology, as the name implies, all components are combined into a ring. Data may be transmitted in the ring or in one of the directions, or both at once, depending on the network technology used in each particular case.

This topology is sufficiently reliable, because it provides samorezervirovanie. Each node is connected to two adjacent, and depending on the state of connections transmits data either clockwise or counterclockwise.

As a result, network redundancy is provided by the presence of two data paths from the start node to the end, as well as timely maintenance work on the data network in the event of failure of one node or one of the links.

The star topology

The star topology

The appearance of a star topology is due to the advent of the telecommunication equipment, such as switches and hubs, which commute data transfer between end nodes on the network.

In this topology, the switch acts as a central hub through which the data transmission between other nodes.

The advantages of this topology are simplicity of data transmission networks, increase the efficiency of use of communication media, the ability to network administration and delimitation of user access to network resources.

The disadvantage is that the switch in this case is a critical point of failure, but in the case of the end-user (do not consider the role of the switch as the main unit, combining other switches) this circumstance is offset by the advantages of this topology.

Hierarchical star, tree

Hierarchical star, tree

This topology is a common one for building modern data networks. In this case, the switches are combined into the main star, which organizes the main data channels, and depart from her branches, which connect the end-user nodes.

Redundancy in this topology affects only the main canals. This is achieved by an organization mesh topology between the switches or ring topology organization, again between switches.

Под структурой СКС понимают модель построения системы из функциональных элементов и подсистем. Данный раздел определяет также интерфейсы точки для подключения терминального оборудования к структурированной системе и самой СКС - к сети общего пользования. Группы функциональных элементов образуют подсистемы СКС. Отличия терминов американских стандартов выделены красным цветом.

5.1. Функциональные элементы СКС

Структурированная кабельная система - среда передачи электромагнитных сигналов - состоит из элементов - кабелей и разъемов. Кабели, оснащенные разъемами и проложенные по определенным правилам, образуют линии и магистрали. Линии, магистрали, точки подключения и коммутации составляют функциональные элементы СКС.

В американском стандарте к функциональным элементам относят два типа кабелей, три типа помещений, элемент конструкции здания и документацию телекоммуникационной инфраструктуры. Кроме того, в данных группах стандартов используется разная терминология. Отличия показаны в таблице 1..

Таблица 1. Функциональные элементы СКС

Функциональные элементы СКС Отличия в терминах ANSI/TIA/EIA-568-A
ISO/IEC 11801 и EN 50173 ANSI/TIA/EIA-568-A
Распределительный пункт комплекса (зданий) (РП комплекса)
Главный пункт коммутации
Магистраль комплекса (МК)
Магистраль между зданиями
Распределительный пункт здания (РП здания)
Промежуточный пункт коммутации
Магистраль здания (МЗ) Вертикальные кабели
Распределительный пункт этажа (РП этажа)
Горизонтальный пункт коммутации
Горизонтальные кабели (ГК) Горизонтальные кабели
Точка перехода (ТП)
Точка перехода
Телекоммуникационный разъем (ТР)
Телекоммуникационный разъем

Рабочая область

Телекоммуникационные помещения

Аппаратные

Ввод в здание

Администрирование

Международные / европейские стандарты подразделяют СКС на восемь функциональных элементов, американский - на семь. Только два из них совпадают. В первом случае функциональные элементы составляют среду передачи, то есть собственно структурированную кабельную систему. Это позволяет выделить подсистемы и провести точные границы между ними.

Во втором в состав функциональных элементов не вошла магистраль комплекса и все интерфейсы СКС и добавлены помещения, элементы зданий и система документирования. Это приводит к путанице и смешиванию понятий в технической литературе, проспектах производителей и документации, создаваемых по американской модели - А.В.

5.2. Подсистемы СКС

Международные / европейские стандарты подразделяют СКС на три подсистемы: магистральная подсистема комплекса, магистральная подсистема здания, горизонтальная подсистема.

Распределительные пункты обеспечивают возможность создания топологии каналов типа «шина», «звезда» или «кольцо».

Рис. 1. Подсистемы СКС

5.2.11. Магистральная подсистема комплекса включает магистральные кабели комплекса, механическое окончание кабелей (разъемы) в РП комплекса и РП здания и коммутационные соединения в РП комплекса. Магистральные кабели комплекса также могут соединять между собой распределительные пункты зданий.

5.2.22. Магистральная подсистема здания включает магистральные кабели здания, механическое окончание кабелей (разъемы) в РП здания и РП этажа, а также коммутационные соединения в РП здания. Магистральные кабели здания не должны иметь точек перехода, электропроводные кабели не следует соединять сплайсами.

5.2.33. Горизонтальная подсистема включает горизонтальные кабели, механическое окончание кабелей (разъемы) в РП этажа, коммутационные соединения в РП этажа и телекоммуникационные разъемы. В горизонтальных кабелях не допускается разрывов. При необходимости допускается одна точка перехода. Все пары и волокна телекоммуникационного разъема должны быть подключены. Телекоммуникационные разъемы не являются точками администрирования. Не допускается включения активных элементов и адаптеров в состав СКС.

Абонентские кабели для подключения терминального оборудования не являются стационарными и находятся за рамками СКС. Однако, стандарты определяют параметры канала, в состав которого входят абонентские и сетевые кабели.

5.3. Топология СКС

Топология СКС - «иерархическая звезда», допускающая дополнительные соединения распределительных пунктов одного уровня. Однако такие соединения не должны заменять магистрали основной топологии. Число и тип подсистем зависит от размеров комплекса или здания и стратегии использования системы. Например, в СКС одного здания достаточно одного РП здания и двух подсистем - горизонтальной и магистральной. С другой стороны, большое здание можно рассматривать как комплекс, включающий все три подсистемы, и в том числе, несколько РП здания.

Рис. 2. Топология СКС


5.4. Размещение распределительных пунктов

Распределительные пункты размещаются в телекоммуникационных помещениях и аппаратных. Телекоммуникационные помещения предназначены для установки панелей и шкафов, сетевого и серверного оборудования, обслуживающих весь или часть этажа. Аппаратные выделяют для телекоммуникационного оборудования,обслуживающего пользователей всего здания (например, УАТС, мультиплексоры, серверы) и размещения РП здания / комплекса. Панели / шкафы и оборудование РП этажа, совмещенные с РП здания / комплекса, также могут находиться в помещении аппаратной.

5.5. Интерфейсы СКС

Интерфейсы СКС это окончания подсистем, обеспечивающие подключение оборудования и кабелей внешних служб методом подключения или коммутации . На рисунке 3 показаны интерфейсы в виде линий в пределах распределительных пунктов, схематически обозначающих блоки гнезд на панелях.

Рис. 3. Интерфейсы СКС


Для подключения к СКС достаточно одного сетевого кабеля. В варианте коммутации используют сетевой и коммутационный кабель и дополнительную панель.

Подключение к сети общего пользования осуществляется с помощью интерфейса сети общего пользования. Местоположение интерфейса сети общего пользования определяется национальными, региональными и местными правилами. Если интерфейсы сети общего пользования и СКС не соединены коммутационным кабелем или с помощью оборудования, необходимо учитывать параметры промежуточного кабеля.