Коммутация ЛВС и внедрение Fast Ethernet. Организация пассивного оборудования ЛВС. Туда-сюда, или что такое полный дуплекс

Построение корпоративной ЛВС: выбор коммутаторов доступа Сisco

Cisco предлагает обширный набор решений коммутации для корпоративных сетей, центров обработки данных и малых предприятий. Эти решения оптимизированы для широкого спектра отраслей, включая операторов связи, финансовые организации и государственный сектор. Разнообразие устройств иногда может затруднить выбор заказчика именно той модели устройства, которая максимально соответствует его техническим и бизнес-потребностям. В этой статье мы бы хотели помочь в таком выборе, охватив лишь уровень доступа (access layer) иерархической модели построения локальных вычислительных сетей (ЛВС).

Традиционное рабочее место (данные и голос)

Итак, если ваша сетевая инфраструктура на текущий момент или в планируемой перспективе будет ограничена лишь передачей информационных и голосовых данных (data and voice traffic), то вам вполне подойдут устройства Cisco Catalyst 2960 (рис.1)

Рис.1. Модельный ряд Сisco Сatalyst 2960

При этом, если вам достаточно скоростей на портах доступа (access) 100Mбит/c и магистральных портах (uplink) 1Гбит/c, то вам вполне подойдут коммутаторы серии 2960-Plus. Они обладают базовым функционалом L2, до 48 портов доступа, поддержкой IEEE 802.3af PoE (15.4 Ватт) на портах доступа и комбинированные (медь или оптика) магистральные порты. Однако, если в точках агрегации пользовательских подключений потребуется большое количество подключений (свыше 48), с точки зрения упрощения конфигурации и поддержки устройств, а также для обеспечения отказоустойчивости, целесообразно использовать стекируемые модели серии 2960-SF. Помимо стекирования до 4 устройств в единый коммутационный элемент коммутаторы 2960-SF обладают более расширенным функционалом L2 и позволяют обеспечить IEEE 802.3at PoE (PoE+, 30 Ватт) на портах доступа.

Если же вы планируете построение ЛВС со скоростными магистральными каналами 10Гбит/c и портами доступа 1Гбит/c (согласно рекомендуемому дизайну Cisco для организаций корпоративного уровня), то вам следует рассмотреть устройства серии 2960-X в качестве базового коммутатора доступа. Эти модели характеризуются высокой производительностью и функциональностью L2, возможностью стекирования до 8 устройств в стек, поддержкой PoE/PoE+, уникальным набором функций энергосбережения и функционалом сбора статистики о существующих потоках данных.

Многие корпоративные заказчики как альтернативу коммутируемому доступу (L2) выбирают маршрутизируемый (L3), что при выборе коммутаторов накладывает требование поддержки протоколов и сервисов уровня L3. Такими устройствами являются коммутаторы серии 2960-XR. В дополнении ко всему, эта платформа имеет возможность обеспечения резервирования электропитанию за счет использования двух внутренних блоков электропитания, в отличии от моделей 2960-Plus, 2960-SF и 2960-X, которые c лицензией Lan Base обеспечивают этот функционал за счет подключения к внешней системе резервного электропитания (RPS 2300).

Унифицированное рабочее место (данные, голос, видео, BYOD, мобильность)

Однако, если вы желаете двигаться в ногу с последними тенденциями, присущими корпоративной инфраструктуре сегодняшнего дня, то вам следует обратить свое внимание на коммутаторы, рекомендуемые Cisco именно для построения унифицированного рабочего места (Unified Workspace) (рис.2).

Рис.2. Модельный ряд Сisco Сatalyst 3560-X, 3750-X, 3650, 3850, 4500-E.

Среди таких тенденций хотелось бы отметить 3 основные: видео, BYOD (Bring your own device, принеси свое собственное устройство в корпоративную сеть) и мобильность.

Увеличивающаяся доля видео-трафика подталкивает компании к построению ЛВС на более скоростных каналах (10 Гбит/c). Для эффективной и бесперебойной работы сетевой инфраструктуры на таких скоростях важным становится обеспечение высокой отказоустойчивости и гибкой системы предоставления соответствующего качества обслуживания разным сервисам (QoS). Данные задачи успешно реализуются за счет правильной архитектуры и функционала: высокоскоростная и неблокируемая коммутационная матрица, быстрая технология стекирования коммутаторов (64 Гбит/c – 3750-X, 160 Гбит/c – 3650, 480 Гбит/c – 3850), резервирование электропитания за счет 2-х блоков электропитания, технология обеспечения общедоступного пула электропитания для группы коммутаторов (3750-X, 3850 – StackPower), разнообразный функционал маршрутизации трафика и обеспечения минимального времени сходимости сети (Flexlink, Cross-Stack EtherChannel), а также обширный функционал QoS.

BYOD – решение для создания оптимальных условий работы для пользователей различных устройств в любое время и в любом месте. Уже очевидно, что что пользовательские переносные устройства – экономически эффективный и привлекательный способ повышения производительности труда, но многие организации боятся подключать их к корпоративной сети, опасаясь проблем с безопасностью корпоративных данных и приложений. Однако расширенный функционал безопасности коммутаторов Catalyst 3650-X/3750-X, 3650, 3850, 4500-E (ACL, Port Security, DAI, Source Guard, DHCP Snooping, 802.1X и т.д.) и интеграция с централизованными системами идентификации и авторизации доступа (Cisco ISE) позволяет обеспечить безопасность как с точки зрения доступа к сети, так и для самого устройства. В дополнении к базовым технологиям безопасности оборудование Cisco, имея уникальный функционал, позволяет обеспечить конфиденциальность данных в ЛВС, путем шифрования (MACsec – IEEE 802.1AE) на канальном (L2) уровне, как на пользовательских портах (пользователь-коммутатор), так и на магистральных портах (коммутатор-коммутатор) (3650-X/3750-X, 4500-E, 3650/3850-в будущих версиях ПО), а также организовать безопасный доступ на основе списков доступа на базе меток Secure Group Access List (SGACL) (3650-X/3750-X, 4500-E, 3650/3850 – в будущих версиях ПО).

Чтобы сотрудники, которые используют свои персональные устройства (смартфоны, планшетные компьютеры и т.д.), максимально эффективно решали служебные задачи им нужно обеспечить максимальную мобильность, то есть не только обеспечить проводную связь в любом месте, но и беспроводную связность ко всем корпоративным ресурсам. На базе платформы Сisco Catalyst 3850 вы сможете обеспечить мобильный унифицированный доступ для своих сотрудников за счет встроенных в одном устройстве коммутатора и беспроводного контроллера (на базе 4500-E c процессором Sup8-E – в следующих версиях ПО).

Еще одна уникальная особенность коммутаторов Cisco – это способность обеспечить на порту доступа электропитания 60 Ватт (Universal Power Over Ethernet – UPOE). Данная функциональность уже сейчас позволяет подключить персональные системы Telepresence, клиенты VDI, устройства контроля доступа и другие разнообразные пользовательские устройства, которые требуют электропотребление свыше 30 Ватт без использования отдельных кабелей электропитания (3650-X/3750-X, 4500-E, 3850, 3650 – в будущем).

Среднестатистическая ЛВС организации делится на активное и пассивное оборудование, а также компьютеры (и другие оконечные устройства) пользователей. В активное оборудование ЛВС входят:

  • сетевые коммутаторы (хабы, свитчи)
  • маршрутизаторы
  • сетевые карты серверов и персональных компьютеров
  • точки доступа WiFi
  • роутеры (устройство с функционалом всех перечисленных выше приборов)

Рассмотрим одну из составляющих активного оборудования ЛВС - оборудование коммутации.

Задача проектирования новой или модернизации существующей локальной сети предприятия вопрос важный и требует серьёзного подхода и глубокого изучения деталей работы всей системы.

Рассмотрим основные моменты по выбору коммутаторов для решения задач сети ЛВС предприятия. Коммутатор (он же хаб, он же свитч) – сетевой прибор, который объединяет несколько компьютеров в локальную вычислительную сеть (ЛВС). Необходимо хорошо понимать логику работы и подбирать наборы параметров и функций, которые представляют необходимые и дополнительные сервисы пользователям, а также упрощают администрирование ЛВС.

Организация активного оборудования ЛВС

Верхний уровень коммутации представляют коммутаторы ядра сети - Core layer - высокопроизводительные устройства с сверхвысокой скоростью передачи данных до 40Gb, как правило, используются для обмена данными между серверами.

Средний уровень ЛВС представляют коммутаторы агрегации - Distribution (Agregation) layer - обеспечивают настройки сети в плане политик безопасности, QoS, маршрутизацию VLAN, широковещательные домены.

И нижний уровень - коммутаторы рабочих групп или коммутаторы доступа (пользователей) - Access layer - подключение конечных ПК, ноутбуков и др. пользователей, отметка трафика QoS, питание PoE устройств.

Правильный выбор коммутаторов обеспечит надежную и правильную работу всей организации. На какие моменты обратить внимание при выборе коммутатора? Внимательно изучите технические характеристики и обозначения в описании, указанные производителем.

Функциональные характеристики коммутаторов

Задача проектировщика сети найти золотую середину и за максимум функций и высокую надежность заплатить адекватную цену.

Основные функции коммутаторов:

  • Базовая скорость передачи данных
  • Количество портов.
  • Характер работы подключенных к нему пользователей.
  • Внутренняя пропускная способность.
  • Автоопределение типа кабеля MDI/MDI-X.
  • Наличие порта Uplink.
  • Стекирование.
  • Возможность установки в стойку.
  • Количество слотов расширения
  • Jumbo Frame - Power over Ethernet (PoE)
  • Размер таблицы MAC-адресов.
  • Flow Control (Управление потоком
  • Встроенная грозозащита.

Маршрутизатор ЛВС предприятия

Маршрутизатор - обеспечивает доступ потоков информации между филиальных частей ЛВС предприятия и сетью Интернет. На сетевом уровне L3 OSI обработка маршрутов пакетов в сети возложена на маршрутизирующие коммутаторы агрегации (коммутатотры уровня L3). Второй тип маршрутизатора - это пограничные устройства - их задача строить маршруты пакетов по адресам получателей и отправителей и анализ маршрутов пакетов, отслеживая нагрузку линий СПД. Пограничные маршрутизаторы обеспечивают защиту от НСД, сегментов сети от широковещательных DDOS-атак.

Требования ЛВС предприятия

  • скорость - важнейшая характеристика локальной сети;
  • адаптируемость - свойство ЛВС расширяться и устанавливать рабочие станции там, где это требуется;
  • надежность - свойство ЛВС сохранять полную или частичную работоспособность вне зависимости от выхода из строя конечного оборудования или некоторых узлов;
  • производительность и экономичность;
  • масштабируемость - возможность без проблем развернуть любые IP системы (например видеонаблюдение поверх текущей сети);
  • простота управления и эксплуатации;
  • отказоустойчивость, гибкость к настройке и самонастройке при восстановлении;
  • гарантийное обслуживание (м.б. на весь срок жизни продукта endOFlife - в среднем 5-7 лет).

Для бесперебойной эффективной работы ЛВС, коммутаторы которой нуждаются в потребление электроэнергии, необходимо предусмотреть гарантированное питание и аварийное электропитание в соответствии с руководящими документами Вашей отрасли.

Компания «АЕСТЕЛЬ» представляет партнёрам только лучшие устройства и решения. Наши специалисты помогут Вам определиться с их выбором, а при необходимости мы спроектируем топологию сети Вашего предприятия, в которой будут учтены все требования к потокам данных (нагрузка, скорость, среда передачи данных: оптика-медь, а также уже имеющееся в наличии оборудование) и пожелания.

Примеры расчёта различных вариантов и топологий ЛВС смотрите в разделе .

Организация пассивного оборудования ЛВС

Пассивное сетевое оборудование – это оборудование не нуждающееся в потребление электроэнергии и

не вносящее изменений в сигнал на информационном уровне. Основная функция пассивного оборудования состоит в обеспечении передачи сигнала – это розетки, коннекторы, патч-панели, кабель, патч-корды, кабель-каналы, а также монтажные шкафы, стойки и телекоммуникационные шкафы. Всё это оборудование носит название структурированный кабельные системы (СКС) - имеет чёткую иерархию по структуре, сертификации международных систем стандартизаций и соответственно по типам использования в зависимости от требований к объектам и качеству передачи данных.

ГЕННАДИЙ КАРПОВ

Это должен знать каждый,

или Четыре базовых принципа

выбора коммутатора ЛВС

Если вы планируете смонтировать у себя новую локальную вычислительную сеть (ЛВС) или модернизировать старую, то вам необходимо определиться с сетевой технологией, выбрать тип магистрали будущей сети, представить принцип построения серверной подсистемы и выбрать производителя сетевого оборудования.

Выбор типа сетевой технологии

Еще 5-6 лет назад этот вопрос стоял очень остро и мог стать судьбоносным для человека, принимающего решение по этому вопросу. Существовали конкурирующие решения: Ethernet, 100VG-AnyLAN, Token Ring, FDDI, АТМ. В периодических изданиях сторонники разных технологий «ломали копья», доказывая преимущества тех или иных решений. Сегодня жизнь все расставила по своим местам: в качестве основной сетевой технологии в рамках LAN остался только Ethernet. 100VG-AnyLAN прекратил свое существование, Token Ring повсеместно снимается с эксплуатации. FDDI и ATM в рамках ЛВС используются как специальные средства и не являются типичными сетевыми технологиями. Сейчас при выборе сетевой технологии вопрос стоит иначе: какой вариант реализации Ethernet-оборудования выбрать: на базе концентраторов или коммутаторов, или даже еще более «тонко»: использовать традиционные коммутаторы или коммутаторы, ориентированные на соединение. Однако не смотря на сужение выбора в сетевых технологиях, возможности 100VG-AnyLAN и Token Ring далее будут также проанализированы. Надо знать свою историю, ведь она всегда повторяется.

Для решения проблемы больших задержек в компьютерной сети обычно достаточно вместо концентраторов установить коммутаторы, подключив к каждому порту последнего по одному компьютеру. При этом на рабочих станциях не приходится вносить каких-либо изменений, а изменения в сетевой инфраструктуре минимальны. Надо только иметь в виду, что сегодня производительности даже коммутируемого соединения Ethernet 10Base-T или Token Ring (16 Мбит/с) недостаточно для многих приложений и во много раз уступает возможностям 100 Мегабитных каналов, доступных в сетях FDDI, 100BaseT, 100VG-AnyLAN, АТМ.

Переход на более скоростные технологии потребует внесения в сеть большего числа изменений, нежели установка коммутатора. В этом случае вам потребуется не только заменить концентратор, но и установить новые адаптеры и драйверы для них в каждый компьютер, возможна замена разъемов, кабеля, топологические ограничения, а это приведет к необходимости переложить кабель, поставить промежуточные преобразователи (конвертеры) и целой серии подобных проблем.

Можно подойти к модернизации ЛВС постепенно, растянув во времени процедуру модернизации рабочих станций. Для этого надо использовать технологию Ethernet 10/100Base-TX. В этом случае к скоростным магистралям для передачи основного трафика в первую очередь подключают коммутаторы рабочих групп и сервера, т.е. устройства, которым требуется высокая скорость, малые задержки или передача больших объемов информации. Перевод же рабочих станций на скоростные каналы осуществляется по мере необходимости.

Очень удобно применение двухскоростных адаптеров, т.к. режим автоматического определения скорости позволяет использовать такие адаптеры как в старых, так и в новых фрагментах сети, обеспечивает эффективность вложения средств, а также упрощает настройку и поддержку сети. Разница в цене между высокоскоростными (100Base-TX) и универсальными адаптерами (10/100) незначительна (обычно ее просто нет), а у коммутаторов она редко когда превышает 10%, что с учетом затрат на настройку и поддержку сети обеспечивает существенную экономию.

Вывод №1

В настоящее время нецелесообразно создавать ЛВС с применением низкоскоростных технологий и с последующим переводом их на высокоскоростные. В целом такой проект оказывается чуть ли не вдвое дороже. Гораздо целесообразнее применение оборудования, допускающего использование каналов с различной пропускной способностью в пределах одного шасси.

Выбор сетевой магистрали

Потребности в увеличении пропускной способности магистральных каналов связаны в основном с двумя явно просматривающимися тенденциями в архитектуре локальных вычислительных сетей: быстрым ростом производительности рабочих станций и централизацией данных вплоть до создания специализированных помещений – серверных комнат или центров.

Рост производительности средств вычислительной техники (в первую очередь дисковых подсистем, а не тактовой частоты ЦП персонального компьютера) на рабочих местах приводит к тому, что канал поступления информации в компьютер или сервер начинает становиться узким местом сетевого комплекса. Это просто результат неизбежности технического прогресса и бороться с этой тенденцией бесполезно.

Изъятие же локальных серверов из состава рабочих групп и централизация данных – технологический аспект проблемы, влияющий на выбор типа сетевой магистрали. При централизации данных существенно снижаются расходы на управление и поддержку, повышается надежность сети в целом, но в то же время это приводит к увеличению трафика между рабочими группами.

Наиболее развитыми технологиями построения магистральных каналов являются FDDI и АТМ. Они, в конце концов, разрабатывались специально для этого сектора сетевого рынка. Fast Ethernet и Gigabit Ethernet применяются для этих целей исторически, ну а 100VG-AnyLAN вообще для этого не приспособлен. До появления недорогих маршрутизаторов с портами 10/100Base-TX Ethernet слабо подходил для построения территориально распределенных магистралей, а сегодня это широко применяющееся на практике решение. Если исходить из соображений производительности, то наиболее целесообразно применение Gigabit Ethernet или АТМ, а если из соображений надежности – FDDI. Однако все эти технологии недешевы, особенно их реализация на single mode оптическом кабеле, а кроме того, при проектировании ЛВС масштабов здания очень часто можно организовать магистраль на объединяющей плате центрального модульного коммутатора – построить коллапсовую магистраль. В этом случае производительность магистрали будет выше и надежнее, чем варианты, основанные как на технологиях Gigabit Ethernet или АТМ, так и FDDI.

Понимание основных преимуществ той или иной сетевой технологии, ее назначения в индустрии вычислительных сетей обеспечивает возможность правильного выбора решения. Для удобства восприятия, резюме по основным сетевым технологиям приведено в таблице 1.

Вывод №2

Целесообразно, если это позволяют условия, использовать коллапсовую магистраль как самый скоростной и надежный вариант построения магистральных соединений.

Таблица 1. Сравнение высокоскоростных технологий

Технология

Преимущества

Недостатки

100Base-T Gigabit Ethernet

Эффективна для подключения серверов. Эффективна для подключения рабочих станций. Известные протоколы.

Широкая поддержка производителями.

Снижение производительности при большом числе устройств, при постоянных «перекачках» больших объемов информации с серверов на рабочие станции и обратно,

в случае больших нагрузок на сеть требует вдумчивого подхода к выбору производителя оборудования.

100VG-AnyLAN

Хорошо приспособлена для критичных

к задержкам приложений. Использует кабель категории 3 (4 пары).

Небогатый выбор устройств. Ограниченная диагностика. Малое число производителей.

FDDI

Хорошо известна и широко распространена. Доступность оборудования. Эффективная организация магистралей. Уникальная отказоустойчивость. Эффективное подключение серверных групп. Широкая поддержка производителями.

Высокая цена. Технология практически не развивается,

что заставляет задуматься о ее перспективах.

Масштабируемость. Поддержка разных типов трафика (голос, данные и т.д.).

Высокие цены. Необходимость обучения специалистов

по эксплуатации. Сложность настройки.

Как создать производительную серверную подсистему

Для серверов требуется обычно более производительный сетевой интерфейс по сравнению с рабочими станциями, поскольку они предназначены для одновременного обслуживания большого числа пользователей сети. Если производительности сервера будет недостаточно, сеть не сможет нормально функционировать. Если производительность сервера превосходит возможности сети, сервер будет часть времени простаивать. В этом случае на него можно возложить дополнительные функции.

В последнее время явно просматривается опережающий рост числа сетевых серверов как специфических сетевых программных продуктов по сравнению с набором аппаратных платформ для их реализации. Это и традиционный файловый сервис, и печать, и работа с базами данных, и электронная почта, и программные комплексы обеспечения безопасности и т. д. и т. п. В результате рост потребностей в производительности каналов связи, обслуживающих сервера, нередко опережает коммуникационные возможности сети.

Вывод №3

Целесообразно увеличивать количество серверов в сети. Нецелесообразно устанавливать специфические программные продукты на один сервер. Сервера к концентратору должны подключаться с применением самых скоростных технологий. Дисковые подсистемы серверов должны быть самыми производительными в сети. На объеме оперативной памяти для серверов экономить нельзя.

Коммутаторы с автоопределением скорости

Одним из основных вопросов при модернизации ЛВС является простота и надежность объединения привносимых высокоскоростных коммутаторов с ранее применявшимися низкоскоростными. При этом необходимо понимать, что заказчик ожидает существенного повышения производительности своей сети при переходе на высокоскоростные технологии сразу же после замены корневого коммутатора.

Однако, как правило, при выборе коммутатора руководствуются в основном финансовыми соображениями и почему-то не принимают во внимание особенностей двухскоростных сетей: наличие в каналах связи пакетов с разными скоростями требует их буферизации в коммутаторах. В результате память коммутатора начинает играть критически важную роль в обеспечении работоспособности сети. И это даже в ненагруженных сетях. Для эффективной и надежной неблокируемой коммутации размер буферов должен быть достаточно большим.

Коммутаторы стандарта 10Base-T, снабженные 100 Мегабитными Up-link, не обеспечивают требуемой при связи разноскоростных портов буферизации. Они лишь позволяют объединить между собой сегменты ЛВС, построенные на разных скоростях. Построить сбалансированную по производительности систему на базе подобных коммутаторов очень трудно. Об этой особенности коммутаторов необходимо помнить даже при проектировании высокоскоростной сети «с нуля», т.к. даже в этом случае очень часто приходится применять низкоскоростные устройства класса 10Base-T– print server.

О том, насколько серьезно объем буферной памяти влияет на производительность применяемого коммутатора, а следовательно, и на производительность ЛВС, можно почерпнуть из приведенной ниже таблицы 2, демонстрирующей самые популярные на конец 1990-х – начало 2000-го года коммутаторы (причем сравнение приведено для коммутаторов одного класса).

Таблица 2. Сравнительная оценка производительности коммутаторов среднего класса (класса рабочей группы)

Cabletron
ELS100-24TXM

3Com
SuperStack-II-3300

Bay Networks
BayStack 350T-HD

Cisco
Catalyst 2924 XL

Intel
Express 510T

10/100 Base-TX Ports

Average Buffering/Port

512Kb

128Kb

128Kb

170Kb

171Kb

Switch Bandwidth

4.2Gbps

Unknown

1.2Gbps

3.2Gbps

6.3Gbps

Forwarding Rate

3.6Mpps

1.47Mpps

1.6Mpps

3.0Mpps

Unknown

Вывод №4

Если речь идет не о простой офисной сети, необходимо применение коммутаторов, в конструкции которых заложена возможность работы с разными скоростями, а также имеющих большие объемы оперативной памяти для организации внутренних буферов.

И наконец, то, о чем почти все всегда забывают

Когда все уже продумано, заказано и внедрено в эксплуатацию, часто оказывается, что заказчик не доволен производительностью сети. Обычно это бывает в двух типах сетей:

  1. Сеть из нескольких машин, собранная на одном коммутаторе.
  2. Большая разветвленная сеть с централизованной серверной подсистемой, собранной на одном коммутаторе.

В первом случае сеть в своем составе имеет обычно один сервер. В данной ситуации, действительно, замена концентратора на коммутатор практически не дает выигрыша в производительности сети по той причине, что все клиенты все равно замыкаются на одну связь – один порт сетевой карты на сервере, который в данном случае выступает в роли «бутылочного горлышка». В подобной топологии разделения потоков информации не происходит. Если в таких сетях нет трафика между компьютерами, как в обычной одноранговой сети, то применение коммутатора с технической точки зрения не оправдано.

Во втором случае заказчик нередко наблюдает совсем другую ситуацию: центральный коммутатор явно не справляется с потоками информации, т.к. до модернизации (обычно в этом случае локальные сервера были рассредоточены по рабочим группам) приложения на клиентских машинах работали быстрее. Причина подобного в схемотехническом решении коммутатора. Обычно коммутатор рабочей группы имеет один центральный процессор. В этом случае он в состоянии закоммутировать между собой в каждый момент времени только 2 порта, если количество процессоров равно 2-м, то 2 или 4 порта и т. д. Ну и в пределе (для 24-х портового коммутатора), если количество процессоров равно 24-м, то коммутатор в состоянии одновременно поддерживать соединение по схеме «12 на 12». К сожалению, информацию о количестве центральных процессоров в конкретных реализациях коммутаторов найти очень трудно. Вычислить их количество, используя такие характеристики как Switch Bandwidth или Bus Capacity, точно нельзя, но оценить в принципе можно. С другой стороны, эта задача практически не связана с конкретными моделями конкретных производителей. Каждый производитель позиционирует свое оборудование для конкретного сегмента рынка ЛВС. Количество процессоров и объем буфера – это те характеристики, которые как раз и определяют тактико-технические данные производимого им оборудования, сегмент потенциального рынка, на который он (производитель) может претендовать.

Главный вывод

Доверьте модернизацию вашей сети профессионалам или не жалейте средств на обучение собственных специалистов, пусть они лучше экспериментируют на лабораторных работах в учебном центре, а не с вашими деньгами.

Повторитель (repeater) — блок взаимодействия, служащий для регенерации электрических сигналов, передаваемых между двумя сегментами ЛВС. Повторители используются, если реализация ЛВС на одном сегменте кабеля (отрезке, моноканале) не допускается из-за ограничений на расстояние или на число узлов, причем при условии, что в соседних сегментах используются один и тот же метод доступа и одни и те же протоколы. Трафик в сегментах, соединенных повторителем, — общий. Повторитель может быть многопортовым. Сигнал, пришедший на один из портов, повторяется на всех остальных портах.

Концентраторы , называемые также хабами, предназначены для объединения в сеть многих узлов. Концентраторы обычно имеют ряд портов для подключения компьютеров и порт AUI (Attachment Unit Intreface) для связи с другими концентраторами или с магистралью. Концентраторы создают общую среду передачи данных без разделения трафика. Как и повторители они восстанавливают форму и мощность электрических сигналов, распространяемых в общей среде передачи данных. Так, концентраторами являются хабы в 10Base-T или Token Ring. В отличие от повторителя концентратор является многопортовым устройством (следует однако отметить, что часто термины повторитель и концентратор считают синонимами).

Дополнительными функциями концентраторов могут быть отключение некорректно работающих узлов, передача данных о состоянии соответствующего участка сети менеджеру протокола управления SNMP и др.

Сетевые платы и концентраторы специфичны для каждого типа ЛВС.

В последнее время концентраторы используются достаточно редко, вместо них получили распространение коммутаторы — устройства, работающие на канальном уровне ЭМВОС и повышающие производительность сети путём логического выделения каждого подключённого устройства в отдельный сегмент - домен коллизии.

Для соединения отдельных сегментов ЛВС друг с другом используют мосты и коммутаторы.

Мост (bridge) — блок взаимодействия разных подсетей, который в отличие от повторителей и концентраторов разделяет трафик. Разделение трафика означает, что если отправитель и получатель некоторого сообщения находятся в одной и той же из соединяемых подсетей, то это сообщение не пропускается в другую подсеть.

Мосты имеют по два или более портов. Каждый порт может оказаться входным или выходным. Управление передачей пакетов выполняется с помощью маршрутной таблицы моста, в которой строки содержат соответствующие друг другу значения MAC-адреса узла и номера порта моста. Если пакет пришел на порт и по таблице адрес относится к тому же порту , то пакет остается в данной ЛВС, иначе передается на порт , который найден по таблице. Первоначальное заполнение таблицы происходит по адресам источников пакетов — в строку заносятся адрес отправителя и номер входного порта. Таблицы могут изменять во времени свое содержимое. Если некоторые адреса по истечении длительного времени ни разу не активировались, то строки с такими адресами удаляются, их восстановление или занесение новых адресов выполняется по процедуре первоначального заполнения.

Мост может быть многопортовым, причем обычно порты соединяются посредством шины.

В зависимости от выполняемых функций различают несколько типов мостов.

Так называемый прозрачный (transparent) мост соединяет однотипные подсети (с одинаковыми канальными протоколами).

Транслирующие мосты соединяют сети с разными канальными протоколами, конвертируя пакеты (но необходимо, чтобы размеры пакетов были приемлемы для обеих сетей).

Инкапсулирующий мост отличается от прозрачного тем, что передача ведется через некоторую промежуточную сеть, имеющую, возможно, другие канальные протоколы (например, пересылка пакета между Ethernet подсетями через опорную сеть FDDI). Промежуточная сеть работает широковещательно, все подсети-приемники вскрывают инкапсулированные пакеты.

С помощью мостов возможна фильтрация пакетов. Например, администратор может установить защиту от пакетов с определенными адресами или запретить доступ к некоторым ресурсам.

Недостатки мостовых соединений — сравнительно невысокое быстродействие, необходимость избегать циклических соединений, что не всегда легко реализовать в сложных сетях.

Коммутаторы (switches) в отличие от мостов предназначены для объединения в сеть многих узлов или подсетей с возможностью создания одновременно многих соединений. Коммутаторы используются также для связи нескольких ЛВС с территориальной сетью. Один коммутатор может объединять несколько как однотипных, так и разнотипных ЛВС. Коммутаторы, как и мосты, работают с MAC-адресами и локализуют значительную часть трафика внутри соединяемых подсетей.

Возможны коммутация "на лету" (сквозная коммутация — cut-trough), когда передача пакета начинается сразу после расшифровки его заголовка, и с полным получением пакета (промежуточная буферизация — store-and-forward). Первый способ применяют в небольших сетях, второй — в магистральных коммутаторах. Сквозная коммутация уменьшает задержки в передаче данных, позволяет обойтись малым объемом буфера, но не дает возможности контролировать безошибочность передачи данных (точнее, изымать неверные кадры). Коммутация называется адаптивной, если администратор может для каждого порта устанавливать наиболее подходящий режим — "на лету" или "с буферизацией".

Обычно коммутатор имеет ряд портов, группируемых в сегменты. Каждый сегмент ориентирован на ЛВС одного типа. Например, коммутатор может иметь сегменты для подсетей типов Ethernet, Token Ring, FDDI, причем в этих сегментах имеются гнезда для подключения от двух-трех до нескольких десятков подсетей. Для каждого порта (или сегмента) выделены свои процессор и буферная память, т.е. коммутатор, в отличие от моста, представляет собой многопроцессорное устройство, каждый процессор обрабатывает пакеты, пришедшие на соответствующий порт. Имеется центральный процессор, координирующий работу остальных устройств. Процессоры соединяются посредством или высокоскоростной общей шины, или многовходовой памяти, но чаще используется коммутирующая матрица , в которой одновременно может быть создано много соединений.

В случае общей шины используется метод ее разделения между разными соединениями по времени.

Коммутатор на основе многовходовой буферной памяти называют временным. Запись производится в ячейки памяти последовательным опросом входов, а коммутация осуществляется благодаря считыванию данных на выходы из нужных ячеек памяти. При этом происходит задержка на время одного цикла "запись-чтение".

Коммутирующая матрица размера × представляет собой сетку, в которой входов подключены к горизонтальным шинам, а выходов — к вертикальным (рис. 1).

Рис. 1. Матрица пространственного коммутатора

В узлах сетки имеются коммутирующие элементы, причем в каждом столбце сетки может быть открыто не более чем по одному элементу. Если , то коммутатор может обеспечить соединение каждого входа с не менее чем одним выходом; в противном случае коммутатор называется блокирующим, т.е. не обеспечивающим соединения любого входа с одним из выходов. Обычно применяются коммутаторы с равным числом входов и выходов ×.

Недостаток рассмотренной схемы — большое число коммутирующих элементов в квадратной матрице, равное . Для устранения этого недостатка применяют многоступенные коммутаторы. Например, схема трехступенного коммутатора 6×6 имеет вид, представленный на рис. 2.

Рис. 2. Схема трехступенного пространственного коммутатора

Достаточным условием отсутствия блокировок входов является равенство . Здесь — число блоков в промежуточном каскаде, = ; — число блоков во входном каскаде. В приведенной на рис. 2 схеме это условие не выполнено, поэтому блокировки возможны. Например, если требуется выполнить соединение a1-d1, но ранее скоммутированы соединения a2-b2-c4-d3, a3-b3-c1-d2, то для a1 доступны шины b1,с3 и с5, однако они не ведут к d1.

В многоступенных коммутаторах существенно уменьшено число переключательных элементов за счет некоторого увеличения задержки. Так, при замене одноступенного коммутатора 1000×1000 трехступенным с = 22 и = 43 число переключателей уменьшается с 10 6 до 2·46·22·43 + 43·46·46, т.е. примерно до 0,186*10 6 .

Различают коммутаторы второго уровня (канального уровня) и коммутаторы третьего уровня (сетевого уровня). Сети с мостами или с коммутаторами второго уровня подвержены так называемому широковещательному шторму , поскольку при широковещательной передаче пакеты направляются во все подсети, соединенные через коммутаторы. Если какой-либо узел неправомочно начинает генерировать пакеты с широковещательным адресом, сеть будет "забита" пакетами. Чтобы уменьшить отрицательное влияние такого шторма, сеть разбивают на группы подсетей, в пределах которых и осуществляется широковещательность. Коммутатор третьего уровня разделяет группы, направляя через себя пакет только, если он предназначен для подсети другой группы.

Основными характеристиками коммутаторов являются скорость фильтрации и скорость продвижения пакетов через коммутатор, пропускная способность, измеряемая количеством информации, переданной через порты коммутатора в единицу времени, и задержка кадра в коммутаторе.

Типичные значения задержки при фильтрации (пакет остается в данной подсети) в современных коммутаторах находятся в пределах 10...40 мкс, а задержки при продвижении пакетов (пакет передается через коммутатор в другую подсеть) — в пределах 50...200 мкс. Удаление кадра из буфера происходит, если кадр остается в данной подсети. В этом случае используются также параметр скорость фильтрации, измеряемая количеством пакетов (обычно минимальной длины), фильтруемых коммутатором в единицу времени. Если кадр передается в другую подсеть, то используют параметр скорость продвижения кадров.

Задержка в коммутаторе определяется затратами времени на буферизацию и обработку кадра, включающую просмотр адресной таблицы и либо удаление кадра из буфера, либо передачу кадра на другой порт с последующим ожиданием доступа к подсети выходного порта.

В кабельной системе ЛВС различают горизонтальную и вертикальную подсистемы. Горизонтальная подсистема обычно занимает один этаж здания и включает концентраторы и кроссовый шкаф, от которого разводка к розеткам на рабочих местах выполняется с помощью витой пары (коаксиальный кабель или ВОЛС используются редко). Для подсоединения витой пары к порту хаба или компьютера применяют разъем типа RJ-45.

Вертикальная подсистема состоит из центрального кроссового шкафа здания, соединяющего поэтажные кроссовые шкафы с помощью ВОЛС или толстого коаксиального кабеля.

Может быть, кто-то сочтет этот материал несвоевременным — действительно, в то время как «весь цивилизованный мир» переходит на Gigabit Ethernet, мы вдруг выпускаем материал, посвященный 100-мегабитовым сетям на витой паре. Однако не будем спешить с выводами. Цивилизованный мир — это, конечно, хорошо, однако если посмотреть на ЛВС в компьютеризованном офисе «среднестатистической» отечественной компании, то сразу понимаешь одно: «Ученье — свет, а неученых — …».

Каждому специалисту, ответственному за локальную сеть (или, в частном случае, за ее создание «с нуля»), неоднократно приходится отвечать на непростой вопрос: справляется (справится) ли она с возложенными на нее задачами? Будет ли соответствовать новым задачам, которые мы когда-нибудь захотим на нее возложить? Как застраховать себя от необходимости дорогостоящей модификации сети хотя бы на несколько лет? Каким образом обеспечить возможность ее модернизации «малой кровью»? Когда все работает как часы, труд сетевого администратора как надсмотрщика и регулировщика трафика между пользователями — необременителен и довольно прост. Но с появлением проблем именно он часто оказывается сидящим на горячих углях…

В этом материале мы попытались встать на позицию человека, имеющего представление о том, что такое «компьютерное железо», но в сетях разбирающегося, мягко говоря, поверхностно. Ведь далеко не каждый сетевой администратор начинает свою деятельность после окончания соответствующего факультета вуза, прохождения сертификационных курсов и последующей полугодичной стажировки под началом «старших товарищей, умных и чутких». У нас в стране, увы, до сих пор самая популярная IT-профессия — «компьютерщик»: «Да, у нас есть программист… Да, картриджи в принтере он тоже меняет… Да, ОС и ПО при необходимости установит. Что говорите? Не «программист»? Знаете, по правде сказать, я их всех так называю…». И когда количество находящихся в офисе компьютеров становится больше трех, именно перед такими «молодыми специалистами» (как кстати пришелся тут термин из советских времен!) дирекция компании зачастую ставит задачу: «Сделать сеть. Быстро. Дешево. И надежно!». И оказываются они в положении котенка, попавшего не то что в омут, а в самую середину водоворота… ЛВС: что же это такое?

Для начала полезно ознакомиться с «каноническим» определением. Итак, локальная вычислительная сеть — это распределенная система, построенная на базе локальной сети связи и предназначенная для обеспечения физической связности всех компонентов системы, расположенных на расстоянии, не превышающем максимальное для данной технологии. По сути, ЛВС реализует технологию комплексирования и коллективного использования вычислительных ресурсов. Главные преимущества таких распределенных систем состоят в следующем: высокая производительность обработки данных, повышенная модульность и расширяемость, надежность, живучесть, постоянная готовность и низкая стоимость. Также подобное определение нельзя считать полным без ориентации на простоту реконфигурации и минимизацию затрат на дальнейшую модернизацию.

«По верхам»

В реальности типичная «среднестатистическая малая ЛВС» состоит из трех условных классов устройств:

  • компьютеров с установленными в них сетевыми адаптерами;
  • «кабельного хозяйства», к которому мы отнесем собственно сетевые кабели, патчи, патч-панели и (опционально) шкафы или стойки;
  • активного сетевого оборудования, которое также может быть размещено в шкафах или стойках, в том числе в тех же, что и патч-панели (как правило, это коммутаторы и/или концентраторы).

Опять-таки, в самом простом случае все компьютеры в сети просто подключены к одному концентратору или коммутатору (напрямую или через патч-панель — нас пока не интересует). В более сложном случае несколько концентраторов или коммутаторов соединены между собой через разъем Uplink (так называемое «каскадирование»). В еще более сложном — несколько концентраторов (коммутаторов) образуют сегменты сети, «сводимые воедино» еще одним, выделенным коммутатором (а вот тут уже «или концентратором» можно не добавлять — грамотный сетевой администратор, как правило, в данном качестве их использовать избегает). На этом список самых простых и распространенных вариантов построения ЛВС мы пока что закончим.

К слову — специалистам-сетевикам кажется уместным напомнить, что в данном материале нам приходится идти на многие упрощения в связи с его ориентацией на самый широкий круг читателей. Конечно, следование канонам и четкость определений — это неплохо, но все же не хочется ставить потенциального начинающего сетевого администратора в положение героя Марка Твена, который как-то сказал: «До тех пор пока мне на уроке геометрии не объяснили, что круг — это совокупность точек, находящихся на одинаковом расстоянии от центра, — я хорошо знал, что такое круг!».

Сеть «на коленке»

На заре «сетевой эры» нередко при построении отечественных ЛВС допускались отклонения от стандартов на кабельные сети. Зачастую причиной тому была бедность (оптоволоконная кабельная система и оборудование хоть и существенно подешевели, но не сравнялись по стоимости с «медными» решениями), иногда небрежность, а в большинстве случаев — элементарная техническая неграмотность. И если с первой причиной (недостаток денег) все же иногда приходится мириться, то две следующие вполне возможно устранить, так как обусловлены они исключительно «человеческим фактором».

Впрочем, как ни странно, сети, построенные с нарушением стандартов, до поры до времени… работали! Однако только до поры. К примеру, пока не приходилось заменять какое-нибудь сетевое устройство (сетевой адаптер, концентратор и пр.). И вот тут, после замены, всю сеть вдруг начинало непредсказуемым образом «лихорадить»… При этом она могла работать нормально со всеми приложениями, кроме одного, и попытка администратора «прижать его к стене» стоила и времени, и, особенно, нервов. А виновато было не приложение и не сетевая карта, а вся сеть. Вернее — те, кто выбирал оборудование, монтировал кабель и сдавал систему в эксплуатацию, не задумываясь (или не подозревая?) о стандартах. Еще более серьезные проблемы возникали при попытках перевода построенной «с отклонениями» сети с Ethernet на Fast Ethernet. Ведь при высоких скоростях ЛВС становится намного требовательнее к качеству кабельной системы, и те допущения, которые «прощались» на 10 Mbps, часто повергают 100-мегабитовую сеть просто «в состояние ступора».

А если все же «по уму»?

Таким образом, прежде всего стоит раз и навсегда запомнить, что проектирование и инсталляция любой ЛВС подразумевают прежде всего четкое следование соответствующим стандартам и рекомендациям, что и обеспечивает ее нормальное функционирование не в «некоторых», а во всех предусмотренных этими стандартами случаях.

  • Современные проводные ЛВС реализуются на базе витых пар и оптоволоконных кабелей.
  • Топология определяет общую структуру взаимосвязей между элементами и характеризует сложность интерфейса.
  • Методы доступа к физической среде подразделяются на случайный и детерминированный и зависят от топологии сети.

Для начала — немного истории. Сложилось так, что для организации взаимодействия узлов в локальных сетях, построенных на базе классических технологий (Ethernet, Token Ring, FDDI), разработанных еще 15–20 лет назад, применяются разделяемые между группой компьютеров каналы связи (общая шина, кольцо), доступ к которым предоставляется по специальному алгоритму (как правило — метод случайного доступа или метод с передачей маркера доступа по кольцу), т. е. основанные на принципе использования разделяемых сред либо поддерживающие его.

Напротив, современные стандарты и технологии локальных сетей настаивают на частичном или полном отказе от использования разделяемой среды передачи данных и переходе на применение индивидуальных каналов связи компьютера с коммуникационными устройствами сети. То есть так же, как это делается в привычных нам телефонных сетях, где каждый телефонный аппарат соединен с коммутатором на АТС индивидуальной линией. Технологиями, ориентированными на применение индивидуальных линий связи, являются Fast- и Gigabit Ethernet, 100VG-AnyLAN, ATM и коммутирующие (switching) модификации уже упомянутых классических технологий. Заметим, что некоторые из них, например l00VG-AnyLAN, так и остались в сознании отечественных «сетестроителей» не более чем звучной экзотикой.

Fast Ethernet как развитие классической Ethernet

Основы наиболее популярной на данный момент технологии построения локальных вычислительных сетей — Ethernet — были разработаны специалистами Palo Alto Research Center (PARC) корпорации Xerox в середине 1970-х гг. К промышленной реализации ее спецификации были подготовлены членами консорциума DIX (DEC, Intel, Xerox) и приняты за основу при разработке стандарта IEEE 802.3 в 1980 г. Обратите внимание на даты! По сути, можно констатировать, что изменилось с тех времен не так уж и много…

10-мегабитовая Ethernet устраивала большинство пользователей на протяжении около 15 лет. Однако в начале 90-х г. стала ощущаться ее недостаточная пропускная способность, и следующим существенным шагом развития классической технологии Ethernet стала Fast Ethernet. В 1992 г. группа производителей сетевого оборудования, включая таких лидеров, как SynOptics, 3Com и ряд других, образовали объединение Fast Ethernet Alliance для разработки стандарта на новую технологию, которая бы подытожила и обобщила достижения отдельных компаний в области Ethernet-совместимого высокоскоростного стандарта. Одновременно были начаты работы в институте IEEE по стандартизации новой технологии. Переломав кучу копий, в мае 1995 г. комитет IEEE принял спецификацию Fast Ethernet в качестве стандарта 802.3u (добавив в базовый документ 802.3 главы с 21 по 30). Это и сыграло решающую роль в дальнейшей судьбе технологии, так как обеспечивало преемственность и согласованность сетей 10Base-T и 100Base-T.

От 10- к 100Base-T
Отличия на физическом и канальном уровне стека протоколов модели OSI

Из рисунка (в терминах и категориях семиуровневой модели OSI) видно, что отличия Fast Ethernet от Ethernet сосредоточены на физическом уровне. Стандарт 100Base-T (802.3u) установил три различные спецификации для физического уровня для поддержки следующих типов кабельных систем:

  • 100Base-TX для двухпарного кабеля на неэкранированной витой паре UTP Cat. 5 или экранированной витой паре STP Type 1;
  • 100Base-T4 для четырехпарного кабеля на неэкранированной витой паре UTP Cat. 3, 4 или 5;
  • 100Base-FX для многомодового оптоволоконного кабеля.

Физические интерфейсы стандарта Fast Ethernet IEEE 802.3u и их основные характеристики

* ОмВ — одномодовое оптоволокно, МмВ — многомодовое оптоволокно.

** Расстояние может быть достигнуто только при дуплексном режиме связи.

*** В нашей стране распространения не получил ввиду принципиальной невозможности поддержки дуплексного режима передачи.

Полнодуплексный режим

Новым в этом стандарте (для узлов сети, поддерживающих спецификации FX и TX) также стала рекомендация относительно обеспечения возможности полнодуплексной работы (full-duplex mode) при соединении сетевого адаптера с коммутатором или же при непосредственном соединении коммутаторов между собой. Специфика работы заключается в том, что каждый узел одновременно передает и принимает кадры данных по каналам Tx и Rx. Скорость обмена до 200 Mbps. На сегодня многие производители декларируют выпуск как сетевых адаптеров, так и коммутаторов с поддержкой этого режима. Однако, увы — из-за разного понимания механизмов его реализации, в частности способов управления потоком кадров, эти продукты не всегда корректно работают друг с другом. Кстати, для тех, кто привык читать статьи «по диагонали»: обратите внимание на то, при каком способе соединения каких устройств между собой становится возможной работа сетевых карт в полнодуплексном режиме. Подсказка: концентраторы (хабы) — в этом списке отсутствуют. И не зря.

Концентраторы и коммутаторы

Наиболее «близкая» нам сеть Fast Ethernet, построенная на основе концентратора (на жаргоне сетевиков — «хаб», от английского hub) и объединяющая несколько десятков пользователей, часто оказывается «недееспособной» в том смысле, что скорость передачи данных в ней будет неприемлемо низкой, а некоторым клиентам может быть вообще отказано в доступе к сетевым ресурсам. Это происходит вследствие роста числа коллизий (см. глоссарий) и увеличения времени ожидания доступа. Ведь концентратор — это обычный усилитель (приемопередатчик-повторитель) электрического сигнала, иногда даже производители по старинке маркируют его как «(Fast) Ethernet repeater». Получив сетевой пакет от одного порта (т. е. от компьютера, который подключен к данному порту), он транслирует его на все остальные порты одновременно (принцип можно грубо определить как «я передал всем, значит, до того, кому надо, тоже дойдет»).

Коммутатор (он же в простонародии «свитч», от англ. switch) — более интеллектуальное устройство: он имеет свой процессор, внутреннюю высокопроизводительную шину и буферную память. Если концентратор просто передает пакеты от одного порта ко всем остальным, то коммутатор выполняет целенаправленную пересылку пакетов между двумя портами на основе MAC-адреса получателя. Это позволяет увеличить производительность сети, так как сводит к минимуму возможность возникновения коллизий, позволяет обслуживать пересылку пакетов между несколькими портами одновременно и т. д.

Заметив, что в последнее время стоимость коммутаторов для сетей Fast Ethernet постепенно приближается к стоимости концентраторов времен начала прошлого года, кратко подытожим преимущества сетей, построенных с их использованием:

  • Увеличивается производительность сети путем ее деления на адресно (логически) связанные между собой сегменты.
  • Исключается возможность перехвата паролей и прочей передаваемой/принимаемой информации третьей стороной (напомним, что в случае использования концентратора любой пакет транслируется на все подключенные к нему компьютеры).

Если и можно назвать какую-либо (кроме консервативности владельца сети) причину, ограничивающую широкое распространение коммутаторов, то это все же их более высокая стоимость, чем у хабов. Хотя справедливости ради стоит заметить, что скоро у нас, похоже, не будет выбора: все большее количество производителей сетевого оборудования просто-напросто отказываются от концентраторов, предпочитая выпускать новые, более дешевые модели коммутаторов или снижать цены на уже производимые.

Gigabit в конце туннеля?

Конечно, на дворе 2002 год, и даже в нашей стране все больше корпоративных заказчиков уже серьезно присматриваются к Gigabit Ethernet в качестве базового стандарта для своих сетей. Но все-таки в плане массовости именно технология Fast Ethernet (предмет нашего сегодняшнего внимания) продолжает удерживать лидирующие позиции. Более того, отечественные эксперты пророчат долгую жизнь даже «стареньким» сетям Ethernet (10 Mbps), прогнозируя постепенную их модернизацию до 100 Mbps «старшего брата», скоростными возможностями которого типичная офисная сеть будет вполне удовлетворена, наверное, еще не один год. Разумеется, если не планируется проведение телеконференций с десятками участников. Однако по этому поводу у нас в процессе подготовки материала даже родилась одна техническая «шуточка»: стоимость оборудования, которое позволит загрузить сеть на основе Gigabit Ethernet работой, зачастую даже превышает стоимость развертывания этой самой сети. Кроме того, стоит заметить, что проектирование, инсталляция и развертывание сети Gigabit Ethernet — это вряд ли именно то, с чего нужно начинать «практические опыты обустройства ЛВС».

Из истории Ethernet (для интересующихся)

Мало кто знает, что появление Ethernet неразрывно связано с такими краеугольными камнями современной компьютерной индустрии, как Fabless и Core Logic. Эти два понятия трудно перевести на русский, сохранив лаконизм английского языка.

В те времена, когда существовало заблуждение, что дизайн контроллеров (по сути — Core Logic) — удел полупроводниковой индустрии, не без помощи героя нашего рассказа — Гордона Кемпбелла (Gordon A. Campbell) — материализовалась идея самостоятельной разработки, размещенной на мощностях сторонних производителей. С тех пор «безлошадность» (читай — Fabless) в компьютерном мире не считается грехом, а почитается достоянием острого ума.

Для взаимного понимания разработчиков и производителей с благословения Гордона Кемпбелла возник и развился язык описания внутренней структуры чипа — VHDL (Very High Definition Language). Да и само понятие чипа по праву занимает почетное место в чуть ли не бесконечном списке гениальных инициатив мистера Кемпбелла.

Кроме вышеперечисленных, заслуги Гордона Кемпбелла в кратком изложении выглядят так:

  • идея перепрограммируемых контроллеров, таких, как EEPROM;
  • идея и реализация PC-on-chip;
  • организационные работы по становлению Palm Corp.;
  • разработка первого IBM-совместимого видеоконтроллера;
  • основополагающие работы в области 3D-графики;
  • участие в основании компании 3Dfx Interactive.

Настало время назвать компанию, «причастную» к успехам Мистера Кемпбелла — им, к слову, и организованную: Chips & Technologies Inc. В тесном сотрудничестве с Novell более десяти лет назад родился продукт, надолго определивший структуру современных сетевых технологий, — Novell Eagle. Сегодня аббревиатура NE2000 известна всем, кто связан с сетевыми технологиями.

Novell разрабатывала программную модель драйверной поддержки Ethernet, а Chips & Technologies взялась за программирование полупроводниковой логики. Производство было поручено National Semiconductor. Так появился чипсет, состоящий из трех составляющих:

  • DP8990 (Network Interface Controller, NIC) — интерфейс для подключения к локальной шине персонального компьютера;
  • DP8991 (Serial Network Interface, SNI) — сериализация данных с использованием манчестерского кодирования и механизм обслуживания коллизий;
  • DP8992 (Coaxial Transceiver Interface, CTI) — прием и передача данных по коаксиальному кабелю.

Интересный факт: вездесущий Кемпбелл для производства комплектующих Ethernet, в том числе и контроллеров 8992, основал собственную компанию SEEQ Technology.

Позже технология Chipernet (так предварительно именовалась Ethernet) была дополнена возможностями передачи данных по неэкранированной витой паре проводников — UTP (Unshielded Twisted Pair). Важно подчеркнуть, что Ethernet задумывалась как недорогая и эффективная альтернатива в ряду прочих сетевых решений. Поэтому совершенно логично выглядит и расширение возможностей с помощью витой пары.

Одним из лидеров по производству недорогих сетевых контроллеров, использующих Ethernet, стала «Западная Цифровая корпорация», более известная как Western Digital. Это происходило в то время, когда жесткие диски еще не стали «коронным номером» WDC (впоследствии из-за смены интересов разработка сетевых технологий была продана компании SMC). С тех пор знаменитая троица — SMC, 3Com, Intel — правит миром давно уже не NE2000-совместимых сетевых адаптеров.

В мире совместимых с NE2000 устройств акценты расставили три другие компании — Realtek (60% рынка всех сетевых контроллеров), VIA Tehnologies, Winbond Electronics. Последний больше знаком потребителям по торговой марке Compex. Практика

Три источника, три составные части…

По темпам совершенствования своих характеристик, например, увеличению верхней граничной частоты тракта передачи и пропускной способности, кабельные системы практически не уступают современным процессорам с их растущими тактовыми частотами. Уже один этот факт дает основание утверждать, что данное направление относится к числу наиболее динамично развивающихся на рынке информационных технологий. Как и в любой другой области с высокими темпами развития, на этом рынке существуют свои проблемы технического, организационного и маркетингового плана, а в процессе классификации элементов структурированной кабельной системы (СКС), в которую «вписывается» современная компьютерная сеть, сталкиваются различные, часто непримиримые подходы и школы.

Но на сколько бы основных групп и классов «отцы сетестроения» не делили бы компоненты современной сети, для распространения сигналов в ней, помимо устройств доступа, отвечающих за физический интерфейс, требуются как минимум еще две немаловажные детали, участвующие в образовании физической среды передачи, — кабели (мы сознательно ограничимся рассмотрением подсистемы рабочего места и горизонтальной подсистемы «на меди») и разъемы для их соединения. Эти компоненты современной СКС многократно описаны, но необходимость небольшого «попурри» на эту тему обусловлена тем фактом, что, например, невзирая на общее снижение цен на достаточно качественные медные кабели Cat.5e, пользователям зачастую навязывается широкий ассортимент откровенно «базарной» продукции (пригодной разве что для создания домашней сетевой структуры). В более серьезном случае это становится одним из источников постоянной головной боли обслуживающего персонала сетей, которому в большинстве своем приходится обходиться (увы!) без дорогостоящих профессиональных сетевых анализаторов, позволяющих определить почти все неполадки в сети одним нажатием кнопки.

Для применения в качестве базового UTP определен одножильный 4-парный кабель с диаметром проводника 0,51 мм (24 AWG). По другим канонам допускается также использование одножильного кабеля с диаметром проводника 0,64 мм (22 AWG). Для многожильного патч-корда (UTP, те же 100 Ом) актуальна задача обеспечения длительного срока службы, несмотря на частые неминуемые изгибы в процессе эксплуатации. Тут же отметим, что несмотря на определенную «лояльность» стандартов в отношении многожильных кабелей для кроссовых шнуров и подключающих (пользовательских) кабелей (для них стандарт допускает на 20--50% большее затухание в зависимости от того, какому стандарту следуют — американскому или международному), во всем остальном они должны отвечать минимальным требованиям к рабочим характеристикам кабеля горизонтальной системы.

Должна присутствовать маркировка рабочих характеристик для обозначения соответствующей категории. Эти метки не должны заменять собой метки класса безопасности. В качестве примера приведем маркировку, нанесенную на кабель нашей тестовой системы.

Маркировка кабеля

* NVP (Nominal Velocity of Propagation) — номинальная скорость распространения — коэффициент укорочения волны в кабеле. Он показывает, во сколько раз скорость распространения сигнала по витым парам меньше скорости света в вакууме.

О цветовом кодировании и правильности терминирования

При таком порядке подключения пар, указано в таблице, обеспечиваются гарантированные производителем величина и знак распределения задержек распространения сигнала.

Варианты обжима разъемов RJ-45



Стандарты терминирования соединителей
Варианты «A» и «B»

Последнее объясняется просто — с целью уменьшения перекрестных наводок между парами и исключения возможных резонансных явлений при неполном согласовании с нагрузкой неиспользуемых пар (а в некоторых сетевых адаптерах мы обнаружили в гнезде только четыре контакта вместо восьми) проводники свиваются попарно с разным шагом (количеством скруток на единицу длины). По этой же причине желательно также учитывать, что соединение между гнездом и штекером коннектора осуществляется через восемь близко расположенных параллельных контактов, что обусловливает емкостную связь между ними. Степень этого влияния также зависит от способа подключения контактов к соответствующим парам кабеля (см. рисунок). В варианте 568 А пара 2 разъединена парой 1, в последовательности 568 В — пара 3 парой 1.

Стандарт RJ45 (можно встретить название соединителя 8Р8С) пришел в мир компьютерных сетей из телефонии. Он предусматривает несимметричное разъемное соединение. Модульные соединители семейства RJ выпускаются в двух вариантах, ориентированных на кабели с различным типом жилы. Забегая немного вперед, укажем на то, что у гибких коммутационных шнуров (плоских модульных двух-, четырех-, шести- или восьмижильных Cat.3 и четырех витых пар Сат.5) жила состоит из нескольких проволок. Поэтому для изготовления таких кабелей необходимо использовать соединитель с контактом, врезающимся в тело жилы. У монтажного кабеля жила выполнена из монолитного медного проводника, поэтому для монтажа этих кабелей используются соединители с разрезным контактом. Соответственно, если соединитель не предназначен для данного типа кабеля, то и добиться качественного контакта не удастся.

Существует несколько вариантов взаимного расположения проводников относительно контактов коннектора. Для подсоединения всех четырех пар проводников (напомним, что Fast Ethernet использует для работы две пары, четыре вам понадобятся при переходе на гигабитовую сеть) распространены TIA-T568A, TIA-T568B (см. таблицу).

Подключение пар к контактам с несоблюдением стандартов может привести к так называемому разделению пар, т. е. к ситуации, когда соединитель подключается таким образом, что пара состоит из проводов от двух разных скрученных пар. Такая конфигурация иногда позволяет сетевым устройствам обмениваться данными, но часто становится источником трудно диагностируемой проблемы — она подвержена не только избыточным переходным помехам, но и менее устойчива к внешним, в том числе периодически появляющимся в силу специфики расположения кабеля. Результат — ошибки при передаче данных. Такие разделенные пары позволяют выявить кабельные тестеры.

В общем, если опустить ранее сделанные замечания, допускается использовать оба указанных варианта. Однако приведем цитату для тех, кто пытается воспринимать таблицу вариантов как рекомендацию для изготовления crossover-кабелей: «…при условии, что оба конца терминированы по одному и тому же варианту разводки».


Коммутационные шнуры: «прямой» и Crossover

Основные правила прокладки кабеля

Некоторые правила монтажа кабельных UTP-систем, в справедливости которых мы убедились на собственном опыте.

  • Во избежание растяжения сила натяжения для 4-парных кабелей не должна превышать 110 Н (усилие примерно в 12 кг). Как правило, усилие свыше 250 Н приводит к необратимым изменениям параметров UTP-кабеля.
  • Радиусы изгиба установленных кабелей не должны быть менее четырех (некоторые производители настаивают на восьми) диаметров для кабелей UTP горизонтальной системы. Допустимый изгиб в ходе монтажа не менее 3--4 диаметров.
  • Следует избегать излишней нагрузки на кабели, обычно вызываемой их перекручиванием (образование «барашков») во время протяжки или монтажа, чрезмерным натяжением на подвесных участках трасс, туго затянутыми узкими кабельными хомутами (или «пристреленными» скобами).
  • Кабели горизонтальной системы должны использоваться в сочетании с коммутационным оборудованием и патч-кордами (или перемычками) той же или более высокой категории рабочих характеристик.
  • И, пожалуй, главное, о чем следует помнить на протяжении всех инсталляционных работ, — качество собранной кабельной системы в целом определяется по компоненту линии с наихудшими рабочими характеристиками.

Распределительные панели и абонентские розетки

Патч-панель служит для удобной и быстрой коммутации между собой различных портов и оборудования. С ее помощью можно моментально отконфигурировать рабочие порты для передачи данных, звука и видео. Горизонтальные кабели проходят от розеток на рабочих местах к патч-панелям коммутационного узла, где они представлены как порты пользователей. Соответствующие порты пользователей затем могут быть коммутированы с портами LAN, видеопортами и портами телефонной станции. Однако в условиях малой сети патч-панель приобретает совершенно другой смысл, служа в основном даже не столько средством упорядочивания сетевого хозяйства и быстрой реконфигурации, сколько способом избавить себя от дополнительных проблем при последующей модернизации сети и ее расширении. Понятно, что если, к примеру, купленный изначально концентратор рассчитан на 8 портов, а компьютеров в офисе стало 12 — то это «морока». Как минимум придется покупать еще один концентратор и каскадировать их, как максимум — приобретать коммутатор на 16 или даже 24 порта. Однако если изначально для коммутации была использована достаточно «вместительная» патч-панель (на те же 16 или 24 порта) — то удастся избежать мороки гораздо большей — перекраивания кабельного хозяйства. Патч-панели различаются между собой количеством портов, стандартами, способом коммутации. По количеству портов наиболее распространены 12-, 24- и 48-портовые. Обычно они имеют монтажную ширину 19" (формфактор большинства стандартных шкафов), в них предусматривается место для маркировки каналов.

Следующий и наиболее часто видимый с точки зрения клиента элемент кабельной системы — абонентская розетка. Конструкция модуля минимизирует действия монтажника при подключении к кабелю, позволяет сохранить необходимый радиус изгиба кабеля, не требует применения каких-либо инструментов при размещении модуля в коробке. Контакты розетки могут быть дополнительно прикрыты специальной шторкой, предотвращающей попадание внутрь пыли.

Монтажные шкафы предназначены для размещения в них коммутационного и активного оборудования. Шкафы могут комплектоваться системой охлаждения и вентиляции, стеклянными и металлическими дверями, подвижным плинтусом на четырех колесах с тормозами, замками на двери. Вдоль боковых стенок шкафов обычно имеется достаточно места для укладки пучков проводов и вентиляции. Впрочем, для малых сетей монтажный шкаф все-таки является скорее элементом шика, чем реальной необходимостью. Хотя если есть деньги и желание «сделать красиво»…

Какой инструмент может понадобиться

Для работы с кабелем UTP-типа создана целая гамма достаточно удобного комбинированного инструмента, выполняющего резку кабеля, нормированную кольцевую подрезку для снятия верхней изоляции и зачистку отдельных жил (если это требуется для данного типа оборудования, ведь современные способы монтажа, основанные на технологии врезного контакта, не требуют зачистки).

Не затрагивая специализированный инструмент и оснастку, рекомендуемые для терминирования жил кабеля на коммутационные и распределительные панели (с ними можно познакомиться на сайтах их производителей), мы решили остановиться на инструменте, предназначенном для «повседневных» работ, — обжима вилки на кабеле RJ-45. Его многочисленные варианты различаются как по диапазону выполняемых функций и типов обжимаемых разъемов, так и (достаточно существенно) по срокам службы и цене.

Для мелкого ремонта можно попытаться использовать экономичный пластмассовый инструмент. Однако он пригоден лишь для минимального объема эпизодически выполняемых монтажных работ, и, как показывает практика, для модернизации сети объемом в сотню портов его ресурса может хватить не более чем на полгода-год.

Металлический профессиональный инструмент обеспечивает движение пуансонов строго перпендикулярно к поверхности разъема, что благоприятно сказывается на качестве работы. Как правило, такие инструменты имеют многошарнирный механизм с «трещоткой» для снижения и нормирования прикладываемого к рукояткам усилия. В состав универсальных комплектов, позволяющих обжимать различные типы соединителей, могут входить сменные и дополнительные, расширяющие функциональность матрицы и пуансоны.

Промежуточную по качеству и параметрам позицию занимают простые одношарнирные металлические приспособления, достаточно широко представленные на отечественном рынке. Они имеют упрощенную механическую схему и ограниченный (но все же в 3--10 раз больший, чем у пластмассового) срок службы по причине быстрого износа пуансона. Универсальность подобных инструментов обеспечивается не сменными комплектами, а наличием нескольких поверхностей на их рабочих органах (2 в 1 и 3 в 1).

К слову о тестировании и мониторинге…

Мы не сомневаемся, что в элементарной одноранговой сети из пяти машин вряд ли возникнет задача ежедневного углубленного статистического анализа и еженедельного превентивного тестирования. Однако проводимый в ходе работы над статьей неформальный блиц-опрос в отношении мониторинга, диагностики и тестирования участников разделил владельцев и администраторов сетей на несколько групп, позволив нам сформулировать две крайние точки зрения отнюдь не технического и не финансового плана:

  1. Интерес к проведению анализа и аудита сети прямо пропорционален количеству обслуживаемых рабочих станций и вне зависимости от топологии и выполняемых задач асимптотически приближается к нулю (вплоть до полного безразличия), если число клиентов не превышает 15--20. В этом случае чаще всего основными применяемыми на протяжении всей жизни сети «инструментами» являются примитивный кабельный тестер и виртуозное владение утилитами типа ping и tracert. Правда, некоторые респонденты этой группы признают необходимость измерения количественных показателей кабельной системы на момент сдачи в эксплуатацию.
  2. Другая крайность — когда большая и богатая компания идет на покупку дорогостоящих средств управления, диагностирования и тестирования сети, но в своей работе ее сетевые администраторы их практически не используют либо используют некоторые наиболее простые из заложенных в них возможностей по причине того, что у них либо «нет времени», либо «у нас и так все работает», и вообще они не понимают, «зачем им это надо», либо на их аппаратной платформе или в существующей конфигурации данные инструменты периодически «виснут», «не все показывают» или «врут». Не хотелось, но придется добавить — зачастую такая ситуация оказывается обусловленной тем, что возможности имеющихся инструментов… просто-напросто превосходят квалификацию тех, кто ими пользуется.

При этом часто понятия диагностики и тестирования сети отождествляются, что на самом деле в корне неверно. Но под диагностикой принято понимать измерение характеристик и мониторинг показателей работы сети в процессе ее эксплуатации, без остановки работы пользователей. Диагностикой сети является, в частности, измерение числа ошибок передачи данных, степени загрузки (утилизации) ее ресурсов или времени реакции прикладного ПО. То есть та работа, которую, на наш взгляд, администратор сети должен выполнять ежедневно.

Тестирование — это процесс активного воздействия на сеть с целью проверки ее работоспособности и определения потенциальных возможностей по передаче сетевого трафика. Как правило, оно проводится с целью проверить состояние кабельной системы (соответствие качества требованиям стандартов), выяснить максимальную пропускную способность или оценить время реакции прикладного ПО при изменении параметров настройки сетевого оборудования или физической сетевой конфигурации. Такие измерения обычно рекомендуется делать, отключив либо заменив работающих в сети пользователей на агентов теста, что, как правило, в реальной жизни приводит к довольно продолжительному блокированию «нормальной работы офиса». К тому же продолжительность процедуры зависит от того, производятся при этом первичные измерения и анализ параметров или сравнение некоторых требуемых параметров с первичными результатами эталонных (паспортных, сертификационных) тестов. Однако в любом случае чаще всего это приводит к тому, что как сама процедура, так и ее исполнители становятся «малопопулярными» и среди рядовых работников, и среди руководящего звена.

Хоть это и выходит за технические рамки, хочется также отметить, что проведение диагностики или тестирования сети часто напрямую зависит от… степени опытности сетевого администратора. «Молодые и зеленые», как правило, диагностируют и тестируют сеть часто и с удовольствием — ибо при этом не столько исправляют или предотвращают проблемы, сколько занимаются самообучением. Впоследствии, когда все эти «игры» (как и любые другие) приедаются, приступить к процессу диагностирования администратора сети могут заставить только действительно серьезные неполадки в ее работе. Ну и, наконец, с появлением по-настоящему серьезного опыта сетевой администратор опять «возвращается» к диагностике и тестированию, но уже не столько в силу юношеского задора и любопытства, сколько в силу понимания необходимости время от времени проводить эту процедуру в качестве профилактики.

Глоссарий

Сетевой адаптер (сетевая карта) — карта расширения, устанавливаемая в рабочую станцию, сервер или другое устройство сети, позволяющая обмениваться данными в сетевой среде. Операционная система через соответствующий драйвер управляет работой сетевого адаптера. Объем задействованных при этом ресурсов адаптера и центрального процессора системы может изменяться от реализации к реализации. На сетевых картах обычно имеется микросхема (либо гнездо для ее установки) «перешиваемой» памяти для удаленной загрузки (Remote Boot), которая может быть использована для создания бездисковых станций.

Коллизия (collision) — искажение передаваемых данных в сети Ethernet, которое появляется при попытке одновременной передачи несколькими сетевыми устройствами. Коллизии — обычные ситуации, возникающие в процессе нормальной работы сетей Ethernet или Fast Ethernet, но неожиданный рост их числа может свидетельствовать о появлении проблем с каким-либо сетевым устройством, особенно когда это не связано с увеличением трафика сети в целом. В общем случае вероятность столкновения пакетов увеличивается при добавлении в домен новых устройств и удлинении сегментов (увеличении физических размеров сети).

Коллизионный домен (конкурирующий домен) — совокупность устройств, соперничающих между собой за право доступа к среде передачи. Задержка распространения сигнала между любыми двумя станциями, которые принадлежат данной области, не должна превышать установленного значения (часто называемого диаметром коллизионного домена и выражаемого в единицах времени). При подключении устройства к коммутатору число коллизионных устройств в домене, соответственно, всегда сокращается до двух.

Горизонтальный кабель предназначен для использования в горизонтальной подсистеме на участке от коммутационного оборудования (например, в кроссовой этажа) до информационных розеток (на рабочих местах).

Кабель для коммутационных (кроссовых) и оконечных (пользовательских) шнуров обычно также состоит из четырех витых пар и по конструкции очень похож на «обычный» UTP-кабель, используемый в горизонтальной подсистеме. Основные отличия между ними заключаются в том, что для придания устойчивости к многократным изгибам и продления срока эксплуатации проводники выполняются многожильными, а изоляция может иметь несколько бoльшую по сравнению с горизонтальным кабелем толщину (около 0,25 мм). Внешняя изоляционная оболочка изготавливается из материала с повышенной гибкостью. На нее должны наноситься такие же маркирующие и идентифицирующие надписи и метки длины.

Утилизация канала связи сети (network utilization) — процент времени, в течение которого канал связи передает сигналы, или иначе — доля пропускной способности канала связи, занимаемой кадрами, коллизиями и помехами. Параметр «Утилизация канала связи» характеризует степень загруженности сети и эффективность использования ее потенциальных возможностей.

Коммутатор (Switch) — многопортовое устройство канального уровня, устанавливающее на время пересылки пакета адресное соединение между отправителем и получателем на основании построенной и сохраненной в нем коммутационной таблицы MAC-адресов. Проще говоря, коммутатор эмулирует соединение принимающего и передающего устройств между собой «напрямую». Однако не следует забывать, что некоторые (чаще всего — примитивные неуправляемые) коммутаторы при перегрузке в сети, т. е. когда проходящий через них трафик превышает их возможности, могут фактически на время «превращаться» в концентраторы.

Автосогласование (Auto Negotiation) — процесс, инициируемый сетевыми устройствами, имеющий целью автоматически настроить соединение для достижения максимальной в данной среде общей скорости. Приоритеты следующие: 100Base-ТХ — полнодуплексная, 100Base-ТХ — полудуплексная, 10Base-T — полнодуплексная и 10Base-T — полудуплексная. Автосогласование определяется стандартом IEEE 802.3 для Ethernet и выполняется за несколько миллисекунд.

Полудуплекс (Half Duplex) — режим, при котором связь осуществляется в двух направлениях, но в каждый момент времени данные могут передаваться лишь в одном из них. В сети (сегменте) на базе концентраторов все устройства могут работать только в полудуплексном режиме, в отличие от сети на базе коммутаторов, которые могут осуществлять передачу как в полнодуплексном, так и в полудуплексном режиме.

Полный дуплекс (Full Duplex) — двунаправленная передача данных. Способность устройства или линии связи передавать данные одновременно в обоих направлениях по одному каналу, потенциально удваивая пропускную способность.

Скорость физического соединения (Wire Speed) — для Ethernet и Fast Ethernet эта величина обычно приводится как максимальное количество пакетов, которое может быть передано через данное соединение. Скорость физического соединения в сетях Ethernet составляет 14 880, а в сетях Fast Ethernet — 148 809 пакетов в секунду.

MAC-адрес (MAC address — Media Access Control address) — уникальный серийный номер, назначаемый каждому сетевому устройству для идентификации его в сети и управления доступом к среде. Для сетевых устройств адреса устанавливаются во время изготовления (специфицируются IEEE), хотя обычно могут быть изменены с помощью соответствующей программы. Именно благодаря тому, что каждая сетевая карта имеет уникальный MAC-адрес, она может эксклюзивно забирать предназначенные ей пакеты из сети. Если MAC-адрес не является уникальным, то не существует способа провести различие между двумя станциями. MAC-адреса имеют длину 6 байт и обычно записываются шестнадцатеричным числом, первые три байта адреса определяют производителя.

Тестирование

Тестовый стенд

Поскольку такое крупномасштабное тестирование сетевого оборудования для нашей лаборатории внове (да и, к слову, в других компьютерных масс-медиа эта тема затрагивается, прямо скажем, чрезвычайно редко), мы пошли, если так можно выразиться, «по пути наименьшего сопротивления», переложив максимум работы на плечи хорошо себя зарекомендовавших отечественных поставщиков готовых решений и системных интеграторов. Так, гипотетические «офисные компьютеры» в нашей «референсной ЛВС» представляют собой серийные модели ПК Bravo от компании K-Trade, сервер является действительно сервером, специально подобранным путем проведения консультаций с сотрудниками киевского офиса Intel и системного интегратора — компании Ulys Systems, а кабельное хозяйство (коммутационные шнуры с обжатыми разъемами, патч-корды, патч-панель и пр.) было предоставлено в готовом для развертывания виде компанией ProNet.

Для тестирования использовались ПК Bravo с процессором AMD Duron 1100 MHz, 256 MB PC133 SDRAM, материнской платой AOpen AK73A (VIA Apollo KT133A), 40 GB HDD (Maxtor D540X), видеокартой PowerColor GeForce2 MX400 (32 MB) и ОС Windows 2000 Pro (SP3).

Сервером выступала система Dell PowerEdge 2500 (процессор Pentium III 1.26 GHz c возможностью установки второго CPU; чипсет ServerWorks HE-SL; 512 MB PC133 ECC SDRAM; контроллер Adaptec AIC-7899 Dual channel Ultra3 (Ultra160)/LVD SCSI; двухканальный SCSI RAID-контроллер с кэш-буфером 128 MB; три SCSI-винчестера (10000 об/мин), объединенных в массив RAID 5; интегрированный Ethernet-контроллер Intel PRO/100+ Server; интегрированная видеоподсистема на базе ATI-Rage XL 8 MB SDRAM; OC Windows 2000 Server). Подобная конфигурация сервера позволила нам уйти от главной проблемы — влияния быстродействия наиболее «нагруженной» дисковой подсистемы на результаты тестирования (ведь в процессе проведения многих тестов все четыре ПК работали с сервером одновременно). Наличие же достаточно высокопроизводительного процессора и сравнительно большого объема памяти на ПК подстраховывали от влияния нежелательных побочных факторов со стороны «рабочих станций». Управление сервером и ПК осуществлялось с единой консоли оператора, функционирующей через KVM-switch Raritan (предоставленный фирмой «Юстар»).


А вот так все это выглядело в собранном виде

Для проведения тестов сетевых адаптеров был собран стенд, позволяющий имитировать работу устройств в пределах одного коллизионного домена. Он построен с использованием оборудования для структурированных кабельных систем фирмы Molex Premise Networks уровня горизонтальной подсистемы ЛВС и включает в себя четыре фрагмента кабеля Molex PN PowerCat.5E UTP длиной 2 × 15 м и 2 × 75 м, подсоединенных к врезным контактам 24-портовой патч-панели Molex Cat.5E.


Схема стенда

Кабели жгутовались и без коробов подвешивались на крюки в стене. Как уже говорилось, в электропроводных системах приходится учитывать не только затухание, но и наводки. В нашем случае, благодаря тому что кабельные фрагменты при их монтаже оказались сложенными вдвое, наводимые низкочастотные помехи от люминесцентных ламп, пролегающих в непосредственной близости от силовых, сигнальных кабелей и т. п., как мы и предполагали, уменьшились (синфазность воздействующей на жгут кабелей помехи).

В процессе создания сегмента было принято решение отказаться от стандартных абонентских розеток. Для имитации их влияния мы раcкроссировали на патч-панели короткие (и, по причинам, уже объясненным выше, крайне «вредные») отрезки того же кабеля длиной 8--10 см.

Таким образом, вместо требуемой для полноты эксперимента одной пары разъемных контактов мы получили возможность подсоединить еще две, включив их в разрыв цепи от концентратора до машины дополнительным коммутационным шнуром. В Тестовой лаборатории обычно не принято доверять даже известным брэндам без соответствующего инструментального подтверждения, поэтому сразу после инсталляции была не только проверена правильность подключения и распределения кабельных жил, но и измерены количественные параметры каждого из отрезков с помощью портативного анализатора OMNIScanner II от Fluke Network.


Fluke OMNIScanner II собственной персоной


Показатели 75-метрового сегмента


Показатели 15-метровых сегментов


Показатели короткого «гнутого» отрезка

Методика

Так как на всех четырех ПК поочередно устанавливались одинаковые сетевые карты, нас, естественно, интересовало создание по возможности разных условий для их функционирования. В конечном итоге мы остановились на той конфигурации, которую можно видеть на схеме стенда — два «длинных» сегмента по 75 и 90 метров, одно «идеальное подключение» (коммуникационный кабель от компьютера напрямую включен в концентратор) и одно короткое «неудобное» соединение через небольшой отрезок перегнутого кабеля. Забегая вперед, отметим, что наши предположения во многом подтвердились — некоторые модели сетевых карт действительно вели себя по-разному в зависимости от длины сегмента, на которой им приходилось работать. Сервер был «отнесен» от концентратора на 15 метров, что вполне соответствует максимальному из реально встречающихся вариантов (в рамках разумного).

Быть может, некоторые удивятся тому, что мы выбрали в качестве устройства, объединяющего абонентов сети, именно концентратор, а не коммутатор. Ответ довольно прост: дело в том, что для создания нагрузки собственно на предмет тестов, т. е. на сетевые карты, коммутатор в сети из четырех клиентов и одного сервера просто-напросто непригоден. Фактически мы специально усложнили задачу, увеличив количество коллизий в сети до того максимального уровня, который вообще реально было получить, с целью выявить слабые места в работе сетевых контроллеров. В случае же использования коммутатора все тесты фактически превратились бы… в исследование производительности его самого. Несколько слов о концентраторе. Как ни странно, мы остановили свой выбор на довольно простой и дешевой модели LG, сделанной на базе чипов Realtek. Произошло это по двум причинам: во-первых, компании уровня Intel, 3Com или Cisco сейчас практически отказались от выпуска концентраторов, а во-вторых, проведенные в рабочем порядке тесты с использованием других моделей (3Com Office Connect и CompuShack 5DT Desktop) показали, что никакого влияния на результаты тестов замена именно этого устройства в нашем случае не оказывала.

Тесты включали в себя исследование производительности с помощью популярного (насколько вообще можно говорить о популярности подобного ПО) пакета eTestingLabs NetBench 7.02 (модифицированный скрипт NIC_nb702, в котором были оставлены размеры пакетов 512, 4K, 16K и 64K), измерения загрузки CPU штатной утилитой Windows 2000 Performance Monitor во время копирования файла объемом 512 MB с одного из клиентов на сервер, а также измерения скорости «встречного» копирования двух файлов объемом 1 GB между двумя клиентами, соединенными crossover-кабелем (проверка корректности и результативности функционирования полнодуплексного режима).

Характеристики адаптеров Fast Ethernet

Производитель Модель LED индикаторы Wake-On-LAN IC Boot ROM Сетевой чип Ориент. цена, $ Гарантия, лет
3Com 3C905CX-TX-M 10-100/Link/Activity Разъем/кабель в комплекте Предустановлена 3Com 920-ST06 43 5
Home Connect 3C450 10-100/Link/Activity Не поддерживается Не поддерживается 3Com/Lucent 40-04834 22 1
Allied Telesyn AT-2500TX 10-100/Activity Поддерживается Кроватка Realtek RTL8139C 13 1
ASUS PCI-L3C920 Link/Activity Не поддерживается Кроватка 3Com 920-ST03 32 1
CompuShack Fastline II PCI UTP DEC-Chip Link-FDX/Coll/SPD-100/Act Разъем/кабель в комплекте Кроватка Intel (DEC) 21143-PD 33,6 3
Fastline PCI UTP Realtek-Chip Link/Activity Разъем/кабель в комплекте Кроватка Realtek RTL8139C 11,2 3
D-Link DFE-528TX Link/Activity Не поддерживается Не поддерживается D-Link DL10038C 13,6 Пожизн.
DFE-550TX Link/100/FDX Разъем/кабель в комплекте Кроватка D-Link DL10050B 22,3 Пожизн.
Intel InBusiness 10/100 Link/Activity/100Tx Не поддерживается Не поддерживается Intel GD82559 25 1
Pro/100 M Desktop Adapter Link/Activity/100Tx Не поддерживается Предустановлена Intel 82551QM 29 Пожизн.
Pro/100 S Desktop Adapter Link/Activity/100Tx Разъем/кабель в комплекте Предустановлена Intel 82550EY 31 Пожизн.
Lantech FastLink/TX 10/100/FDX/Activity Разъем/кабель в комплекте Кроватка Intel (DEC) 21143-PD 27 2
FastNet/TX Link/Activity/FDX Не поддерживается Кроватка Realtek RTL8139D 6,5 2
LG LNIC-10/100Aw Link/Activity Разъем/кабель в комплекте Кроватка Realtek RTL8139D 6,2 1
Planet ENW-9504 10-100/Activity Не поддерживается Не поддерживается Realtek RTL8139D 9,5 3
SMC EtherPower II 10/100 Link/FDX/Tx/Rx Разъем/кабель в комплекте Кроватка SMC 83С172ABQF 42 5
Surecom EP-320X-R Link/Activity Не поддерживается Кроватка Realtek RTL8139C 9 2
EP-320X-S Link/Activity Не поддерживается Кроватка Myson MTD803A 8 2

Результаты тестов

Для начала объясним, почему несмотря на тестирование сетевых карт в диаграммах можно видеть лишь наименования чипов. Дело в том, что несмотря на вполне «честное» с нашей стороны поведение, выражавшееся в использовании не «generic»-драйверов от производителей чипов, а последних доступных версий от производителей карт — никакой разницы в быстродействии между картами, сделанными на базе одних и тех же микросхем, мы не обнаружили.


Типичная «одночиповая» сетевая карта

Результаты тестов в NetBench приводятся в ограниченном объеме по одной причине — во всех остальных случаях они были попросту… совершенно одинаковыми. Лишь тест с размером пакета 16K выявил некоторые особенности в функционировании нашей тестовой сети, а именно разница в результатах, продемонстрированных сетевыми картами, нас и интересовала более всего. Зато данный подтест с лихвой окупил наши ожидания — средняя пропускная способность каждого из четырех клиентов отличалась иногда в несколько раз! Собрав воедино все «отличившиеся» чипы и попытавшись найти какую-то зависимость, мы обратили внимание на то, что наиболее показательные результаты принадлежат сетевым контроллерам Intel и 3Com, и это сразу навело нас на одну очевидную мысль…

Как одна, так и другая компания не удосуживается простым копированием давно всем известной «образцово-показательной схемы классического сетевого чипа»:

Дополнительно они используют так называемые «адаптивные технологии», позволяющие регулировать объем передаваемой в сети информации и величину задержки с тем, чтобы максимально полно использовать возможности конкретного окружения и достигать наибольшей общей пропускной способности сети. Похоже, в нашем случае карты, расположенные на «неудобных» (или, корректности ради, оговоримся — сочтенных неудобными согласно заложенному алгоритму анализа) сегментах, «добровольно уступали» часть полосы своим собратьям, находящимся в лучших условиях. Следует заметить, что выигрыша в общем объеме передаваемых данных это все же не принесло — если сложить все значения пропускной способности по каждому из клиентов, их сумма будет примерно такой же, как в случае с более «прямолинейными» картами. В целом же мы пока воздержимся от оценки этой особенности некоторых сетевых чипов на уровне «хорошо/плохо», ибо в зависимости от конкретных условий функционирования сети и решаемых в ней задач она легко может изменяться в каждом конкретном случае на диаметрально противоположную.

Чипы

3Com 920-ST06/03 . «Умный» чип, явно поддерживающий технологии адаптации к условиям конкретного кабельного окружения (про «неоднозначность» такого подхода уже достаточно было сказано выше). Демонстрирует самую низкую загрузку центрального процессора и достойную поддержку режима полнодуплексной связи. Классический пример хорошего, но недешевого решения.


3Com 3C905CX-TX-M


ASUS PCI-L3C920

3Com/Lucent 40-04834 . Также очень невысокая нагрузка на процессор и достойная поддержка полнодуплексного режима, но несколько более «умеренный» интеллект — что, впрочем, иногда может быть и полезным. Зато и стоимость такого решения ниже в два раза, чем у более нового.


3Com Home Connect 3C450

D-Link DL10050B . А вот это уже классический пример простого, но добротного чипа — никаких попыток учета особенностей конкретной линии, но в то же время полноценный дуплекс и самая низкая среди «брэндов второго уровня» нагрузка на CPU. Условно этот чип с учетом цены карты на его основе можно назвать упрощенным аналогом 3Com/Lucent 40-04834, равным ему практически во всем, но не обладающим адаптационными свойствами и с более высокой нагрузкой на CPU.


D-Link DFE-550TX

Intel (DEC) 21143-PD . Весьма неоднозначный чип, впрочем — при его возрасте… Некие «зачаточные» адаптационные свойства, но неожиданно высокая загрузка процессора и полный провал в тесте на поддержку режима Full Duplex. Стоит при этом упомянуть одну особенность, которую мы заметили при проведении тестов: карта от CompuShack по крайней мере смогла закончить тест на «встречное копирование», хоть и с худшим результатом, а вот Lantech FastLink/TX в середине теста начала просто… регулярно «терять» сеть! Словом, с одной стороны, в системах на основе концентраторов, где поддержка полнодуплексного режима не требуется, карты на 21143-PD вполне могут применяться, с другой же — вряд ли это решение можно назвать оптимальным.


CompuShack Fastline II PCI UTP DEC-Chip


Lantech FastLink/TX

Intel 82550EY . Еще один вариант «сверхинтеллектуального» устройства, отличившийся нелюбовью к длинным сегментам. Поддержка full duplex на высоте, загрузка CPU весьма невысока. По совокупности свойств — ближайший конкурент 3Com 920-ST06/03, но с гораздо более демократичной ценой. Что интересно — уже был однажды случай, когда одна из независимых западных тестовых лабораторий провела сравнительное исследование производительности сетевых чипов Intel и 3Com, после чего обе компании, по-своему трактуя одни и те же цифры… объявили, что по результатам этих тестов их чип лучше, чем у конкурента!


Intel Pro/100S Desktop Adapter
(PCB у Pro/100 M и InBusiness 10/100 аналогична)

Intel 82551QM (карта Intel Pro/100 M). Все сказанное выше об Intel 82550EY может быть повторено и в данном случае, но с одной оговоркой — этот чип «не полюбил» уже другой сегмент нашей тестовой сети. Честно говоря, пока что мы решили просто привести это как факт, как говорится, «as is», поскольку поведение и предпочтения чипов, поддерживающих адаптационные технологии, вполне заслуживают отдельного исследования.

Intel GD82559 (карта InBusiness 10/100). Этому самому дешевому сетевому решению от Intel явно чуть-чуть «убавили сообразительность», впрочем, сохранив все другие положительные свойства чипов этой компании. И даже нагрузка на CPU упала, а поддержка полнодуплексного режима наоборот — лучшая среди всех участников! Вполне удачное решение для «рядовой» машины, как нам кажется.

Myson MTD803A . По дешевизне продукты на базе этого чипа явно конкурируют с основанными на базе микросхем Realtek — и, в общем-то, довольно успешно. Самая низкая среди дешевых чипов нагрузка на процессор, одинаковое с RTL8139C качество поддержки полнодуплексного режима. Однако в последнем чип Myson все же уступает новой версии Realtek — RTL8139D.


Surecom EP-320X-S

Realtek RTL8139C / D-Link DL10038C . Мы объединили эти чипы вместе, так как хоть формально они и разные, но проявили себя совершенно одинаково. При первом же взгляде на результаты тестов на загрузку CPU и поддержку Full Duplex, мы, не сговариваясь, произнесли одно и то же: «Realtek себе не изменил». Вспомнив классиков советской литературы Ильфа и Петрова, можно, перефразировав их изречение, сказать, что «полный дуплекс у этого чипа… какой-то неполный». Впрочем — работают ведь… И стоят недорого.


Allied Telesyn AT-2500TX


CompuShack Fastline PCI UTP Realtek-Chip


D-Link DFE-528TX


Surecom EP-320X-R

Realtek RTL8139D . Вкратце можно просто констатировать, что с точки зрения результатов тестов этот чип является тем же RTL8139C, которому немного «подлечили» поддержку полнодуплексного режима, причем инженерам Realtek не хватило совсем немного, чтобы «дотянуться» до плотной когорты более именитых конкурентов. Однако высокая загрузка центрального процессора — вечная «болячка» чипов этой компании, осталась без изменений.


Lantech FastNet/TX


LG LNIC-10/100Aw


Planet ENW-9504

SMC 83С172ABQF (карта SMC EtherPower II 10/100). Низкая загрузка CPU, высокая скорость полнодуплексного режима, но с увеличением длины сегмента наблюдается некоторое снижение скорости. В целом — добротный и довольно старый сетевой чип без особых претензий, честно выполняющий свою работу. Вот только цену за подобного класса решение хотелось бы видеть немного другой…


SMC EtherPower II 10/100

Заключение

Что ж, надеемся, что этот материал придется по душе «начинающим администраторам и просто интересующимся» — мы постарались органично совместить в нем как теоретические аспекты, так и практические советы, да и результаты тестирования наиболее распространенных на рынке сетевых контроллеров десктопного уровня не будут лишними для «юноши, размышляющего делать сеть из чего». В целом же стоит заметить, что, безусловно, за кадром осталось не то что «не меньше», а даже во много раз больше, чем можно найти в этом материале. Неудивительно — про то, как правильно спроектировать и настроить сеть, пишутся толстые книжки и монографии, а у нас в распоряжении был лишь десяток с небольшим страниц еженедельника. Поэтому не стоит, наверное, рассматривать данную статью как универсальное самодостаточное пособие или, Боже упаси, учебник. Той информации, которая в ней имеется, пожалуй, может хватить только для того, чтобы понять несколько простых истин: во-первых — «не боги горшки обжигают», и кое-что вполне реально научиться делать самостоятельно, во-вторых — перед тем, как это «кое-что» делать, желательно все же получить хотя бы базовый набор знаний о предмете, ну и в-третьих — даже получив этот базовый набор, останавливаться на достигнутом явно не стоит. Невозможно «знать, что такое ЛВС», ее можно только изучать. Сколько? Да хоть всю жизнь!

Продукты предоставлены компаниями:
3Com — «Ингресс», «НИС»
Allied Telesyn — «ИКС-Мегатрейд», ELKO Kiev
ASUS — «Технопарк»
Compu-Shack — N-Tema, Service ASN
D-Link — «Версия»
Intel — K-Trade
Lantech — Compass, N-Tema
LG — DataLux, K-Trade
Planet — MTI, «Энглер-Украина»
SMC — «Ингресс»
Surecom — IT-Link