Шариковые мышки. Что такое мышь и как она устроена. Оптические лазерные мыши

Мышь воспринимает своё перемещение в рабочей плоскости (обычно - на участке поверхности стола) и передаёт эту информацию компьютеру. Программа, работающая на компьютере, в ответ на перемещение мыши производит на экране действие, отвечающее направлению и расстоянию этого перемещения. В разных интерфейсах (например, в оконных) с помощью мыши пользователь управляет специальным курсором - указателем - манипулятором элементами интерфейса. Иногда используется ввод команд мышью без участия видимых элементов интерфейса программы: при помощи анализа движений мыши. Такой способ получил название «жесты мышью » (англ. mouse gestures ).

В дополнение к датчику перемещения, мышь имеет одну и более кнопок, а также дополнительные детали управления (колёса прокрутки, потенциометры, джойстики, трекболы, клавиши и т. п.), действие которых обычно связывается с текущим положением курсора (или составляющих специфического интерфейса).

Составляющие управления мыши во многом являются воплощением замыслов аккордной клавиатуры (то есть, клавиатуры для работы вслепую). Мышь, изначально создаваемая в качестве дополнения к аккордной клавиатуре, фактически её заменила.

В некоторые мыши встраиваются дополнительные независимые устройства - часы, калькуляторы, телефоны.

История

Первым компьютером, в набор которого включалась мышь, был миникомпьютер Xerox 8010 Star Information System (англ. ), представленный в 1981 году. Мышь фирмы Xerox имела три кнопки и стоила 400 долларов США, что соответствует примерно $930 в ценах 2009 года с учётом инфляции . В 1983 году фирма Apple выпустила свою собственную однокнопочную мышь для компьютера Lisa , стоимость которой удалось уменьшить до $25. Широкую известность мышь приобрела благодаря использованию в компьютерах Apple Macintosh и позднее в ОС Windows для IBM PC совместимых компьютеров.

Датчики перемещения

В процессе «эволюции» компьютерной мыши наибольшие изменения претерпели датчики перемещения.

Прямой привод

Первая компьютерная мышь

Изначальная конструкция датчика перемещения мыши, изобретённой Дугласом Энгельбартом в Стенфордском исследовательском институте в 1963 году , состояла из двух перпендикулярных колес, выступающих из корпуса устройства. При перемещении колеса мыши крутились каждое в своем измерении.

Такая конструкция имела много недостатков и довольно скоро была заменена на мышь с шаровым приводом.

Шаровой привод

В шаровом приводе движение мыши передается на выступающий из корпуса обрезиненный стальной шарик (его вес и резиновое покрытие обеспечивают хорошее сцепление с рабочей поверхностью). Два прижатых к шарику ролика снимают его движения по каждому из измерений и передают их на датчики, преобразующие эти движения в электрические сигналы.

Основной недостаток шарового привода - загрязнение шарика и снимающих роликов, приводящее к заеданию мыши и необходимости в периодической её чистке (отчасти эта проблема сглаживалась путём металлизации роликов). Несмотря на недостатки, шаровой привод долгое время доминировал, успешно конкурируя с альтернативными схемами датчиков. В настоящее время шаровые мыши почти полностью вытеснены оптическими мышами второго поколения.

Существовало два варианта датчиков для шарового привода.

Контактные датчики

Контактный датчик представляет собой текстолитовый диск с лучевидными металлическими дорожками и тремя контактами, прижатыми к нему. Такой датчик достался шаровой мыши «в наследство» от прямого привода.

Основными недостатками контактных датчиков является окисление контактов, быстрый износ и невысокая точность. Поэтому со временем все мыши перешли на бесконтактные оптопарные датчики.

Оптронный датчик

Устройство механической компьютерной мыши

Оптронный датчик состоит из двойной оптопары - светодиода и двух фотодиодов (обычно - инфракрасных) и диска с отверстиями или лучевидными прорезями, перекрывающего световой поток по мере вращения. При перемещении мыши диск вращается, и с фотодиодов снимается сигнал с частотой, соответствующей скорости перемещения мыши.

Второй фотодиод, смещённый на некоторый угол или имеющий на диске датчика смещённую систему отверстий/прорезей, служит для определения направления вращения диска (свет на нём появляется/исчезает раньше или позже, чем на первом, в зависимости от направления вращения).

Оптические мыши первого поколения

Оптические датчики призваны непосредственно отслеживать перемещение рабочей поверхности относительно мыши. Исключение механической составляющей обеспечивало более высокую надёжность и позволяло увеличить разрешающую способность детектора.

Первое поколение оптических датчиков было представлено различными схемами оптопарных датчиков с непрямой оптической связью - светоизлучающих и воспринимающих отражение от рабочей поверхности светочувствительных диодов. Такие датчики имели одно общее свойство - они требовали наличия на рабочей поверхности (мышином коврике) специальной штриховки (перпендикулярными или ромбовидными линиями). На некоторых ковриках эти штриховки выполнялись красками, невидимыми при обычном свете (такие коврики даже могли иметь рисунок).

Недостатками таких датчиков обычно называют:

  • необходимость использования специального коврика и невозможность его замены другим. Кроме всего прочего, коврики разных оптических мышей часто не были взаимозаменяемыми и не выпускались отдельно;
  • необходимость определённой ориентации мыши относительно коврика, в противном случае мышь работала неправильно;
  • чувствительность мыши к загрязнению коврика (ведь он соприкасается с рукой пользователя) - датчик неуверенно воспринимал штриховку на загрязнённых местах коврика;
  • высокую стоимость устройства.

В СССР оптические мыши первого поколения, как правило, встречались только в зарубежных специализированных вычислительных комплексах.

Оптические светодиодные мыши

Мышь с оптическим датчиком

Микросхема оптического датчика второго поколения

Второе поколение оптических мышей имеет более сложное устройство. В нижней части мыши установлен специальный светодиод, который подсвечивает поверхность, по которой перемещается мышь. Миниатюрная камера «фотографирует» поверхность более тысячи раз в секунду, передавая эти данные процессору, который и делает выводы об изменении координат. Оптические мыши второго поколения имеют огромное преимущество перед первым: они не требуют специального коврика и работают практически на любых поверхностях, кроме зеркальных или прозрачных; даже на фторопласте (включая черный). Они также не нуждаются в чистке.

Предполагалось, что такие мыши будут работать на произвольной поверхности, однако вскоре выяснилось, что многие продаваемые модели (в особенности первые широко продаваемые устройства) не так уж и безразличны к рисункам на коврике. На некоторых участках рисунка графический процессор способен сильно ошибаться, что приводит к хаотичным движениям указателя, не отвечавших реальному перемещению. Для склонных к таким сбоям мышей необходимо подобрать коврик с иным рисунком или вовсе с однотонным покрытием.

Отдельные модели также склонны к детектированию мелких движений при нахождении мыши в состоянии покоя, что проявляется дрожанием указателя на экране, иногда с тенденцией сползания в ту или иную сторону.

Мышь с двойным датчиком

Датчики второго поколения постепенно совершенствуются, и в настоящее время мыши, склонные к сбоям, встречаются гораздо реже. Кроме совершенствования датчиков, некоторые модели оборудуются двумя датчиками перемещения сразу, что позволяет, анализируя изменения сразу на двух участках поверхности, исключать возможные ошибки. Такие мыши иногда способны работать на стеклянных, оргстеклянных и зеркальных поверхностях (на которых не работают другие мыши).

Также выпускаются коврики для мышей, специально ориентированные на оптические мыши. Например, коврик, имеющий на поверхности силиконовую плёнку с взвесью блёсток (предполагается, что оптический сенсор гораздо чётче определяет перемещения по такой поверхности).

Недостатком данной мыши является сложность её одновременной работы с графическими планшетами, последние ввиду своей аппаратной особенности иногда теряют истинное направление сигнала при движении пера и начинают искажать траекторию движения инструмента при рисовании. При использовании мышей с шаровым приводом подобных отклонений не наблюдается. Для устранения данной проблемы рекомендуется использовать лазерные манипуляторы. Также, к недостаткам оптических мышей некоторые люди относят свечение таких мышей даже при выключенном компьютере. Поскольку большинство недорогих оптических мышей имеют полупрозрачный корпус, он пропускает красный свет светодиодов, который мешает уснуть в случае, если компьютер находится в спальне. Это происходит, если напряжение на порты PS/2 и USB подаётся от линии дежурного напряжения; большинство материнских плат позволяют изменить это перемычкой +5V <-> +5VSB, но в этом случае не будет возможности включать компьютер с клавиатуры.

Оптические лазерные мыши

Лазерный датчик

В последние годы была разработана новая, более совершенная разновидность оптического датчика, использующего для подсветки полупроводниковый лазер .

О недостатках таких датчиков пока известно мало, но известно об их преимуществах:

  • более высоких надёжности и разрешении
  • отсутствии заметного свечения (сенсору достаточно слабой подсветки лазером видимого или, возможно, инфракрасного диапазона)
  • низком энергопотреблении

Индукционные мыши

Графический планшет с индукционной мышью

Индукционные мыши используют специальный коврик, работающий по принципу графического планшета или собственно входят в комплект графического планшета. Некоторые планшеты имеют в своем составе манипулятор, похожий на мышь со стеклянным перекрестием, работающий по тому же принципу, однако немного отличающийся реализацией, что позволяет достичь повышенной точности позиционирования за счёт увеличения диаметра чувствительной катушки и вынесения её из устройства в зону видимости пользователя.

Индукционные мыши имеют хорошую точность, и их не нужно правильно ориентировать. Индукционная мышь может быть «беспроводной» (к компьютеру подключается планшет, на котором она работает), и иметь индукционное же питание, следовательно, не требовать аккумуляторов, как обычные беспроводные мыши.

Мышь в комплекте графического планшета позволит сэкономить немного места на столе (при условии, что на нём постоянно находится планшет).

Индукционные мыши редки, дороги и не всегда удобны. Мышь для графического планшета практически невозможно поменять на другую (например, больше подходящую по руке, и т. п.).

Гироскопические мыши

Кроме вертикальной и горизонтальной прокрутки, джойстики мыши могут быть использованы для альтернативного перемещения указателя или регулировок, аналогично колёсам.

Трекболы

Индукционные мыши

Индукционные мыши чаще всего имеют индукционное питание от рабочей площадки («коврика») или графического планшета. Но такие мыши являются беспроводными лишь отчасти - планшет или площадка всё равно подключаются кабелем. Таким образом, кабель не мешает двигать мышью, но и не позволяет работать на расстоянии от компьютера, как с обычной беспроводной мышью.

Дополнительные функции

Некоторые производители мышей добавляют в мышь функции оповещения о каких-либо событиях, происходящих в компьютере. В частности, Genius и Logitech выпускают модели, оповещающие о наличии непрочитанных электронных писем в почтовом ящике свечением светодиода или воспроизведением музыки через встроенный в мышь динамик.

Известны случаи помещения внутрь корпуса мыши вентилятора для охлаждения во время работы руки пользователя потоком воздуха через специальные отверстия. Некоторые модели мышей, предназначенные для любителей компьютерных игр, имеют встроенные в корпус мыши маленькие эксцентрики, которые обеспечивают ощущение вибрации при выстреле в компьютерных играх. Примерами таких моделей является линейка мышей Logitech iFeel Mouse.

Кроме того, существуют мини-мыши, созданные для владельцев ноутбуков, имеющие малые габариты и массу.

Некоторые беспроводные мыши имеют возможность работы как пульта ДУ (например, Logitech MediaPlay). Они имеют немного изменённую форму для работы не только на столе, но и при удержании в руке.

Достоинства и недостатки

Мышь стала основным координатным устройством ввода из-за следующих особенностей:

  • Очень низкая цена (по сравнению с остальными устройствами наподобие сенсорных экранов).
  • Мышь пригодна для длительной работы. В первые годы мультимедиа кинорежиссёры любили показывать компьютеры «будущего» с сенсорным интерфейсом, но на поверку такой способ ввода довольно утомителен, так как руки приходится держать на весу.
  • Высокая точность позиционирования курсора. Мышью (за исключением некоторых «неудачных» моделей) легко попасть в нужный пиксель экрана.
  • Мышь позволяет множество разных манипуляций - двойные и тройные щелчки, перетаскивания , жесты , нажатие одной кнопки во время перетаскивания другой и т. д. Поэтому в одной руке можно сконцентрировать большое количество органов управления - многокнопочные мыши позволяют управлять, например, браузером вообще без привлечения клавиатуры.

Недостатками мыши являются:

  • Опасность синдрома запястного канала (не подтверждается клиническими исследованиями).
  • Для работы требуется ровная гладкая поверхность достаточных размеров (за исключением разве что гироскопических мышей).
  • Неустойчивость к вибрациям. По этой причине мышь практически не применяется в военных устройствах. Трекбол требует меньше места для работы и не требует перемещать руку, не может потеряться, имеет большую стойкость к внешним воздействиям, более надёжен.

Способы хвата мыши

По данным журнала «Домашний ПК ».

Игроки различают три основных способа хвата мыши.

  • Пальцами. Пальцы лежат плашмя на кнопках, верхняя часть ладони упирается в «пятку» мыши. Нижняя часть ладони - на столе. Преимущество - точные движения мыши.
  • Когтеобразный. Пальцы согнуты и упираются в кнопки только кончиками. «Пятка» мыши в центре ладони. Преимущество - удобство щелчков.
  • Ладонью. Вся ладонь лежит на мыши, «пятка» мыши, как и в когтеобразном хвате, упирается в центр ладони. Хват более приспособлен для размашистых движений шутеров .

Офисные мыши (за исключением маленьких мышей для ноутбуков) обычно одинаково пригодны для всех видов хвата. Геймерские же мыши, как правило, оптимизированы под тот или иной хват - поэтому при покупке дорогой мыши рекомендуется выяснить свой метод хвата.

Программная поддержка

Отличительной особенностью мышей как класса устройств является хорошая стандартизованность аппаратных

Добрый день, друзья!

Сегодня мы поговорим об одном очень удобном устройстве, к которому мы так привыкли и без которого уже не представляем работы на компьютере.

Что такое «мышь»?

«Мышь» — это кнопочный манипулятор, предназначенный вместе с клавиатурой для ввода информации в .

Действительно, он похож на мышь с хвостиком. Современный компьютер уже немыслим без этой штуковины.

«Мышью» пользоваться гораздо удобнее, чем, например, встроенным манипулятором ноутбука.

Поэтому частенько пользователи отключают это ноутбучный «коврик» и подключают «мышь».

Как же устроена эта удобная штука?

Первые конструкции манипуляторов

Первые манипуляторы включали в себя шарик, который касался двух валиков с дисками.

Внешний обод каждого диска имел перфорацию . Валы были расположены перпендикулярно друг к другу.

Один вал отвечал за координату Х (горизонтальное перемещение), другой – за координату Y (вертикальное перемещение).

При перемещении манипулятора по столу шарик вращался, передавая крутящий момент на валы.

Если перемещение манипулятора выполнялось в направлении «вправо-влево», то вращался преимущественно вал, отвечающий за координату Х. Курсор на экране монитора перемещался также вправо-влево. Если мышь перемещалась в направлении «к себе-от себя», вращался преимущественно вал, отвечающий за координату Y. Курсор на экране монитора перемещался вверх-вниз.

Если манипулятор перемешался в произвольном направлении, вращались оба вала, соответственно перемещался и курсор.

Оптические датчики в старых «мышах»

Такие устройства содержали в себе два оптических датчика – оптопары . Оптопара включает в себя излучатель (светодиод, излучающий в ИК диапазоне) и приемник – (фотодиод или фототранзистор). Излучатель и приемник расположены на близком расстоянии друг от друга.

При движении манипулятора вращаются валы с жестко закрепленными на них дисками. Перфорированный край диска периодически пересекает поток излучения от излучателя к приемнику. В итоге на выходе приемника получается серия импульсов, которая поступает на микросхему-контроллер. Чем быстрее будет перемещаться мышь, тем быстрее будут вращаться валы. Будет большей частота импульсов, и быстрее будет перемещаться курсор по экрану монитора.

Кнопки и колесо прокрутки

Любой манипулятор имеет, как минимум, две кнопки.

Двойной «клик» (нажатие) на одну из них (обычно левую) запускает исполнение программы или файла, нажатие на другую – запускает контекстное меню для соответствующей ситуации.

Устройства, предназначенные для компьютерных игр, могут иметь 5-8 кнопок.

Нажав на одну из них, можно пальнуть в монстра из гранатомета, на другую – пустить ракету, на третью – разрядить в него добрый старый винчестер.

Современные мыши имеют в себе и scroll – колесико прокрутки, что очень удобно при просмотре объемного документа. Просматривать такой документ можно, только вращая колесико и не используя кнопки. Некоторые модели имеют два колеса прокрутки, при этом можно просматривать текст или графическое изображение перемещаясь как вверх-вниз, так и влево-вправо.

Под колесиком прокрутки обычно имеется еще одна кнопка. Если, просматривать документ, вращая колесико и одновременно нажать на него, драйвер манипулятора подключает такой режим, что документ сам начинает перемещаться вверх по экрану. Скорость перемещения зависит от того, с какой скорость пользователь вращал колесико до нажатия на него.

В таком режиме курсор изменяет свое начертание. Это еще более повышает удобство… Короче говоря, добыли, приготовили, разжевали, осталось только проглотить. Повторное нажатие на колесико осуществляет переход от «автопросмотра» в обычный режим.

Оптические «мыши»

В дальнейшем манипулятор был усовершенствован.

Появились так называемые оптические «мыши».

Такие устройства содержат излучающий светодиод (обычно красного цвета), прозрачную отражающую призму из пластика, светочувствительный сенсор и управляющий контроллер.

Светодиод испускает лучи, которые, отражаясь от поверхности, улавливаются сенсором.

При движении манипулятора поток принятого излучения меняется, что улавливается сенсором и передается контроллеру, который вырабатывает стандартные сигналы для конкретного интерфейса. Оптическая мышь более чувствительна к перемещению и не требует для себя коврика, как старый манипулятор с шариком.

В оптической «мыши» нет трущихся частей (за исключением потенциометра, вращение на который передается с колеса прокрутки), которые изнашиваются или загрязняются. Это также является преимуществом.

Возможные проблемы с манипуляторами

Манипулятор «мышь», как и любая техника, имеет ограниченный срок службы. Ни для кого не секрет, что основная часть компьютерной техники делается в Китае. Цель любого бизнеса – это прибыль, поэтому китайские товарищи экономят даже на кабелях для «мышей», максимально утончая их.

Поэтому первое слабое место у манипуляторов – именно кабель.

Чаще всего внутренний обрыв одной или нескольких жил бывает в месте входа кабеля в мышь.

В кабеле имеется 4 провода, два из них – питание, третий – тактовая частота, четвертый – информационный.

Если мышь не видится компьютером, первым делом надо «позвонить» кабель .

Если обнаружен обрыв, следует отрезать часть кабеля с разъемом (за местом входа кабеля в корпус «мыши» ближе к разъему) и оставшийся кусок к печатной плате манипулятора, соблюдая, естественно, расцветку.

Мыши с разъемом PS/2 нельзя переключать «на ходу» .

В противном случае ее контроллер (крохотный ее «мозг») может выйти из строя. И хорошо еще, если дело ограничится только этим. Может выйти из строя и контроллер интерфейса PS/2 на материнской плате, что гораздо хуже.

Если кабель цел, а мышь не опознается контроллером, то, скорее всего, вышел из строя ее контроллер, и она подлежит замене. Обрыв кабеля у оптических мышей можно заподозрить и по отсутствию свечения светодиода (который расположен вблизи поверхности, которая ездит по столу). В других случаях свечения может не быть из-за неисправности светодиода или контроллера, но такое бывает редко.

Манипуляторы с интерфейсом COM или USB можно переключать «на ходу». Впрочем, в настоящее время устройства с интерфейсом COM практически не встречаются.

«Кликать» мышкой приходится многие тысячи раз, и кнопки после длительной работы могут отказывать. Чтобы заменить кнопку, надо разобрать манипулятор и припаять другую. Не обязательно использовать такую же, какая была. Главное здесь – соблюсти высоту, чтобы сохранить длину хода клавиши. Впрочем, манипуляторы давно уже весьма доступны, и большинство пользователей не заморачиваются с их ремонтом.

Скажем «спасибо» добрым старым «мышкам» с шариком в брюхе – они хорошо нам послужили…

Заканчивая статью, отметим, что существуют разновидности манипуляторов с лазерным излучателем вместо светодиода, которые обеспечивают более точное и быстрое позиционирование курсора. Эти скорость и точность особенно востребованы в играх.

Существуют и wireless (радио) «мыши», в которых обмен информацией с компьютером осуществляется не по проводу, а по радиоканалу. Поэтому они содержат собственный источник питания – пару пальчиковых гальванических элементов типоразмера АА или ААА. Напомним еще раз, что разъем манипулятора вставляется в один из портов .

На сегодня все.

С вами был Виктор Геронда.

До встречи на блоге!

В эпоху, когда компьютеры занимали целые комнаты, многие разработчики и учёные старались сделать их максимально понятными для простого пользователя и облегчить взаимодействие пользователя с машиной. Один из них - Дуглас Энгельбарт.

Он был одним из первопроходцев в области попыток сделать компьютер мксимально удобным в обращении. Помимо всем привычной сегодня компьютерной мышки Дуглас Энгельбарт поучаствовал в разработке первых сервисов по обмену электронными сообщениями, которые сегодня стали массово используемой электронной почтой.

Но, пожалуй, самым известным его изобретением является устройство ввода, запатентованное в 1970 году. Изначально это чудо техники планировалось назвать "жуком", однако позднее закрепилось название "мышь", к которому прицепилось слово "компьютерная". Чтобы не перепутать.

Первая реализация мыши была не пластмассовой, а - деревянной. Сверху на ней имелось два металлических колесика, которые соотносили движения курсора на экране с осями координат X и Y.

Презентация нового устройства состоялась в декабре далёкого 1968 года. Выглядело новое устройство ввода громоздко и было далеко от эргономичности. На рынок первая компьютерная мышь была выведена далеко не сразу. Это радостное для многих пользователей событие состоялось только в 1984 году. Мышка была включена в комплектацию одного из первых домашних компьютеров Apple-Macintosh, а стоило это "миниатюрное" удовольствие почти 400 долларов США.

По справедливости надо отметить, что с тех пор во всём мире было продано более одного миллиарда компьютерных мышей.

Шариковая мышка

Как любая нужная и полезная техника, компьютерная мышь эволюционировала просто с невероятной скоростью. Первые громоздкие агрегаты вскоре сменились на более компактные шариковые мыши.

Выглядели они примерно так: достаточно большого размера корпус с привычными нам правой и левой кнопкой, иногда даже с колёсиком между ними, а снизу - прорезиненный шарик, чуть выступающим из основания устройства и перекатывающимся при движении мышкой.

Вращаясь, этот шарик передавал сигнал определённого направления движения двум роликам внутри устройства. Ролики же, в свою очередь, передавали его на специальные датчики, которые и "превращали" движение мышки в движение курсора на мониторе.

Работал этот механизм вполне исправно и довольно хорошо, но в нём, как и везде, имелись свои минусы и плюсы. В частности, шарик на мышках данного типа рано или поздно загрязнялся, и мышка, как следствие, начинала заедать. Бороться с этим можно было только одним способом: вынуть из мышки шарик, очистить его и затем поставить на место.

Несмотря на всю простоту, эта процедура отнимало некоторое количество времени и далеко не все умели или хотели её проделывать. По этой самой причине (а может были и другие) довольно скоро шариковые мыши эволюционировали до мышек с оптическим "приводом".

Оптическая мышь

Оптическая компьютерная мышь, в отличие от своей предшественницы, не содержала в конструкции никаких вращающихся элементов. По сути, в корпус оптической мышки встроена маленькая камера, которая делает до тысячи снимков в секунду.

При перемещении мыши камера фотографирует рабочую поверхность, освещая ее. Процессор обрабатывает эти "снимки" и отправляет сигнал на компьютер – курсор перемещается. Такая мышка может работать практически на любой поверхности, кроме зеркальной, и не нуждается в чистке.

Несмотря на все свои достоинства, некоторые из оптических мышек оказались чрезвычайно "привередливы" к рабочей поверхности. Их можно запросто встретить в домах и офисах и сегодня, но чем дальше, тем больше пользователей предпочитают мыши лазерные и даже беспроводные.

Мышь лазерная и беспроводная

Лазерная компьютерная мышь является усовершенствованным вариантом мыши оптической. Принцип их работы во многом похож. Разница лишь в том, что для подсветки поверхности используется не светодиод, а лазер . Такая доработка сделала устройство практически идеальным: работает устройство на любой поверхности. Она более надежна и потребляет сравнительно мало энергии, а движения курсора максимально соответствуют реальному перемещению мыши. Помимо этого у лазерных мышек очень слабая подсветка.

В свою очередь лазерные компьютерные мыши бывают хвостатые и бесхвостые, то есть проводные и беспроводные. Последние не имеют кабеля и, в отличие от проводных, не требуют подсоединения к компьютеру: они передают сигнал через радиоволны или через Bluetooth.

Обычные радиомышки способны работать на расстоянии до 5 метров от компьютера, Bluetooth-мыши – до 10-15 метров. Такие мыши наиболее удобны для любителей компьютерных игр. Но и у них есть недостаток: радиомыши могут создавать помехи для находящихся рядом устройств. Кроме этого, отсутствие кабеля равно отсутствию стационарного питания.

Беспроводные мыши требуют отдельного источника питания – от батарейки или аккумуляторы, что не всегда удобно. Помимо этого беспроводные устройства могут сбоить из-за не всегда устойчивого соединения.

А какая мышь у вас и что вам в ней нравится? Поделитесь с нами и нашими читателями своей историей про мышь компьютерную.

  • Официальный сайт Лента.ру. Раздел "Наука и техника". Материал "Мышиный день.
  • Компьютерной мыши исполнилось 40 лет"
  • Официальный сайт журнала "Домашний ПК"
  • Свободная электронная энциклопедия Википедия, раздел "Компьютерная мышь"
  • Статья "Почему изобретатель компьютерной мыши не стал миллиардером?"

Компьютерная мышь – это манипулятор для управления компьютером. Такое название манипулятор получил за свое внешнее сходство с природным грызуном. На сегодня она является неотъемлемым атрибутом ПК и позволяет наиболее эффективно взаимодействовать с ним.

До появления операционных систем с графическим интерфейсом, мышь была не так широко распространена. Управление компьютером осуществлялось с помощью ввода команд через клавиатуру, а работа на компьютере требовала высокой квалификации. В принципе и с графическим интерфейсом можно обойтись одной клавиатурой, но это потребует заучивание необходимых комбинаций клавиш для управления, что неприемлемо для рядового пользователя, а мышь очень простое устройство, и научиться работать с ней несложно. Самая простая мышь имеет пару кнопок и колесико между ними, с помощью которых осуществляется какое-либо действие при работе с компьютером. Мышь подключается к компьютера с помощью провода – проводные мыши, или по беспроводному каналу – так называемые беспроводные мыши.

Принцип работы мыши.

Основной принцип работы компьютерной мыши – это преобразование движения в управляющий сигнал. При перемещении мыши по поверхности (чаще всего стола) она генерирует электронный сигнал, указывающий компьютеру направление движения, расстояние и скорость. А на экране монитора пользователь видит перемещение специального указателя (курсора) в соответствие с движением мыши.

Виды компьютерных мышей.

Долгое время для управления компьютером использовались механические мыши, в которых в качестве датчика движения использовался металлический обрезиненный шар.

Механическая мышь

Но прогресс не стоит на месте и на сегодня, самые распространенные компьютерные мыши – это оптические и лазерные , которые имеют более высокую точность позиционирования.

В оптических мышах для преобразования движения в электрический сигнал используется источник света (светодиод), расположенный на нижней поверхности манипулятора, и сенсор. Оптическая мышь сканирует поверхность, по которой передвигается, преобразует результаты сканирования и передает их в компьютер.

Оптическая мышь

В лазерной мыши , в качестве оптического источника используется лазер, что позволяет увеличить точность позиционирования. Кроме того, лазерная мышь неприхотлива к качеству поверхности, по которой перемещается.

Лазерная мышь

Существуют также более сложные и дорогие манипуляторы – сенсорные, индукционные, гироскопические мыши, которые имеют иной принцип преобразования движения в управляющий сигнал.