Подключение sas. Беспрецедентная совместимость последовательных интерфейсов

Умение подключать дополнительные жесткие диски весьма пригодится Вам при недостатке свободного дискового пространства на уже установленных. Подключить HDD к персональному компьютеру можно:

  1. Установив в системный блок, используя стандартные разъемы SATA на материнской плате.
  2. Установив в системный блок, используя разъемы SAS RAID-контроллера.
  3. С помощью переходника-адаптера USB-SATA.

Это интересно! Предшественником SATA был интерфейс ATA (иное название – IDE). Различие заключается в способе передачи данных – последовательная передача у SATA, параллельная у ATA. Принято считать, что последовательная передача происходит быстрее, однако, для рядового пользователя разница незаметна.

SATA

Шаг 1. Снимите крышку корпуса Вашего системного блока.

Шаг 2. Присоедините информационный шлейф к разъему на материнской плате.

На заметку! Номер разъема не важен. Определение загрузочного жесткого диска происходит по установленному на нем программному обеспечению.

Шаг 3. Присоедините информационный шлейф к разъему на жестком диске.

Шаг 4. Подключите шлейф питания к разъему винчестера.

Важно! В момент подключения кабеля питание компьютера должно быть отключено. При подключении шлейфа с поданным на него напряжением велик риск повреждения контроллера жесткого диска, или контроллера SATA материнской платы! В том случае, если Ваш блок питания имеет разъемы питания только для винчестеров IDE, воспользуйтесь специальным переходником.

Шаг 5. Закрепите жесткий диск на корпусе винтами.

Важно! Следите за тем, чтобы кабели не соприкасались с лопастями кулеров системного блока.

В том случае, если Вы используете диск с форм-фактором 2,5 дюйма, используйте специальные салазки для более плотного закрепления винчестера внутри системного блока.

Подключение жесткого диска внутрь корпуса к разъемам SAS

Данные разъемы обратно совместимы, то есть SATA можно подключить к SAS, а SAS к SATA – нельзя.

Шаг 1. Установите жесткий диск в специальный конструктив (салазки) соответствующего размера.

На заметку! Конструктивы предназначены для определенных форм-факторов, то есть вставить диск 2,5 дюйма в корзину контроллера 3,5 дюймовых винчестеров не получится.

Шаг 2. Вставьте салазки в корзину контроллера и вдвиньте до фиксирования ручки салазок в нужном положении.

Важно! Не забудьте проверить подключение кабеля RAID к материнской плате и измените настройки Вашего контроллера.

Подключение жесткого диска форм-фактора 3,5 дюйма с помощью адаптера с внешним питанием

Шаг 1. Присоедините адаптер к жесткому диску.

Шаг 2. Соедините адаптер и нужный порт Вашего компьютера с помощью USB-шнура.

Шаг 3. Подключите к адаптеру питающий кабель.

Шаг 4. Подайте питание на адаптер переключением тумблера в рабочее положение.

Шаг 5. При необходимости установите драйверы для подключенного оборудования.

Подключение жесткого диска форм-фактора 2,5 дюйма с помощью адаптера 3,5 дюйма

Диски 2,5 дюйма обычно используются в ноутбуках. Разъемы ничем не отличаются от разъемов дисков 3,5, но винчестер ноутбука крепится к корпусу с помощью специальной корзины (салазок).

Шаг 1. Снимите салазки или иные конструктивы с Вашего винчестера.

Шаг 2. Следуйте инструкции подключения жесткого диска 3,5 с помощью адаптера.

Подключение жесткого диска форм-фактора 2,5 дюйма с помощью соответствующего адаптера

При использовании специального адаптера для винчестеров 2,5, снимать салазки не понадобится. Как правило, подобные переходники не имеют внешнего питания, и получают напряжение из USB-порта компьютера.

Шаг 1. Подключите адаптер к винчестеру.

Шаг 2. Подключите оба конца USB-кабеля адаптера к портам компьютера.

Важно! Два конца кабеля нужны потому, что по одному из них передается информация, а по второму – питание адаптера.

Видео — Как подключить жесткий диск

Заключение

Мы рассмотрели три разных способа подключения винчестеров с разъемами SATA к персональному компьютеру. Каждый из них требует приобретения дополнительного оборудования, как минимум – шлейфов. В том случае, если Вы решили использовать SATA-диск как внешний (с подключением через USB-адаптер), рекомендуется приобрести надежный защитный чехол для диска. Во время работы с устройством чехол стоит снимать, чтобы избежать перегрева. Некоторые параметры жестких дисков, работающих с разными технологиями, представлены в сводной таблице.

Название Скорость передачи данных, Мб/сКоличество устройств на каждый порт
IDE (ATA)133,52
SATA R.11501
SATA R.2300До 15
SATA R.3600До 16
SAS R.150150До 4
SAS R.300300До 4
SAS R.600600До 4

Почему SAS?

Интерфейс Serial Attached SCSI - это не просто последовательная реализация протокола SCSI. В нём реализовано намного больше, чем простой перенос функций SCSI, таких как TCQ (Tagged Command Queuing, тэгированная очередь команд), через новый разъём. Если бы нам была нужна наибольшая простота, то тогда мы бы использовали интерфейс Serial ATA (SATA), являющийся простым соединением "точка-точка" между хостом и конечным устройством, таким как жёсткий диск.

Но SAS базируется на объектной модели, определяющей "домен SAS” - систему доставки данных, которая может включать в себя опциональные экспандеры (expander) и конечные устройства SAS, такие как жёсткие диски и host-адаптеры (host bus adapters, HBA). В отличие от SATA, устройства SAS могут иметь несколько портов, каждый из которых может использовать несколько физических соединений, чтобы обеспечивать более скоростные (широкие) подключения SAS. Кроме того, к любой определённой цели могут обращаться несколько инициаторов, а длина кабеля может составлять до восьми метров (для первого поколения SAS) против одного метра у SATA. Вполне понятно, что это обеспечивает немало возможностей для создания высокопроизводительных или избыточных решений хранения данных. Кроме того, SAS поддерживает протокол SATA Tunneling Protocol (STP), позволяющий подключать к SAS-контроллеру устройства SATA.

Стандарт SAS второго поколения увеличивает скорость соединения с 3 до 6 Гбит/с. Данный прирост скорости очень важен для сложных окружений, где требуется высокая производительность из-за высокоскоростных хранилищ. Новая версия SAS также призвана снизить сложность прокладки кабелей, а также число соединений на Гбит/с пропускной способности, увеличивая возможную длину кабелей и улучшая работу экспандеров (разбиение на зоны и автоматическое обнаружение). Чуть ниже мы поговорим об этих изменениях в деталях.

Увеличение скорости SAS до 6 Гбит/с

Чтобы донести преимущества SAS до более широкой аудитории, SCSI Trade Association (SCSI TA) представила учебник по технологии SAS на конференции Storage Networking World Conference, которая прошла чуть раньше в этом году в Орландо (США, Флорида). Так называемый SAS Plugfest, где демонстрировалась работа SAS на 6 Гбит/с, совместимость и функции, прошёл ещё раньше в ноябре 2008 года. LSI и Seagate стали первыми на рынке, кто представил "железо", совместимое с SAS на 6 Гбит/с, но остальные производители тоже должны вскоре подтянуться. В нашей статье мы рассмотрим текущее состояние технологий SAS и некоторые новые устройства.

Функции и основы SAS

Фундаментальные основы SAS

В отличие от SATA, интерфейс SAS работает на основе полного дуплекса, предоставляя полную пропускную способность в обоих направлениях. Как уже упоминалось ранее, соединения SAS всегда устанавливаются через физические подключения, используя уникальные адреса устройств. Напротив, SATA может адресовать только номера портов.

Каждый адрес SAS может содержать несколько интерфейсов физического уровня (PHY), что позволяет создавать более широкие подключения через InfiniBand (SFF-8470) или кабели mini-SAS (SFF-8087 и -8088). Обычно четыре интерфейса SAS с одним PHY на каждом объединяются в один широкий интерфейс SAS, который уже подключается к SAS-устройству. Связь может осуществляться и через экспандеры, которые работают больше как коммутаторы, нежели как устройства SAS.

Такие функции, как разбиение по зонам (zoning) теперь позволяют администраторам привязывать конкретные устройства SAS к инициаторами. Именно здесь будет полезна увеличенная пропускная способность SAS 6 Гбит/с, поскольку у четырёхканального соединения теперь будет в два раза большая скорость. Наконец, устройства SAS могут даже иметь несколько адресов SAS. Поскольку накопители SAS могут использовать два порта, с одним PHY на каждом, то накопитель может иметь два адреса SAS.

Соединения и интерфейсы


Нажмите на картинку для увеличения.

Адресация соединений SAS происходит через порты SAS, используя SSP (Serial SCSI Protocol), но связь на нижнем уровне от PHY до PHY осуществляется, используя одно или несколько физических соединений по причинам увеличения пропускной способности. SAS использует кодирование 8/10 бит, чтобы преобразовывать 8 бит данных в 10-символьные передачи в целях восстановления синхронизации, баланса DC и определения ошибок. В итоге мы получаем эффективную пропускную способность 300 Мбайт/с для режима передачи 3 Гбит/с и 600 Мбайт/с для подключений 6 Гбит/с. Технологии Fibre Channel, Gigabit Ethernet, FireWire и другие работают по схожей схеме кодирования.

Интерфейсы питания и данных SAS и SATA очень похожи друг на друга. Но если у SAS интерфейсы данных и питания объединены в один физический интерфейс (SFF-8482 на стороне устройства), то SATA требует двух раздельных кабелей. Зазор между контактами питания и данных (см. иллюстрацию выше) в случае SAS закрыт, что не позволяет подключать устройство SAS к контроллеру SATA.

С другой стороны, устройства SATA могут прекрасно работать на инфраструктуре SAS благодаря STP или в "родном" режиме, если не используются экспандеры. STP добавляет дополнительную задержку при прохождении через экспандеры, поскольку им нужно устанавливать соединение, что происходит медленнее, нежели прямая связь SATA. Впрочем, задержки всё равно очень малы.

Домены, экспандеры

Домены SAS можно представить в виде древовидных структур наподобие сложных сетей Ethernet. Экспандеры SAS могут работать с большим количеством SAS-устройств, но они используют принцип коммутации каналов, а не более распространённую коммутацию пакетов. Некоторые экспандеры содержат в себе устройства SAS, другие - нет.

SAS 1.1 распознаёт граничные экспандеры (edge expander), которые позволяют инициатору SAS связываться с до 128 дополнительными адресами SAS. В домене SAS 1.1 можно использовать только два граничных экспандера. Впрочем, один экспандер расширения (fanout expander) может подключать до 128 граничных экспандеров, что существенно увеличивает возможности инфраструктуры вашего решения SAS.

Нажмите на картинку для увеличения.

По сравнению с SATA интерфейс SAS может показаться сложным: разные инициаторы обращаются к целевым устройствам через экспандеры, что подразумевает прокладку соответствующих маршрутов. SAS 2.0 упрощает и улучшает прокладку маршрутов.

Следует помнить, что SAS запрещает петли или множественные пути. Все соединения должны быть "точка-точка" и эксклюзивными, но сама по себе архитектура подключений хорошо масштабируется.

Новые функции SAS 2.0: экспандеры, производительность


SAS 1.0/1.1
Функция Сохраняет наследственную поддержку SCSI
Совместим с SATA
Совместим с 3 Гбит/с
Улучшенная скорость и прохождение сигналов
Управление зонами
Улучшенная масштабируемость
Функции хранилищ RAID 6
Малый форм-фактор
HPC
Накопители SAS большой ёмкости
Замена Ultra320 SCSI
Выбор: SATA или SAS
Blade-серверы
RAS (защита данных)
Безопасность (FDE)
Поддержка кластеров
Поддержка более крупных топологий
SSD
Виртуализация
Внешние хранилища
Размер сектора 4K
Скорость передачи данных и пропускная способность кабеля 4 x 3 Гбит/с (1,2 Гбайт/с) 4 x 6 Гбит/с (2,4 Гбайт/с)
Тип кабеля Медь Медь
Длина кабеля 8 м 10 м

Зоны экспандера и автоматическая конфигурация

Граничные (edge) и расширяющие (fanout) экспандеры практически остались в истории. Это часто связывают с обновлениями в SAS 2.0, но причина на самом деле кроется в зонах SAS, появившихся в 2.0, которые позволяют убрать разделение между граничными и расширяющими экспандерами. Конечно, зоны обычно реализуются специфически для каждого производителя, а не как единый индустриальный стандарт.

По сути, теперь на одной инфраструктуре доставки информации можно располагать несколько зон. Это значит, что к целям (накопителям) в хранилище могут обращаться разные инициаторы через один и тот же экспандер SAS. Сегментация домена выполняется через зоны, доступ осуществляется эксклюзивным образом.

Интерфейс SAS(Serial Attached SCSI) - последовательный интерфейс подключения жестких дисков, пришедший на смену параллельного SCSI-интерфейса. Жесткие диски с интерфейсом SAS предназначены для использования в серверных системах.

Как видно из названия, SAS является родственником SCSI и функционально представляет собой логический протокол своего предшественника, положенный на электрическую и механическую часть последовательного интерфейса SATA.

В сочетании с новой системой адресации это позволяет подключать до 128 устройств на один порт и иметь до 16256 устройств на контроллере.

Выпускающиеся в данный момент SAS контроллеры и жёсткие диски поддерживают скорость передачи данных 300Мбайт/c. Устройства версии SAS-2 будут передавать данные со скоростью до 600Мбайт/с.

История создания

В 2002 г. комитет T10 предложил новый протокол SAS, в котором были устранены вышеописанные недостатки. Соединение "точка-точка" обеспечило выделенную полосу пропускания для каждого диска, предельная длина кабеля составляет до 8м на один порт (увеличивается с помощью SAS-расширителей), количество адресуемых устройств в одном домене возросло до 16 256, вместо ручной установки ID используются уникальные номера (WWN - World Wide Number), присваиваемые каждому из них еще на этапе производства. Разъемы для внешних SAS-устройств рассчитаны на подключение до четырех накопителей и обеспечивают полосу пропускания 1,2Гбит/с в одном направлении. Также в SAS-интерфейсе была обеспечена полная поддержка горячего подключения и сортировка очереди команд.

Стандарты SAS

Набор стандартов SAS (Serial Attached SCSI) включает:

· уровень приложений: SCSI, ATA, SMP (Serial Management Protocol);

· транспортный уровень: SSP (Serial SCSI Protocol), STP (Serial ATA Tunneling Protocol, подключение SATA устройств к SAS HBA через расширитель (expander)), SMP (Serial Management Protocol, поддержка расширителей SAS);

· SAS port layer;

· уровень соединения: общая часть и SSP, STP, SMP;

· SAS phy: согласование скорости (замедление вставкой наполнителей); кодировка (8b10b как в FC и Ethernet); можно объединять в "широкий" (2x, 3x, 4x) порт в HBA/RAID или расширителе; скорость: SAS-1 - 3Гбит/с (300Мбайт/с), SAS-2 - 6Гбит/с (600Мбайт/с) ;

· физический уровень: обеспечивается полный дуплекс; кабели и разъёмы; одиночный внутренний разъём совместим с SATA устройствами, но не наоборот (SAS устройства нельзя подключать к SATA контроллеру); внешние и групповые разъёмы (wide port, несколько phy); в SAS-2 введён период адаптации при подключении устройства (training, позволяет увеличить длину кабеля до 6м); в SAS-2.1 введены активные кабели (встроенная микросхема позволяет уменьшить толщину кабеля и увеличить длину кабеля до 30м); оптический кабель - до 100м; разъём miniSAS x4 обеспечивает питание активного кабеля; внешние miniSAS x4 кабели имеют различные разъёмы для входных и выходных портов; в SAS-2.1 добавлены внешние miniSAS 8x и внутренние miniSAS 8x разъёмы.

Собственно под протоколом передачи данных SAS подразумевается сразу три протокола:

1) последовательный SCSI протокол (Serial SCSI Protocol SSP), передающий команды SCSI;

2) управляющий протокол SCSI (SCSI Management Protocol SMP), передающий управляющую информацию на расширители;

3) туннельный протокол SATA (SATA Tunneled Protocol STP), устанавливает соединение, которое позволяет передавать команды SATA.

Благодаря использованию этих трех протоколов интерфейс SAS полностью совместим с уже существующими SCSI приложениями, управляющим ПО и устройствами SATA.

Такая мультипротокольная архитектура, в сочетании с физической совместимостью разъемов SAS и SATA, делает технологию SAS универсальным связующим звеном между устройствами SAS и SATA.

Разъемы SAS

Разъем SAS является универсальным и по форм-фактору совместим с SATA. Это позволяет напрямую подключать к системе SAS как накопители SAS, так и накопители SATA и таким образом использовать систему либо для жизненно важных приложений, требующих высокой производительности и оперативного доступа к данным, либо для более экономичных приложений с более низкой стоимостью в пересчете на гигабайт.

Набор команд SATA является подмножеством набора команд SAS, что обеспечивает совместимость устройств SATA и контроллеров SAS. Однако SAS накопители не могут работать с контроллером SATA, поэтому они снабжены специальными ключами на разъемах, чтобы исключить вероятность неверного подключения.

Разъем SFF-8482 - внутренний коннектор для подключения стандартного жесткого диска горячей замены с SAS интерфейсом (так же можно подключить диск и с SATA интерфейсом). Через коннектор помимо данных подается питание для жесткого диска.

Разъем SFF-8484 - переходник, позволяющий подключать объединительную панель или корзину с разъемом SFF-8484 к контроллеру. Для 2 или 4 устройств.

Разъем SFF-8470 - внешний разъём с высокой плотностью контактов. Позволяет подключить до 4 устройств. Разъём типа Infiniband.

Разъем SFF-8087 - внутренний разъем mini-SAS для подключения до 4 устройств.

Разъем SFF-8088 - внешний разъем mini-SAS для подключения до 4 устройств

Serial Attached SCSI

Serial Attached SCSI (SAS ) - компьютерный интерфейс, разработанный для обмена данными с такими устройствами, как жёсткие диски и ленточные накопители. SAS использует последовательный интерфейс для работы с непосредственно подключаемыми накопителями (англ. Direct Attached Storage (DAS) devices ). SAS разработан для замены параллельного интерфейса SCSI и позволяет достичь более высокой пропускной способности, чем SCSI; в то же время SAS обратно совместим с интерфейсом SATA : устройства 3Гбит/с и 6Гбит/с SATA могут быть подключены к контроллеру SAS, но устройства SAS нельзя подключить к контроллеру SATA. Хотя SAS использует последовательный интерфейс в отличие от параллельного интерфейса, используемого традиционным SCSI, для управления SAS-устройствами по-прежнему используются команды SCSI. Протокол SAS разработан и поддерживается комитетом T10. Текущую рабочую версию спецификации SAS можно скачать с его сайта. SAS поддерживает передачу информации со скоростью до 6 Гбит/с; ожидается, что к 2012 году скорость передачи достигнет 12 Гбит/с . Благодаря уменьшенному разъему SAS обеспечивает полное двухпортовое подключение как для 3,5-дюймовых, так и для 2,5-дюймовых дисковых накопителей (раньше эта функция была доступна только для 3,5-дюймовых дисковых накопителей с интерфейсом Fibre Channel).

Введение

Типичная система с интерфейсом SAS состоит из следующих компонентов:

Инициаторы (англ. Initiators ) Инициатор - устройство, которое порождает запросы на обслуживание для целевых устройств и получает подтверждения по мере исполнения запросов. Чаще всего инициатор выполняется в виде СБИС . Целевые устройства (англ. Targets ) Целевое устройство содержит логические блоки и целевые порты, которые осуществляют приём запросов на обслуживание, исполняет их; после того, как закончена обработка запроса, инициатору запроса отсылается подтверждение выполнения запроса. Целевое устройство может быть как отдельным жёстким диском, так и целым дисковым массивом. Подсистема доставки данных (англ. Service Delivery Subsystem ) Является частью системы ввода-вывода, которая осуществляет передачу данных между инициаторами и целевыми устройствами. Обычно подсистема доставки данных состоит из кабелей, которые соединяют инициатор и целевое устройство. Дополнительно, кроме кабелей в состав подсистемы доставки данных могут входить расширители SAS . Расширители (экспандеры) (англ. Expanders ) Расширители (экспандеры) SAS - устройства, входящие в состав подсистемы доставки данных и позволяют облегчить передачи данных между устройствами SAS; например, расширитель позволяет подключить несколько целевых устройств SAS к одному порту инициатора. Подключение через расширитель является абсолютно прозрачным для целевых устройств.

Спецификации на SAS регламентируют физический, канальный и логический уровни интерфейса.

Сравнение SAS и параллельного SCSI

  • SAS использует последовательный протокол передачи данных между несколькими устройствами, и, таким образом, использует меньшее количество сигнальных линий.
  • Интерфейс SCSI использует общую шину. Таким образом, все устройства подключены к одной шине, и с контроллером одновременно может работать только одно устройство. Интерфейс SAS использует соединения точка-точка - каждое устройство соединено с контроллером выделенным каналом.
  • В отличие от SCSI, SAS не нуждается в терминации шины пользователем.
  • В SCSI имеется проблема, связанная с тем, что время распространения сигнала по разным линиям, составляющим параллельный интерфейс, может отличаться. Интерфейс SAS лишён этого недостатка.
  • SAS поддерживает большое количество устройств (> 16384), в то время как интерфейс SCSI поддерживает 8, 16, или 32 устройства на шине.
  • SAS обеспечивает более высокую пропускную способность (1.5, 3.0 или 6.0 Гбит/с). Такая пропускная способность может быть обеспечена на каждом соединении инициатор-целевое устройство, в то время как на шине SCSI пропускная способность шины разделена между всеми подключёнными к ней устройствами.
  • контроллеры SAS могут поддерживать подключение устройств с интерфейсом SATA , при прямом подключении - с использованием протокола SATA, при подключении через SAS-экспандеры - с использованием туннелирования через протокол STP (SATA Tunneled Protocol).
  • SAS, также как и параллельный SCSI, использует команды SCSI для управления и обмена данными с целевыми устройствами.

Сравнение SAS и SATA

Разъёмы

Как правило, разъёмы SAS значительно меньше разъёмов традиционного интерфейса SCSI, что позволяет использовать разъёмы SAS для подключения компактных накопителей размером 2,5 дюйма.

Существует несколько вариантов разъёмов SAS:

  • SFF 8482 - вариант, механически совместимый с разъёмом интерфейса SATA . За счет этого возможно подключать устройства SATA к контроллерам SAS. Подключить же SAS-устройство к интерфейсу SATA - не получится, этому препятствует отсутствие посередине разъема специального выреза-ключа (см. изображение разъема в таблице ниже);
  • SFF 8484 - внутренний разъём с плотной упаковкой контактов; позволяет подключить до 4 устройств;
  • SFF 8470 - разъём с плотной упаковкой контактов для подключения внешних устройств (разъём такого типа применяется в интерфейсе Infiniband , а кроме того, может использоваться для подключения внутренних устройств); позволяет подключить до 4 устройств;
  • SFF 8087 - уменьшенный разъём Molex iPASS, содержит разъём для подключения до 4 внутренних устройств;
  • SFF 8088 - уменьшенный разъём Molex iPASS, содержит разъём для подключения до 4 внешних устройств;
Изображение Кодовое название Также известен как Внешн./внутр. К-во линий К-во устр-в Комментарий
SFF 8482 SAS разъём Внутренний 1 Форм-фактор, совместимый с SATA-устройствами: позволяет SATA-устройствам соединяться с SAS-контроллером или планкой SAS-разъёмов, что устраняет необходимость в дополнительном SATA контроллере для подключения SATA-устройств типа DVD-рекордеров. Однако жёсткие диски с интерфейсом SAS не могут подключаться к шине SATA, потому что их физический разъём имеет «ключ», не позволяющий подключение к шине SATA. Изображённый на рисунке разъём является разъёмом «дисковой» стороны интерфейса.

SFF 8484 SAS 4x 32-pin Внутренний 32 (19) 4 (2) Разъём с высокой плотностью контактов; в стандарте SFF определены разъёмы для подключения 2 или 4 устройств.
SFF 8485 Определяет SGPIO (расширение стандарта SFF 8484) - последовательное соединение, обычно используемое для подключения светодиодных индикаторов.

SFF 8470 Разъём типа Infiniband Внешний 32 4 Внешний разъём с высокой плотностью контактов (также может использоваться в качестве внутреннего разъёма).

SFF 8087 Внутренний мини-SAS Внутренний 4 Внутренний разъём типа Molex

SFF 8088 Внешний мини-SAS Внешний 32 4 Внешний разъём типа Molex iPASS уменьшенной ширины с подключением до 4-х устройств.

Примечания

Ссылки


Wikimedia Foundation . 2010 .

В этой статье речь пойдет о том, что позволяет подключить жесткий диск к компьютеру, а именно, об интерфейсе жесткого диска. Точнее говорить, об интерфейсах жестких дисков, потому что технологий для подключения этих устройств за все время их существования было изобретено великое множество, и обилие стандартов в данной области может привести в замешательство неискушенного пользователя. Впрочем, обо все по порядку.

Интерфейсы жестких дисков (или строго говоря, интерфейсы внешних накопителей, поскольку в их качестве могут выступать не только , но и другие типы накопителей, например, приводы для оптических дисков) предназначены для обмена информацией между этими устройствами внешней памяти и материнской платой. Интерфейсы жестких дисков, не в меньшей степени, чем физические параметры накопителей, влияют на многие рабочие характеристики накопителей и на их производительность. В частности, интерфейсы накопителей определяют такие их параметры, как скорость обмена данными между жестким диском и материнской платой, количество устройств, которые можно подключить к компьютеру, возможность создания дисковых массивов, возможность горячего подключения, поддержка технологий NCQ и AHCI, и.т.д. Также от интерфейса жесткого диска зависит, какой кабель, шнур или переходник для его подключения к материнской плате вам потребуется.

SCSI - Small Computer System Interface

Интерфейс SCSI является одним из самых старых интерфейсов, разработанных для подключения накопителей в персональных компьютерах. Появился данный стандарт еще в начале 1980-х гг. Одним из его разработчиков был Алан Шугарт, также известный, как изобретатель дисководов для гибких дисков.

Внешний вид интерфейса SCSI на плате и кабеля подключения к нему

Стандарт SCSI (традиционно данная аббревиатура читается в русской транскрипции как «скази») первоначально предназначался для использования в персональных компьютерах, о чем свидетельствует даже само название формата – Small Computer System Interface, или системный интерфейс для небольших компьютеров. Однако так получилось, что накопители данного типа применялись в основном в персональных компьютерах топ-класса, а впоследствии и в серверах. Связано это было с тем, что, несмотря на удачную архитектуру и широкий набор команд, техническая реализация интерфейса была довольно сложна, и не подходила по стоимости для массовых ПК.

Тем не менее, данный стандарт обладал рядом возможностей, недоступных для прочих типов интерфейсов. Например, шнур для подключения устройств Small Computer System Interface может иметь максимальную длину в 12 м, а скорость передачи данных – 640 МБ/c.

Как и появившийся несколько позже интерфейс IDE, интерфейс SCSI является параллельным. Это означает, что в интерфейсе применяются шины, передающие информацию по нескольким проводникам. Данная особенность являлась одним из сдерживающих факторов для развития стандарта, и поэтому в качестве его замены был разработан более совершенный, последовательный стандарт SAS (от Serial Attached SCSI).

SAS - Serial Attached SCSI

Так выглядит интерфейс SAS серверного диска

Serial Attached SCSI разрабатывался в усовершенствования достаточно старого интерфейса подключения жестких дисков Small Computers System Interface. Несмотря на то, что Serial Attached SCSI использует основные достоинства своего предшественника, тем не менее, у него есть немало преимуществ. Среди них стоит отметить следующие:

  • Использование общей шины всеми устройствами.
  • Последовательный протокол передачи данных, используемый SAS, позволяет задействовать меньшее количество сигнальных линий.
  • Отсутствует необходимость в терминации шины.
  • Практически неограниченное число подключаемых устройств.
  • Более высокая пропускная способность (до 12 Гбит/c). В будущих реализациях протокола SAS предполагается поддерживать скорость обмена данными до 24 Гбит/c.
  • Возможность подключения к контроллеру SAS накопителей с интерфейсом Serial ATA.

Как правило, системы Serial Attached SCSI строятся на основе нескольких компонентов. В число основных компонентов входят:

  • Целевые устройства. В эту категорию включают собственно накопители или дисковые массивы.
  • Инициаторы – микросхемы, предназначенные для генерации запросов к целевым устройствам.
  • Система доставки данных – кабели, соединяющие целевые устройства и инициаторы

Разъемы Serial Attached SCSI могут иметь различную форму и размер, в зависимости от типа (внешний или внутренний) и от версий SAS. Ниже представлены внутренний разъем SFF-8482 и внешний разъем SFF-8644, разработанный для SAS-3:

Слева - внутренний разъём SAS SFF-8482; Справа - внешний разъём SAS SFF-8644 с кабелем.

Несколько примеров внешнего вида шнуров и переходников SAS: шнур HD-Mini SAS и шнур-переходник SAS-Serial ATA.

Слева - шнур HD Mini SAS; Справа - переходной шнур с SAS на Serial ATA

Firewire - IEEE 1394

Сегодня достаточно часто можно встретить жесткие диски с интерфейсом Firewire. Хотя через интерфейс Firewire к компьютеру можно подключить любые типы периферийных устройств, и его нельзя назвать специализированным интерфейсом, предназначенным для подключения исключительно жестких дисков, тем не менее, Firewire имеет ряд особенностей, которые делают его чрезвычайно удобным для этой цели.

FireWire - IEEE 1394 - вид на ноутбуке

Интерфейс Firewire был разработан в середине 1990-х гг. Начало разработке положила небезызвестная фирма Apple, нуждавшаяся в собственной, отличной от USB, шине для подключения периферийного оборудования, прежде всего мультимедийного. Спецификация, описывающая работу шины Firewire, получила название IEEE 1394.

На сегодняшний день Firewire представляет собой один из наиболее часто используемых форматов высокоскоростной последовательной внешней шины. К основным особенностям стандарта можно отнести:

  • Возможность горячего подключения устройств.
  • Открытая архитектура шины.
  • Гибкая топология подключения устройств.
  • Меняющаяся в широких пределах скорость передачи данных – от 100 до 3200 Мбит/c.
  • Возможность передачи данных между устройствами без участия компьютера.
  • Возможность организации локальных сетей при помощи шины.
  • Передача питания по шине.
  • Большое количество подключаемых устройств (до 63).

Для подключения винчестеров (обычно посредством внешних корпусов для жестких дисков) через шину Firewire, как правило, используется специальный стандарт SBP-2, использующий набор команд протокола Small Computers System Interface. Существует возможность подключения устройств Firewire к обычному разъему USB, но для этого требуется специальный переходник.

IDE - Integrated Drive Electronics

Аббревиатура IDE, несомненно, известна большинству пользователей персональных компьютеров. Стандарт интерфейса для подключения жестких дисков IDE был разработан известной фирмой, производящей жесткие диски – Western Digital. Преимуществом IDE по сравнению с другими существовавшими в то время интерфейсами, в частности, интерфейсом Small Computers System Interface, а также стандартом ST-506, было отсутствие необходимости устанавливать контроллер жесткого диска на материнскую плату. Стандарт IDE подразумевал установку контроллера привода на корпус самого накопителя, а на материнской плате оставался лишь хост-адаптер интерфейса для подключения приводов IDE.

Интерфейс IDE на материнской плате

Данное нововведение позволило улучшить параметры работы накопителя IDE благодаря тому, что сократилось расстояние между контроллером и самим накопителем. Кроме того, установка контроллера IDE внутрь корпуса жесткого диска позволила несколько упростить как материнские платы, так и производство самих винчестеров, поскольку технология давала свободу производителям в плане оптимальной организации логики работы накопителя.

Новая технология первоначально получила название Integrated Drive Electronics (Встроенная в накопитель электроника). Впоследствии был разработан описывающий ее стандарт, названный ATA. Это название происходит от последней части названия семейства компьютеров PC/AT посредством добавления слова Attachment.

Для подключения жесткого диска или другого устройства, например, накопителя для оптических дисков, поддерживающего технологию Integrated Drive Electronics, к материнской плате, используется специальный кабель IDE. Поскольку ATA относится к параллельным интерфейсам (поэтому его также называют Parallel ATA или PATA), то есть, интерфейсам, предусматривающим одновременную передачу данных по нескольким линиям, то его кабель данных имеет большое количество проводников (обычно 40, а в последних версиях протокола имелась возможность использовать 80-жильный кабель). Обычный кабель данных для данного стандарта имеет плоский и широкий вид, но встречаются и кабели круглого сечения. Кабель питания для накопителей Parallel ATA имеет 4-контактный разъем и подсоединен к блоку питания компьютера.

Ниже приведены примеры кабеля IDE и круглого шнура данных PATA:

Внешний вид интерфейсного кабеля: cлева - плоский, справа в круглой оплетке - PATA или IDE.

Благодаря сравнительной дешевизне накопителей Parallel ATA, простоте реализации интерфейса на материнской плате, а также простоте установки и конфигурации устройств PATA для пользователя, накопители типа Integrated Drive Electronics на длительное время вытеснили с рынка винчестеров для персональных компьютеров бюджетного уровня устройства других типов интерфейса.

Однако стандарт PATA имеет и ряд недостатков. Прежде всего, это ограничение по длине, которую может иметь кабель данных Parallel ATA – не более 0,5 м. Кроме того, параллельная организация интерфейса накладывает ряд ограничений на максимальную скорость передачи данных. Не поддерживает стандарт PATA и многие расширенные возможности, которые имеются у других типов интерфейсов, например, горячее подключение устройств.

SATA - Serial ATA

Вид интерфейса SATA на материнской плате

Интерфейс SATA (Serial ATA), как можно догадаться из названия, является усовершенствованием ATA. Заключается это усовершенствование, прежде всего, в переделке традиционного параллельного ATA (Parallel ATA) в последовательный интерфейс. Однако этим отличия стандарта Serial ATA от традиционного не ограничиваются. Помимо изменения типа передачи данных с параллельного на последовательный, изменились также разъемы для передачи данных и электропитания.

Ниже приведен шнур данных SATA:

Шнур передачи данных для SATA интерфейса

Это позволило использовать шнур значительно большей длины и увеличить скорость передачи данных. Однако минусом стало то обстоятельство, что устройства PATA, которые до появления SATA присутствовали на рынке в огромных количествах, стало невозможно напрямую подключить в новые разъемы. Правда, большинство новых материнских плат все же имеют старые разъемы и поддерживают подключение старых устройств. Однако обратная операция – подключение накопителя нового типа к старой материнской плате обычно вызывает куда больше проблем. Для этой операции пользователю обычно требуется переходник Serial ATA to PATA. Переходник для кабеля питания обычно имеет сравнительно простую конструкцию.

Переходник питания Serial ATA to PATA:

Слева общий вид кабеля; Cправа укрупнено внешний вид коннекторов PATA и Serial ATA

Сложнее, однако, дело обстоит с таким устройством, как переходник для подключения устройства последовательного интерфейса в разъем для параллельного интерфейса. Обычно переходник такого типа выполнен в виде небольшой микросхемы.

Внешний вид универсального двунаправленного переходника между интерфейсами SATA - IDE

В настоящее время интерфейс Serial ATA практически вытеснил Parallel ATA, и накопители PATA можно встретить теперь в основном лишь в достаточно старых компьютерах. Еще одной особенностью нового стандарта, обеспечившей его широкую популярность, стала поддержка .

Вид переходника с IDE на SATA

О технологии NCQ можно рассказать чуть подробнее. Основное преимущество NCQ состоит в том, что она позволяет использовать идеи, которые давно были реализованы в протоколе SCSI. В частности, NCQ поддерживает систему упорядочивания операций чтения/записи, поступающих к нескольким накопителям, установленным в системе. Таким образом, NCQ способна значительно повысить производительность работы накопителей, в особенности массивов жестких дисков.

Вид переходника с SATA на IDE

Для использования NCQ необходима поддержка технологии со стороны жесткого диска, а также хост-адаптера материнской платы. Практически все адаптеры, поддерживающие AHCI, поддерживают и NCQ. Кроме того, NCQ поддерживают и некоторые старые проприетарные адаптеры. Также для работы NCQ требуется ее поддержка со стороны операционной системы.

eSATA - External SATA

Отдельно стоит упомянуть о казавшемся многообещающим в свое время, но так и не получившем широкого распространения формате eSATA (External SATA). Как можно догадаться из названия, eSATA представляет собой разновидность Serial ATA, предназначенную для подключения исключительно внешних накопителей. Стандарт eSATA предлагает для внешних устройств большую часть возможностей стандартного, т.е. внутреннего Serial ATA, в частности, одинаковую систему сигналов и команд и столь же высокую скорость.

Разъем eSATA на ноутбуке

Тем не менее, у eSATA есть и некоторые отличия от породившего его стандарта внутренней шины. В частности, eSATA поддерживает более длинный кабель данных (до 2 м), а также имеет более высокие требования к питанию накопителей. Кроме того, разъемы eSATA несколько отличаются от стандартных разъемов Serial ATA.

По сравнению с другими внешними шинами, такими, как USB и Firewire, eSATA, однако, имеет один существенный недостаток. Если эти шины позволяют осуществлять электропитание устройства через сам кабель шины, то накопитель eSATA требует специальные разъемы для питания. Поэтому, несмотря на сравнительно высокую скорость передачи данных, eSATA в настоящее время не пользуется большой популярностью в качестве интерфейса для подключения внешних накопителей.

Заключение

Информация, хранящаяся на жестком диске, не может стать полезной для пользователя и доступной для прикладных программ до тех пор, пока к ней не получит доступ центральный процессор компьютера. Интерфейсы жестких дисков представляют собой средство для связи между этими накопителями и материнской платой. На сегодняшний день существует немало различных типов интерфейсов жестких дисков, каждый из которых имеет свои достоинства, недостатки и характерные особенности. Надеемся, что приведенная в данной статье информация во многом окажется полезной для читателя, ведь выбор современного жесткого диска во многом определяются не только его внутренними характеристиками, такими, как емкость, объем кэш-памяти, скорость доступа и вращения, но и тем интерфейсом, для которого он был разработан.