Плазменные дисплеи. Устройства вывода информации. Жидкокристаллические мониторы. Плазменные мониторы. Мониторы с электронное лучевой трубкой. Итак, плазменные телевизоры это

"У меня дома ПЛАЗМА ", - не правда ли, красиво звучит, под этим понимается что-то очень большое и красивое Сейчас "плазмой" дразнят практически все плоские телевизоры, даже маленькие. Согласитесь, слово "плазма" звучит гораздо круче, чем ЖК или LCD, LED (какой-то непонятный набор букв ), этим и объясняется подсознательная тяга к чему-то такому огромному и завораживающе-непонятному слову плазма . И действительно, когда видишь перед собой такою плазменную панель:

то стоишь перед ней и не понимаешь, почему она ещё не у меня дома? Ну что ж, давайте всё-таки разберёмся, что же такое плазменная панель и как она работает. Кто не очень сильно храпел на уроках физики, помнит, что вещество (вода, к примеру или металл...) может находится в трёх состояниях: твёрдом (лёд), жидком (вода) или газообразном (пар), так вот, плазма - это четвёртое состояние вещества. Она представляет собой ионизированный газ (газ, в котором очень много заряженных частичек, как воздух после грозы, только гораздо сильнее)

Если в газ (нейтральный) запустить очень много электронов (они имеют отрицательный заряд "-"), они будут сталкиваться с атомами газа и выбивать из них другие электроны. Атом , потеряв электроны, становится ионом (имеет положительный заряд "+"). Когда электрический ток проходит через образовавшуюся плазму, отрицательно и положительно заряженные частицы притягиваются друг к другу, столкновения "возбуждают" атомы газа в плазме, заставляя их высвобождать энергию в виде фотонов .

В плазменных панелях используются в основном инертные газы - неон и ксенон . В состоянии "возбуждения" они испускают свет в ультрафиолетовом диапазоне, невидимом для человеческого глаза, однако, его можно использовать для высвобождения фотонов видимого спектра

Патент на изобретение "плазменной панели", хотя правильнее говорить "плазменного дисплея" был выписан в 1964 на имена трёх человек: Дональда Битцера , Жене Слоттова и Роберта Вильсона . Первый плазменный дисплей состоял всего из одного пикселя (!!!), естественно, что из него никакого изображения, кроме точки, получить было нельзя, тут был важен сам принцип. Не прошло и десяти лет, как приемлемые результаты были достигнуты, в 1971 году фирме Owens-Illinois была продана лицензия на производство дисплеев Digivue .

В 1983 году Университет Иллинойса заработал ни много ни мало, миллион долларов за продажу лицензии "на плазму" компании IBM - сильнейшему игроку, на то время, в области компьютерных технологий. Перед Вами модель 1981 года "PLATO V ", с монохроматическим дисплеем оранжевого свечения:

Всё бы хорошо, да только LCD дисплеи, появившиеся в начале 90-х, стали уверенно вытеснять "плазму" с рынка. К сожалению, создать маленькие пиксели (как у LCD) было не так просто, да и яркость с контрастностью оставляли желать лучшего

Никто не знает, чтобы было дальше, если бы технологией плазменных панелей не занялась компания "Matsushita ", известная сейчас как "Panasonic ". В 1999 году был, наконец, создан, перспективный 60-дюймовый прототип с замечательными яркостью и контрастностью, превосходящими их "жидкокристаллические" аналоги Вот как выглядит плазменный телевизор без задней крышки:

Давайте посмотрим, как устроена плазменная панель и каким образом она работает. В плазменных панелях ксенон и неон содержится в сотнях маленьких микрокамер , расположенных между двумя стеклами. С обеих сторон, между стеклами и микрокамерами, располагаются два длинных электрода . Управляющие электроды расположены под микрокамерами, вдоль тылового стекла. Прозрачные сканирующие электроды , окруженные слоем диэлектрика и покрытые защитным слоем оксида магния, расположены над микрокамерами, вдоль фронтального стекла

Электроды расположены крест-накрест во всю ширину экрана. Сканирующие электроды расположены горизонтально, а управляющие электроды – вертикально. Как вы можете видеть ниже, на диаграмме, вертикальные и горизонтальные электроды формируют прямоугольную сетку. Для ионизации газа в определенной микрокамере, процессор заряжает электроды непосредственно на пересечении с этой микрокамерой. Тысячи подобных процессов происходят за долю секунды, заряжая по очереди каждую микрокамеру.

Когда пересекающиеся электроды заряжены (один отрицательно, а другой положительно), через газ в микрокамере проходит электрический разряд . Как было сказано ранее, этот разряд приводит заряженные частицы в движение, вследствие чего атомы газа испускают фотоны ультрафиолета , которые, в свою очередь, заставляют светиться фосфорное покрытие микрокамер, выбивая из них фотоны основных видимых цветов .

Каждый пиксель плазменной панели состоит из трёх микрокамер (субпикселей): красного зелёного и синего (как в кинескопных телевизорах), чем меньше размер пикселей в дисплее, тем более чётким получается изображение

Плазменные дисплеи отличаются хорошей яркостью, чёткостью и красивой цветопередачей . В отличии от LCD и LED (жидкокристаллических дисплеев), которые работают на "просветку", плазма светит сама , обеспечивая красивый и глубокий чёрный цвет и замечательную контрастность изображения практически с любого угла обзора. Цифровых тормозов и глюков на ней практически незаметно, однако, разер пикселей немного больше, чем у ЖК, поэтому размер плазменной панели (обычно) начинается от 32 дюймов

К недостаткам плазмы можно отнести немалую стоимость и большое потребление электроэнергии. Если у Вас дома есть маленькие дети, учтите, что одного удара мячиком или другой игрушкой может быть достаточно для того, чтобы вся плазменная панель отправилась на свалку (там нет 5-10 сантиметрового стекла перед экраном, как в кинескопах)

Частые вопросы: выгорают ли пиксели на плазме и радиоактивное излучение ? Ультрафиолет действительно опасен, но, благодаря переднему защитному стеклу, величина его опасности равна нулю. Вы пробовали позагорать за стеклом? Тут тоже самое, стекло не пропускает ультрафиолетовые лучи, поэтому опасаться абсолютно нечего. Выгорание пикселей - хоть многие утверждают, что его нет, но оно есть , поэтому не нужно долгое время оставлять неподвижную картинку на экране (долго - это несколько дней, за час-два ничего не случится)

Помните, что телевизор с плазменной панелью, какой бы он не был хороший, тоже может выйти из строя, а его ремонт - вещь весьма сложная и недешёвая, покупая такого красавца, как на картинке, будьте готовы к его соответствующему обслуживанию.

Плазменный экран
Плазменная панель немного похожа на обыкновенный кинескоп - она так-же покрыта способным светиться составом. В то же время они, как и LCD, используют сетку электродов с защитным покрытием из оксида магния для передачи сигнала на каждый пиксель-ячейку. Ячейки заполнены интертными` газами - смесью неона, ксенона, аргона. Проходящий через газ электрический ток заставляет его светиться.

По сути, плазменная панель представляет собой матрицу из крошечных флуоресцентных ламп, управляемых при помощи встроенного компьютера панели. Каждый пиксель-ячейка является своеобразным конденсатором с электродами. Электрический разряд ионизирует газы, превращая их в плазму - т. е. электрически нейтральную, высоко-ионизированную субстанцию, состоящую из электронов, ионов и нейтральных частиц.


В нормальных условиях отдельные атомы газа содержат равное число протонов (частиц с положительным зарядом в ядре атома) и электронов и таким образом газ электрически нейтрален. Но если ввести в газ большое число свободных электронов, пропустив через него электрический ток, ситуация меняется радикально: свободные электроны сталкиваются с атомами, «выбивая» все новые и новые электроны. Без электрона меняется баланс, атом приобретает положительный заряд и превращается в ион. Когда электрический ток проходит через образовавшуюся плазму, отрицательно и положительно заряженные частицы стремятся друг к другу. Среди всего этого хаоса частицы постоянно сталкиваются.


Столкновения «возбуждают» атомы газа в плазме, заставляя их высвобождать энергию в виде фотонов.

В плазменных панелях используются в основном инертные газы - неон и ксенон. В состоянии «возбуждения» они испускают свет в ультрафиолетовом диапазоне, невидимом для человеческого глаза. Тем не менее, ультрафиолет можно использовать и для высвобождения фотонов видимого спектра.
После разряда ультрафиолетовое излучение заставляет светиться фосфорное покрытие ячеек-пикселей. Красную, зеленую или синюю составляющую покрытия. На самом деле каждый пиксель делится на три субпикселя, содержащих красный, зеленый либо синий фосфор. Для создания разнообразных оттенков цветов интенсивность свечения каждого субпикселя контролируется независимо. В кинескопных телевизорах это делается за счет маски (да и прожекторы под каждый цвет разные), а в «плазме» - при помощи 8-битной импульсной кодовой модуляции. Общее число цветовых комбинаций в этом случае достигает 16,777,216 оттенков.

Тот факт, что плазменные панели сами являются источником света, обеспечивает отличные углы обзора по вертикали и горизонтали и великолепную цветопередачу (в отличие от, например, LCD, экраны в которых нуждаются в подсветке). Впрочем, обычные плазменные дисплеи в норме страдают от низкой контрастности. Это обусловлено необходимостью постоянно подавать низковольтный ток на все ячейки. Без этого пиксели будут «включаться» и «выключаться» как обычные флуоресцентные лампы, то есть очень долго, непозволительно увеличивая время отклика. Таким образом, пиксели должны оставаться включенными, испуская свет низкой интенсивности, что, конечно, не может не сказаться на контрастности дисплея.

В конце 90-х гг. прошлого века Fujitsu удалось несколько смягчить остроту проблемы, улучшив контрастность своих панелей с 70:1 до 400:1.
К 2000 году некоторые производители заявляли в спецификациях панелей контрастность до 3000:1, сейчас - уже 10000:1+.
Процесс производства плазменных дисплеев несколько проще, чем процес производства LCD. В сравнении с выпуском TFT LCD-дисплеев, требующим использования фотолитографии и высокотемпературных технологий в стерильно чистых помещениях, «плазму» можно выпускать в цехах погрязнее, при невысоких температурах, с использованием прямой печати.
Тем не менее, век плазменных панелей недолог - совсем недавно среднестатистический ресурс панели равнялся 25000 часов, сейчас он почти удвоился, но проблему это не снимает. В пересчете на часы работы плазменный дисплей обходится дороже LCD. Для большого презентационного экрана разница не очень существенная, однако, если оснастить плазменными мониторами многочисленные офисные компьютеры, выигрыш LCD становится очевидным для компании-покупателя.
Еще один важный недостаток «плазмы» - большой размер пикселей. Большинство производителей неспособны создавать ячейки менее 0,3 мм - это больше, чем зерно стандартной LCD матрицы. Непохоже, чтобы в ближайшем будущем ситуация изменилась к лучшему. На среднесрочную перспективу такие плазменные дисплеи подойдут в качестве домашних телевизоров и презентационных экранов до 70+ дюймов размером. Если «плазму» не уничтожат LCD и появляющиеся каждый день новые дисплейные технологии, через какой-нибудь десяток лет она будет доступна любому покупателю.

Плазменная панель представляет собой матрицу газонаполненных ячеек, заключенных между двумя параллельными стеклянными пластинами, внутри которых расположены прозрачные электроды, образующие соответственно шины сканирования, подсветки и адресации. Разряд в газе протекает между разрядными электродами (сканирования и подсветки) на лицевой стороне экрана и электродом адресации на задней стороне.

Особенности конструкции:

· суб-пиксель плазменной панели обладает следующими размерами 200 мкмЧ200 мкм Ч100 мкм;

· передний электрод изготовляется из оксида индия и олова, поскольку он проводит ток и максимально прозрачен.

· при протекании больших токов по довольно большому плазменному экрану из-за сопротивления проводников возникает существенное падение напряжения, приводящее к искажениям сигнала, в связи с чем добавляют промежуточные проводники из хрома, несмотря на его непрозрачность;

· для создания плазмы, ячейки обычно заполняются газом - неоном или ксеноном (реже используется He и/или Ar, или, чаще, их микс-смеси).

Люминофоры в пикселях плазменной панели обладают следующим составом:

· Зелёный: Zn 2 SiO 4: Mn 2+ / BaAl 12 O 19: Mn 2+ ; + / YBO 3: Tb / (Y, Gd) BO 3: Eu

· Красный: Y 2 O 3: Eu 3+ / Y 0,65 Gd 0,35 BO 3: Eu 3+

· Синий: BaMgAl 10 O 17: Eu 2+

Существующая проблема в адресации миллионов пикселей решается расположением пары передних дорожек в виде строк (шины сканирования и подсветки), а каждой задней дорожки в виде столбцов (шина адресации). Внутренняя электроника плазменных экранов автоматически выбирает нужные пиксели. Эта операция проходит быстрее, чем сканирование лучом на ЭЛТ-мониторах. В последних моделях PDP обновление экрана происходит на частотах 400-600 Гц, что не позволяет человеческому глазу замечать мерцания экрана.

Принцип действия монитора основан на плазменной технологии: используется эффект свечения инертного газа под воздействием электричества (примерно так же, как работают неоновые лампы).

Работа плазменной панели состоит из трех этапов:

1. Инициализация, в ходе которой происходит упорядочивание положения зарядов среды и её подготовка к следующему этапу (адресации). При этом на электроде адресации напряжение отсутствует, а на электрод сканирования относительно электрода подсветки подается импульс инициализации имеющий ступенчатый вид. На первой ступени этого импульса происходит упорядочивание расположения ионовой газовой среды, на второй ступени разряд в газе, а на третьей - завершение упорядочивания.

2. Адресация, в ходе которой происходит подготовка пикселя к подсвечиванию. На шину адресации подается положительный импульс (+75 В), а на шину сканирования отрицательный (-75 В). На шине подсветки напряжение устанавливается равным +150 В.

3. Подсветка, в ходе которой на шину сканирования подается положительный, а на шину подсветки отрицательный импульс, равный 190 В. Сумма потенциалов ионов на каждой шине и дополнительных импульсов приводит к превышению порогового потенциала и разряду в газовой среде. После разряда происходит повторное распределение ионов у шин сканирования и подсветки. Смена полярности импульсов приводит к повторному разряду в плазме. Таким образом, меняя полярность импульсов обеспечивается многократный разряд ячейки.

Один цикл "инициализация - адресация - подсветка" образует формирование одного подполя изображения. Складывая несколько подполей можно обеспечивать изображение заданной яркости и контраста. В стандартном исполнении каждый кадр плазменной панели формируется сложением восьми подполей.

Рисунок 1. Конструкция в ячейках

Таким образом, при подведении к электродам высокочастотного напряжения происходит ионизация газа или образование плазмы. В плазме происходит емкостный высокочастотный разряд, что приводит к ультрафиолетовому излучению, которое вызывает свечение люминофора: красное, зелёное или синее. Это свечение, проходя через переднюю стеклянную пластину, попадает в глаз зрителя.

Работа плазменных мониторов очень похожа на работу неоновых ламп, которые сделаны в виде трубки, заполненной инертным газом низкого давления. Внутрь трубки помещена пара электродов, между которыми зажигается электрический разряд и возникает свечение. Плазменные экраны создаются путем заполнения пространства между двумя стеклянными поверхностями инертным газом, например, аргоном или неоном. Затем на стеклянную поверхность помещают маленькие прозрачные электроды, на которые подается высокочастотное напряжение. Под действием этого напряжения в прилегающей к электроду газовой области возникает электрический разряд. Плазма газового разряда излучает свет в ультрафиолетовом диапазоне, который вызывает свечение частиц люминофора в диапазоне, видимом человеком.

Фактически, каждый пиксель на экране работает, как обычная флуоресцентная лампа (иначе говоря, лампа дневного света). Основной принцип работы плазменной панели состоит в управляемом холодном разряде разреженного газа (ксенона или неона), находящегося в ионизированном состоянии (холодная плазма). Рабочим элементом (пикселем), формирующим отдельную точку изображения, является группа из трех субпикселей, ответственных за три основных цвета соответственно. Каждый субпиксель представляет собой отдельную микрокамеру, на стенках которой находится флюоресцирующее вещество одного из основных цветов. Пиксели находятся в точках пересечения прозрачных управляющих хром-медь-хромовых электродов, образующих прямоугольную сетку.

Рисунок 2. Конструкция в ячейке

Для того, чтобы "зажечь" пиксель, происходит приблизительно следующее. На питающий и управляющий электроды, ортогональные друг другу, в точке пересечения которых находится нужный пиксель, подается высокое управляющее переменное напряжение прямоугольной формы. Газ в ячейке отдает большую часть своих валентных электронов и переходит в состояние плазмы. Ионы и электроны попеременно собираются у электродов, по разные стороны камеры, в зависимости от фазы управляющего напряжения. Для "поджига" на сканирующий электрод подается импульс, одноименные потенциалы складываются, и вектор электростатического поля удваивает свою величину. Происходит разряд - часть заряженных ионов отдает энергию в виде излучения квантов света в ультрафиолетовом диапазоне (в зависимости от газа). В свою очередь, флюоресцирующее покрытие, находясь в зоне разряда, начинает излучать свет в видимом диапазоне, который и воспринимает наблюдатель. 97% ультрафиолетовой составляющей излучения, вредного для глаз, поглощается наружным стеклом. Яркость свечения люминофора определяется величиной управляющего напряжения.

Рисунок 3. Устройство ячейки цветной газоразрядной панели переменного тока

Высокая яркость (до 650 кд/м2) и контрастность (до 3000:

1) наряду с отсутствием дрожания являются большими преимуществами таких мониторов (Для сравнения: у профессионального ЭЛТ-монитора яркость равна приблизительно 350 кд/м2, а у телевизора - от 200 до 270 кд/м2 при контрастности от 150: 1 до 200:

1). Высокая четкость изображения сохраняется на всей рабочей поверхности экрана. Кроме того, угол по отношению к нормали, под которым увидеть нормальное изображение на плазменных мониторах, существенно больше, чем у LCD-мониторов. К тому же плазменные панели не создают магнитных полей (что служит гарантией их безвредности для здоровья), не страдают от вибрации, как ЭЛТ-мониторы, а их небольшое время регенерации позволяет использовать их для отображения видео - и телесигнала. Отсутствие искажений и проблем сведения электронных лучей и их фокусировки присуще всем плоскопанельным дисплеям. Необходимо отметить и стойкость PDP-мониторов к электромагнитным полям, что позволяет использовать их в промышленных условиях - даже мощный магнит, помещенный рядом с таким дисплеем, никак не повлияет на качество изображения. В домашних же условиях на монитор можно поставить любые колонки, не опасаясь возникновения цветных пятен на экране.

Главными недостатками такого типа мониторов является довольно высокая потребляемая мощность, возрастающая при увеличении диагонали монитора и низкая разрешающая способность, обусловленная большим размером элемента изображения. Кроме этого, свойства люминофорных элементов быстро ухудшаются, и экран становится менее ярким. Поэтому срок службы плазменных мониторов ограничен 10000 часами (это около 5 лет при офисном использовании). Из-за этих ограничений, такие мониторы используются пока только для конференций, презентаций, информационных щитов, то есть там, где требуются большие размеры экранов для отображения информации .

Решила разобраться в такой понтовой теме как плазменный дисплей.

Многие люди мучаются вопросом: «Шо же такое плазменный дисплей и насколько это круто, а лучше – насколько это удобно?». Мы разберем эту тему по винтикам и узнаем всю соль!

Название

Почему мы начали с названия? Правильно, существует хотя-бы 3 различных, и часто употребляемых варианта данному устройству (Дисплей, панель, экран), с которыми нужно разобраться в первую очередь.
Панель – наиболее звучное и употребляемое название данного типа экрана. Выражение «У меня дома плазменная панель» - стало чем-то притягательным и мощным, ибо мы в подсознании представляем себе нечто большое, высокотехнологичное с сочной картинкой. Ирония в том, что слово панель неправильно употреблять по отношению к , монитору и т.д. Стилистически верное слово, неверно грамматически.
Дисплей – второе по употребляемости, верно и грамматически. Поскольку патент зарегистрированный тремя мужиками, которые первыми притворили эту технологию в жизнь, содержал именно слово Дисплей.
Экран – вполне, почему бы и нет. Синоним к слову дисплей.

Сравниваем

Данные мы будем приводить в сравнении с , это очевидно. Да, имеют свои плюшки, но они не используются в том сегменте, где плазма и ЖК.

Преимущества

  • Понты.
  • Реалистичность изображения(спорно).
  • Изначально глубокая передача цветов, но это меркнет на фоне новых подсветок LED и OLED, которые уже передают лучше цвета.

Недостатки

  • Цена на устройства с такими экранами и наличием функций выше, чем аналог с ЖК.
  • Выше энергопотребление.
  • Из-за своего строения пиксели быстро выгорают при долго включенной статичной картинке. Как следствие – использование только для просмотра динамичных сцен.
  • Большие пиксели, вследствие чего у относительно маленьких экранов плохое разрешение.
  • Наименьшая ширина дисплеев больше наименьшей ширины ЖК.

Конструкция

Плазменная панель представляет собой матрицу газонаполненных ячеек, заключённых между двумя параллельными стеклянными пластинами, внутри которых расположены прозрачные электроды, образующие шины сканирования, подсветки и адресации. Разряд в газе протекает между разрядными электродами(сканирования и подсветки) на лицевой стороне экрана и электродом адресации на задней стороне.

Особенности конструкции

  • суб-пиксель плазменной панели обладает следующими размерами 200 мкм x 200 мкм x 100 мкм;
  • передний электрод изготовляется из оксида индия и олова, поскольку он проводит ток и максимально прозрачен.
  • при протекании больших токов по довольно большому плазменному экрану из-за сопротивления проводников возникает существенное падение напряжения, приводящее к искажениям сигнала, в связи с чем добавляют промежуточные проводники из хрома, несмотря на его непрозрачность;
  • для создания плазмы ячейки обычно заполняются газами - неоном или ксеноном (реже используется гелий и/или аргон, или, чаще, их смеси) с добавлением ртути.

Принцип работы

  1. инициализация, в ходе которой происходит упорядочение положения зарядов среды и её подготовка к следующему этапу (адресации). При этом на электроде адресации напряжение отсутствует, а на электрод сканирования относительно электрода подсветки подаётся импульс инициализации, имеющий ступенчатый вид. На первой ступени этого импульса происходит упорядочение расположения ионной газовой среды, на второй ступени разряд в газе, а на третьей - завершение упорядочения.
  2. адресация, в ходе которой происходит подготовка пикселя к подсвечиванию. На шину адресации подаётся положительный импульс (+75 В), а на шину сканирования отрицательный (-75 В). На шине подсветки напряжение устанавливается равным +150 В.
  3. подсветка, в ходе которой на шину сканирования подаётся положительный, а на шину подсветки отрицательный импульс, равный 190 В. Сумма потенциалов ионов на каждой шине и дополнительных импульсов приводит к превышению порогового потенциала и разряду в газовой среде. После разряда происходит повторное распределение ионов у шин сканирования и подсветки. Смена полярности импульсов приводит к повторному разряду в плазме. Таким образом, сменой полярности импульсов обеспечивается многократный разряд ячейки.

Таким образом, при подведении к электродам высокочастотного напряжения происходит ионизация газа или образование плазмы. В плазме происходит ёмкостной высокочастотный разряд, что приводит к ультрафиолетовому излучению, которое вызывает свечение люминофора: красное, зелёное или синее. Это свечение проходя через переднюю стеклянную пластину попадает в глаз зрителя.

Вывод: Если вы страшный мажор, и не собираетесь даже смотреть на этот телевизор. Покупайте самый большой размер дисплея в наличии в магазине и смело бабахайте свой домашний кинотеатр, затем сказать, что у вас всё это есть дома и пригласить кучу друзей, которые также туда не взглянут. Правда, вы мой дорогой читатель из-за своего кошелька должны придерживаться голоса разума и брать телевизор или монитор только с ЖК экраном.

Наверное, для многих из наших читателей такие выражения, как плазменные технологии, плазменные мониторы, звучат с некой долей экзотичности, а кое-кто даже и не представляет себе, что это такое. И это не удивительно, ведь плазменные мониторы на сегодняшний день - большая редкость, можно даже сказать экзотика, но, в любом случае, плазменные технологии - это очень передовые и очень перспективные технологии, которые сейчас бурно развиваются. И, возможно, в уже не столь отдаленном будущем плазменные мониторы перейдут из разряда дорогих "игрушек" для богатых в категорию товаров широкого потребления. И для этого даже сейчас есть определенные предпосылки.

Ведь тенденция увеличения размера экрана отчетливо наблю дается как в индустрии компьютерных мониторов, так и в бытовых телевизорах. Мониторы, использующие ЭЛТ- технологии, в своем развитии уже подошли к пределу, и наиболее совершенные их модели, размер экрана которых достиг 24" (телевизоры освоили чуть большие кинескопы, тем не менее больше, чем 32", и они не одолели), имеют слишком большие вес и габаритные размеры, особенно в глубину. А стоимость плоских и легких ЖК-дисплеев с увеличением диагонали экрана сверх 20" становится слишком высокой. Поэтому, как ни странно это звучит, для создания больших экранов своеобразной палочкой-выручалочкой могут стать именно плазменные дисплеи, которые имеют толщину порядка нескольких сантиметров и небольшой вес. Благодаря этому, несмотря на большие размеры экрана, они могут быть установлены в любом месте - на стене, под потолком и даже на специальной подставке на столе. Наибольшая диагональ экрана выпускаемых сегодня плазменных дисплеев - 60 дюймов (свыше 1,5 метров) при разрешении 1365 х 768 пикселей. Большинство моделей имеют формат экрана 16: 9, являющийся оптимальным для просмотра фильмов. В отличие от обычных телевизоров, подавляющее большинство плазменных панелей, даже предназначенных для бытовых целей, не имеют встроенных источников телевизионного сигнала. Однако это можно отнести скорее к достоинствам PDP, чем к недостаткам, потому что они имеют большое количество самых разнообразных входов, включая аналоговые видео (разъемы типов RCA или SCART), S-видео, RGB (D-Sub и BNC), а также цифровые DVI.

История плазменных панелей (или PDP - Plasma Display Panel), технология которых основана на эффекте свечения определенных газов под воздействием электрического тока, берет свое начало более 30 лет тому назад, в 1966 году. Неоновые рекламные вывески и лампы дневного света - наиболее яркие примеры практической реализации этого эффекта, успешно дожившие до наших дней. А вот производство плазменных мониторов началось только в начале 90-х годов прошлого века. Пионером в области PDP стала японская компания Fujitsu. Первые коммерческие изделия этой фирмы использовались в качестве информационных экранов и табло на вокзалах, биржах, в аэропортах. Естественно, первые дисплеи были монохромные и имели низкое качество изображения, однако буквально за десятилетие PDP не только догнали традиционную CRT-технологию, но и по многим параметрам превзошли ее.

Так что же это такое - плазменный дисплей? Он состоит из двух плоских стеклянных пластин, расположенных на расстоянии порядка 100 микрон друг от друга. Между ними находится слой инертного газа (как правило, смесь ксенона и неона), на который воздействует сильное электрическое поле. На переднюю, прозрачную пластину нанесены тончайшие прозрачные проводники - электроды, а на заднюю - ответные проводники. В современных цветных дисплеях задняя стенка имеет микроскопические ячейки, заполненные люминофорами трех основных цветов (красного, синего и зеленого), по три ячейки на каждый пиксель.

Принцип действия плазменной панели основан на свечении специальных люминофоров при воздействии на них ультрафиолетового излучения, возникающего при электрическом разряде в среде сильно разреженного газа. При таком разряде между электродами с управляющим напряжением образуется проводящий "шнур", состоящий из ионизированных молекул газа (плазмы). Поэтому-то панели, работающие на этом принципе, и получили название плазменных панелей. Ионизированный газ воздействует на специальное флюоресцирующее покрытие, которое, в свою очередь, излучает свет, видимый человеческим глазом. Сразу спешу успокоить тех читателей, которые всерьез озабочены проблемами экологической безопасности: подавляющая часть ультрафиолетовой составляющей излучения, вредного для глаз, поглощается наружным стеклом. Яркость и насыщенность цветов можно регулировать простым изменением величины управляющего напряжения: чем оно больше, тем больше квантов света выделяет газ, тем сильнее светятся флюоресцирующие элементы, тем ярче мы получаем картинку на экране. Каждая ячейка способна светиться одним из 256 уровней яркости, что в сумме дает 16,7 млн. оттенков цвета для каждой отдельно взятой триады (совокупность из трех ячеек). Для увеличения контрастности получаемого изображения на верхней части внутренних перегородок (ребер) ячеек наносятся черные полосы, разделяющие элементы триады.

Подавая управляющие сигналы на вертикальные и горизонтальные проводники, нанесенные на внутренние поверхности стекол такой панели, схема управления PDP осуществляет, соответственно, "строчную" и "кадровую" развертку растра изображения.

Плазменные дисплеи бывают двух типов - постоянного тока и переменного тока. Панели постоянного тока немного проще и, поэтому, появились раньше, однако большинство выпускаемых в настоящее время цветных PDP относятся ко второму типу и отличаются от панелей постоянного тока тем, что в них электроды покрыты слоем диэлектрика, препятствующим прохождению постоянной составляющей тока через ячейку. Благодаря этому такие панели обладают свойством "внутренней памяти", то есть при специально подобранной форме и амплитуде напряжения на электродах индикаторная ячейка может находиться как в состоянии "включено" (ячейка светится), так и в состоянии "выключено" (ячейка погашена) сколь угодно долго. Для перевода ячейки из одного состояния в другое необходимо подать на нее единичный импульс напряжения, поэтому эффективность преобразования электрической энергии в световую в панелях переменного тока больше в 5-10 раз, чем у панелей постоянного тока. Что обеспечивает повышенную яркость изображения и больший срок службы электродов, а, значит, и самого дисплея переменного тока.

Ну и что же в них хорошего?

Во-первых, качество изображения плазменных дисплеев считается эталонным, хотя лишь совсем недавно была окончательно решена "проблема красного цвета", который в первых моделях больше походил на морковный. Кроме этого, плазменные мониторы выгодно отличаются от своих конкурентов высокой яркостью и контрастностью изображения: их яркость достигает 900 кд/м2 а контрастность - до 3000: 1, тогда как у классических ЭЛТ-мониторов эти параметры составляют соответственно 350 кд/м2 и 200: 1 (кстати, далеко не у самых худших из них). Также необходимо отметить, что высокая четкость изображения PDP сохраняется на всей рабочей поверхности экрана.

Во-вторых, плазменные дисплеи имеют малое время отклика (чем до сих пор не могут похвастаться многие модели LCD-дисплеев), что позволяет без проблем использовать PDP не только в качестве средств отображения информации, но и в качестве телевизоров и даже, при подключении к компьютеру, играть в современные динамичные игры. Если мы начали сравнивать технологии PDP и LCD, то важно отметить, что плазменные панели лишены еще одного существенного недостатка ЖК-мониторов, такого как значительное ухудшение качества изображения на экране при больших углах просмотра.

В-третьих, в плазменных панелях (впрочем, как и в жидкокристаллических) принципиально отсутствуют проблемы геометрических искажений изображения и сведения лучей, являющихся настоящим бичом ЭЛТ-мониторов.

В-четвертых, имея самую большую площадь экрана среди всех современных устройств отображения визуальной информации, плазменные панели исключительно компактны, особенно в толщину. Толщина типичной панели с размером экрана в один метр обычно не превышает 10-15 сантиметров, а масса составляет всего 35-40 килограммов. Благодаря этому плазменные панели можно без труда разместить в любом интерьере и даже повесить на стену в наиболее удобном для этого месте.

В-пятых, плазменные панели чрезвычайно надежны. Заявленный срок службы современных PDP в 50 тыс. ч (а в году ведь меньше 9000 часов) предполагает, что за все это время яркость экрана упадет вдвое против начальной.

В-шестых, плазменные панели гораздо безопаснее телевизоров с кинескопом. Они не создают магнитных и электрических полей, которые оказывают вредное влияние на человека и, кроме этого, не создают такое мелкое, но противное неудобство, как постоянное скопление пыли на поверхности экрана вследствие его электризации.

В-седьмых, PDP и сами практически не подвержены воздействию внешних магнитных и электрических полей, что позволяет без проблем использовать их в составе "домашнего театра" совместно с мощными высококачественными акустическими системами, далеко не все из которых имеют экранированные головки громкоговорителей.


Не все коту масленица

При всех неоспоримых достоинствах плазменных панелей есть у них и свои недостатки, сдерживающие их широкое распространение. И самый, наверное, главный из этих недостатков - их слишком высокая стоимость, которая для 60-дюймового дисплея порой "зашкаливает" за $20000. Так что потенциальным покупателем таких панелей на сегодняшний день могут стать либо какая-нибудь довольно крупная компания для проведения различных презентаций и видеоконференций, а может быть, и просто для усиления своего собственного имиджа, либо частное лицо, для которого вопрос цены считается второстепенным по отношению к удобству использования и, главное, престижности устройства.

Кроме экономических проблем, не изжиты еще и ряд технических ограничений плазменных технологий. В первую очередь, это низкая разрешающая способность изображения, обусловленная большим размером элемента изображения. Но, учитывая тот факт, что оптимальное расстояние от монитора до зрителя должно быть порядка 5 его "диагоналей", то понятно, что наблюдаемая на маленьком расстоянии зернистость изображения просто исчезает на большом расстоянии. Тем более, что существует ряд специальных технологий, позволяющих обойти это ограничение. Одна из них, ALIS (Alternate Lighting of Surfaces - попеременное свечение поверхностей), разработанная японской компанией Fujitsu, обеспечивает повышение разрешения по вертикали, причем без потери яркости изображения. Для этого количество пикселей по вертикали увеличено, их размер уменьшен, разделительные промежутки между ячейками упразднены. Чтобы устранить неизбежные при таком подходе потери яркости и контрастности и добиться высокой четкости картинки, компанией было предложено строить изображение сначала на четных, а затем на нечетных линиях светящихся пикселей (ближайшая аналогия - чересстрочная развертка бытовых ЭЛТ-телевизоров). Такой способ чередования позволил существенно повысить яркость и увеличить срок службы плазменной панели.

Также довольно существенным недостатком плазменного монитора является высокая мощность, потребляемая им, быстро возрастающая при увеличении диагонали монитора. Этот недостаток связан уже непосредственно с самой технологией получения изображения с использованием плазменного эффекта: чтобы зажечь один пиксель на экране, электроэнергии требуется мизерное количество, но матрица состоит из миллионов ячеек, каждой из которых приходится светиться все время работы монитора. Этот факт приводит не только к увеличению эксплуатационных затрат на данный монитор, но высокое энергопотребление серьезно ограничивает круг применения PDP, к примеру, делает невозможным использование таких мониторов, например, в портативных компьютерах. Но даже если решить проблему с источником питания, изготавливать плазменные матрицы с диагональю менее тридцати дюймов все равно пока еще не выгодно экономически.

Ну вот, пожалуй, и все недостатки, присущие плазменным мониторам. И если теперь сопоставить все их перечисленные выше достоинства и недостатки, то налицо существенное преобладание первых над вторыми. Да, еще не нужно забывать, что технический прогресс не стоит на месте, и в условиях жесткой конкуренции фирмы-производители плазменных мониторов стремятся постоянно повышать качество выпускаемой продукции, что, наряду с пусть и медленным, но неуклонным снижением их стоимости, делает PDP доступными все более широкому кругу потенциальных покупателей. Остается только надеяться, что в их числе рано или поздно вполне можем оказаться и мы с вами, дорогой читатель.