Объекты предметной области и связи между ними. Объекты и отношения между ними

| Планирование уроков и материалы к урокам | 8 классы | Планирование уроков на учебный год | Табличные модели

Урок 12
Табличные модели

Табличные модели





Изучаемые вопросы:

Таблицы типа «объект-свойство».
- Таблица типа «объект-объект».
- Двоичные матрицы.

Таблицы типа «объект-свойство»

Еще одной распространенной формой информационной модели является прямоугольная таблица , состоящая из строк и столбцов. Использование таблиц настолько привычно, что для их понимания обычно не требуется дополнительных объяснений.

В качестве примера рассмотрим таблицу 2.1.

При составлении таблицы в нее включается лишь та информация, которая интересует пользователя. Например, кроме тех сведений о книгах, которые включены в таблицу 2.1, существуют и другие: издательство, количество страниц, стоимость. Однако для составителя таблицы 2.1 было достаточно сведений об авторе, названии и годе издания книги (столбцы «Автор», «Название», «Год») и информации, позволяющей найти книгу на полках книжных стеллажей (столбец «Полка»). Предполагается, что все полки пронумерованы и, кроме того, каждой книге присвоен свой инвентарный номер (столбец «Номер»).

Таблица 2.1 - это информационная модель книжного фонда домашней библиотеки.

Таблица может отражать некоторый процесс, происходящий во времени (табл. 2.2).

Показания, которые занесены в таблицу 2.2, снимались в течение пяти дней в одно и то же время суток. Глядя на таблицу, легко сравнить разные дни по температуре, влажности и пр. Данную таблицу можно рассматривать как информационную модель процесса изменения состояния погоды.

Таблицы 2.1 и 2.2 относятся к наиболее часто используемому типу таблиц. Их называют таблицами типа «объект-свойство» .

В одной строке такой таблицы содержится информация об одном объекте (книга в библиотеке или состояние погоды в 12-00 в данный день). Столбцы - отдельные характеристики (свойства) объектов.

Конечно, строки и столбцы в таблицах 2.1 и 2.2 можно поменять местами, повернув их на 90°. Иногда так и делают. Тогда строки будут соответствовать свойствам, а столбцы - объектам. Но чаще всего таблицы строят так, чтобы строк в них было больше, чем столбцов. Как правило, объектов больше, чем свойств.

Структурные элементы БД

В описании объекта данных нужно выделить 2 составляющие: структуру и экземпляр.

Структура – перечень атрибутов объекта и характеристики атрибутов.

Экземпляр – совокупность значений атрибутов.

Структура изменяется крайне редко. Экземпляр подвержен изменениям.

При хранении в ЭВМ базе данных соответствует группа файлов и папок, набору объектов соответствует файл. Каждому объекту соответствует запись в файле. Каждому атрибуту соответствует поле записи.

Для описания атрибута используются следующие характеристики:

1. имя, например, nContract, cStudent;

2. тип, например, символьный, числовой;

3. длина, например, 15 байт;

4. точность, для числовых данных.

5. описание, комментарий;

6. формат изображения на экране и бумаге;

7. подсказка;

8. формат ввода;

9. начальное значение;

10. диапазон значений.

Ключ – это средство упорядочивания объектов в наборе. Ключ содержит ключевое выражение, составляемое из атрибутов объектов. По возрастанию значения ключевого выражения объекты предъявляются для просмотра и обработки.

Для одного набора можно задать несколько ключей. Например, для набора Работники можно задать ключ по алфавиту фамилий, работники будут предъявляться по алфавиту.

Ключ называется первичным , если по одному значению его выражения из набора выделяется 0 или 1 объект. Например, для набора работников ключ «По табельному номеру» первичный, так как по одному значению табельного номера выделяется или ни одного, или только один работник.

Ключ называется вторичным , если по одному значению его выражения из набора выделяются 0 и более объектов. Например, ключ для набора работников ключ «По алфавиту фамилий» вторичен, так как среди работников могут быть однофамильцы.

По аксиоме отличия у каждого набора существует первичный ключ. В крайнем случае в его выражение включает все атрибуты объекта в наборе.

Хорошей практикой служит введение для объекта данных искусственного атрибута «Порядковый № в наборе», который автоматически присваивается и уникален. Ключ по такому атрибуту называется суррогатным .

Заметим, что понятия первичного и вторичного ключа не зависят от количества и значений объектов в наборе. Первичные и вторичные ключи бывают для пустых наборов.

Пусть имеется n наборов объектов Е 1 , Е 2, … , Е n .

Связью называется множество последовательностей объектов (е i 1 , е i 2, …, е i n), где е i 1 Î Е 1, е i 2 Î Е 2, …, е i n Î Е n.

С помощью связей наборы объектов объединяются в единую информационную структуру.

Между двумя наборами объектов (n=2) различают три типа связей:

1. один к одному (1:1);



2. один ко многим (1:М);

3. много ко многим (М:N).

«один к одному», если для каждого объекта из первого набора можно указать 0 или 1 объект из второго набора и для каждого объекта из второго набора можно указать 0 или 1 объект из первого набора.

Примерами связей типа 1:1 служат связи между:

· студентами и зачетными книжками,

· между государствами и валютами,

· между офицерами и табельным оружием,

· между гражданами и заграничными паспортами. У каждого студента или нет зачетной книжки, или есть только одна.

Для каждой зачетки или студент не указан, или имеется только один.

Связь между двумя наборами Е 1 и Е 2 относится к типу «один ко многим» 0 или более 0 или 1 объект из первого набора.

Примерами связей 1:М служат связи между

· банками и вкладами,

· вкладами и взносами,

· между группами и студентами,

· между отделами и сотрудниками,

· между ведомостями и строками ведомостей,

· между клиентами и заявками.

В каждом банке или нет вкладов (банк еще не открылся) или может быть много вкладов. Для каждого вклада или банк не указан, или есть только один.

Связь между двумя наборами Е 1 и Е 2 относится к типу «многие ко многим» , если для каждого объекта из первого набора можно указать 0 или более объектов из второго набора и для каждого объекта из второго набора можно указать 0 или более объектов из первого набора.

Примерами связей M:N служат связи между

· продуктами и странами,

· между студентами и дисциплинами,

· между сотрудниками и проектами,

· между заявками и товарами,

· между магазинами и покупателями.

Каждый продукт может поставляться из многих стран и не поставляться вовсе. Каждая страна может поставлять много продуктов и не поставлять никаких.

Графически связи изображаются стрелками (рис.4.5).

В реальных СУБД реализуется только один тип связи – один ко многим.

Связь 1:1 получается из связи 1:М путем ее ограничения.

Для реализации связи М:N вводится новый набор объектов и используются две связи 1:М.

Например, связь между странами и продуктами типа M:N получается с помощью набора данных «поставки» (рис.4.6).

Все объекты активны.

Пользовательское управление группами окон.

Типы окон, ориентированные на задачу.

Мгновенная фиксация изменений.

Динамические иконки, отражающие состояние объекта.

Прямое манипулирование.

Объединение объектов.

Композиция объектов и контейнеры.

Множественный согласованный просмотр объектов.

Рассмотренные выше особенности графических интерфейсов, а также положенная в основу их реализации DCD-технология обуславливают необходимость применения для проектирования GUI объектно-ориентированного подхода. Такой подход предполагает использование аналогий между программными объектами и объектами реального мира. С точки зрения пользовательского интерфейса, объектами являются не только файлы или пиктограммы, но и любое устройство для хранения и обработки информации, включая ячейки, параграфы, символы и т.д., а также документы, в которых они находятся.

Объекты, независимо от того, относятся ли они к реальному миру или имеют компьютерное воплощение, обладают определенными характеристиками, которые помогают нам понимать, что они собой представляют, и как они ведут себя в тех или иных ситуациях. Следующие понятия описывают основные аспекты и характеристики объектов, имеющих компьютерное воплощение.

Свойства объектов . Объекты имеют определенные характеристики или атрибуты, называемые свойствами, которые определяют их представление или возможные состояния (например, цвет, размер, дату модификации). Свойства не ограничены внешними или видимыми признаками объекта. Они могут отражать их внутреннюю организацию или текущее состояние объекта.

Операции над объектами . Все действия, которые могут быть выполнены с (или над) объектом, считаются допустимыми операциями. Перемещение или копирование объекта являются примерами операций. Пользователь может выполнять операции над объектами, используя те или иные механизмы, предоставляемые интерфейсом (командное управление или прямое манипулирование).

Связь (отношения) между объектами . Любой объект тем или иным образом взаимодействует с другими объектами. Во многих случаях взаимоотношения между объектами могут быть описаны как связь определенного типа.

Типы связей между объектами .

Наиболее общими типами отношений являются наборы (Collection), объединения (Constraints), и композиции (Composites).

Набор представляет собой наиболее простой тип отношения, которое отражает наличие у объектов некоторых общих свойств. Результаты запроса (поиска по образцу) или операции множественного выбора объектов – примеры использования данного типа отношения. Важным достоинством этого типа отношения является то, что он позволяет указывать операции, которые должны относиться к определенному набору объектов.

Объединение отражает более тесное отношение между объектами, при котором изменение объекта влияет на некоторый другой объект в наборе. Простейший пример такого отношения – изменение формата соседней страницы при добавлении текста на предыдущей странице.

Композиция имеет место в том случае, когда агрегация нескольких объектов может рассматриваться как новый объект со своим собственным множеством свойств и допустимых операций. Столбец ячеек в таблице и параграф в тексте – это примеры композиций.

Еще один распространенный тип отношений между объектами – контейнер.

Контейнер является объектом, который содержит другие объекты (например, рисунок в документе или документ в папке могут рассматриваться как часть содержимого соответствующего контейнера). Свойства контейнера часто влияют на поведение его содержимого. Это влияние может заключаться в расширении или подавлении некоторых свойств содержащихся в нем объектов или в изменении перечня допустимых операций. Кроме того, контейнер управляет доступом к своему содержимому, а также преобразованием типа (формата) включаемого в него объекта. Это, в частности, может сказаться на результате пересылки объекта из одного контейнера в другой.

Рассмотренные выше аспекты обуславливают необходимость отнесения каждого объекта к тому или иному типу (классу) объектов. Объекты одного типа имеют аналогичные свойства и поведение.

Основные типы объектов интерфейса составляют фундаментальные классы всех объектов, обеспечиваемых операционной системой. Существует три основных типа объектов: объекты-данные, объекты-контейнеры и объекты-устройства.

Многие объекты обладают характеристиками, относящимися более чем к одному классу (пример – папка Входящие: свойства контейнера и устройства). Поэтому необходимо хорошо разбираться в классах объектов интерфейса и их поведении. Объекты должны оправдывать ожидания пользователей в отношении выполняемых ими действий, то есть определять, какие представления могут его отобразить и изменить. Объекты-контейнеры должны обеспечивать представления, соответствующие другим контейнерам, объекты-устройства – предлагать представления, присущие данному устройству и совместимые с другими.

Объекты-данные снабжают пользователей информацией. Они могут представлять любой тип информации, например текст, электронные таблицы, изображения, музыку, записанную речь, видео, анимацию или любую их комбинацию. Поскольку объекты-данные, как правило, ориентированы на продукт, руководства по разработке не дают определения особых объектов данных. Это задача проектировщиков программ.

Основы информационных систем. Базы данных.

План.

1. Основные понятия.

2. Классификация баз данных.

3. Модели данных.

4. Информационные объекты и связи.

5. Проектирование баз данных.

6. Состав файла БД. Архитектура СУБД.

7. Связывание таблиц. Целостность данных.

8. Виды запросов. Структура запросов.

Основные понятия.

В истории развития вычислительной техники наблюдалось два основных направления ее применения.

Первое связано с выполнением больших численных расчетов, которые трудно или невозможно произвести вручную. Развитие этой области способствовало ускорению развития методов математического моделирования, численных методов, языков программирования высокого уровня, рассчитанных на удобное представление вычислительных алгоритмов.

Второе направление связано с использованием вычислительной техники для создания, хранения и обработки больших массивов данных. Такие задачи решают информационные системы (ИС). К ним относятся поисковые, справочные, банковские системы, автоматизированные системы управления предприятием.

Для задач первого типа характерны большие объемы вычислительной работы при относительно небольших потребностях в памяти. Задачи второго типа, наоборот, требуют больших объемов внешней памяти при относительно небольших расчетах. Вторая область применения возникла несколько позже первой. Это связано с тем, что на первых этапах внешняя память вычислительных систем была несовершенной, т.е. надежное хранение больших объемов данных не представлялось возможным.

Для облегчения обработки информации создаются информационные системы. Информационная система представляет собой аппаратно-программный комплекс, обеспечивающий выполнение следующих функций:

· ввод данных об объектах некоторой предметной области;

· надежное хранение и защита данных во внешней памяти вычислительной системы;

· дополнение, удаление, изменение данных;

· сортировка, выборка данных по запросам пользователей;

· выполнение специфических для данной предметной области преобразований информации;

· предоставление пользователям удобного интерфейса; обобщение данных и составление отчетов.

Объем данных в ИС может исчисляться миллиардами байт. Отсюда необходимость устройств, хранящих большие объемы данных во внешней памяти. Число пользователей ИС может достигать десятков тысяч, что создает немало проблем в реализации эффективных алгоритмов функционирования ИС. Успешно решаются эти задачи, если данные в информационной системе структурированы .

Пример структурированных данных - студенческая группа. Каждый член группы во многом индивидуален, и характеризовать его можно с разных сторон. Но деканат, скорее всего, заинтересуют следующие данные (предметная область): фамилия студента, имя, отчество, курс, наименование группы, массив оценок по изучаемым дисциплинам. Таким образом, из всего многообразия данных выбираются только некоторые, т.е. создается информационная модель объекта. Данные упорядочиваются по порядку следования, по применяемым типам (форматам) данных, после чего они могут быть обработаны автоматом, каковым является компьютер.

Совокупность взаимосвязанных данных называется структурой данных . Совокупность структурированных данных, относящихся к одной предметной области, называется базой данных (БД) . Совокупность программ, реализующих в БД функции ИС в удобной для пользователя форме, называется системой управления базой данных (СУБД) . Программы, производящие специфическую обработку данных в БД, составляют пакет прикладных программ (ППП). Итак, можно заключить, что ИС - это организационное объединение аппаратного обеспечения (АО), одной или нескольких баз данных (БД), системы управления базами данных (СУБД) и пакетов прикладных программ (ППП).

Классификация баз данных.

По технологии обработки данных БД подразделяются на централизованные и распределенные.

Централизованная БД хранится целиком в памяти одной вычислительной системы. Если система входит в состав сети, то возможен доступ к этой БД других систем.

Распределенная БД состоит из нескольких, возможно пересекающихся или дублирующих друг друга БД, хранимых в памяти разных вычислительных систем, объединенных в сеть.

По способу доступа к данным БД распределяются на локальный и удаленный (сетевой) доступ.

Локальный доступ предполагает, что СУБД обрабатывает БД, которая хранится на той же вычислительной системе.

Удаленный доступ - это обращение к БД, которая хранится на одной из систем, входящих в компьютерную сеть. Удаленный доступ может быть выполнен по принципу файл-сервер или клиент-сервер.

Архитектура файл-сервер предполагает выделение одного из компьютеров сети (сервер) для хранения централизованной БД. Все остальные компьютеры сети (клиенты) исполняют роль рабочих станций, которые копируют требуемую часть централизованной БД в свою память где и происходит обработка. Однако при большой интенсивности запросов к централизованной БД увеличивается нагрузка на каналы сети, что приводит к снижению производительности ИС в целом.

Архитектура клиент-сервер предполагает, что сервер, выделенный для хранения централизованной БД, дополнительно производит обработку клиентских запросов. Клиенты получают по сети уже обработанные данные. Учитывая широкое распространение БД в самых различных областях, в последнее время архитектура клиент-сервер применяется и на одиночных вычислительных системах. В этом случае клиент- программа, которой понадобились данные из БД, посылает запрос серверу - программе, управляющей ведением БД, на специальном универсальном языке запросов. Сервер пересылает программе данные, являющиеся результатом поиска в БД по ее запросу. Этот способ удобен тем, что программа - клиент не обязана содержать все функции поддержания и ведения БД, этим; занимается сервер. В результате упрощается написание программ - клиентов, Кроме того, к серверу может обращаться любое количество клиентов.

Модели данных.

Для реализаций основных функций в ИС используются различные принципы описания данных. Ядром любой БД является модель представления данных .

Модель данных определяет логическую структуру хранимых в базе данных (т.е. введение каких-то соглашений о способах представления данных) и взаимосвязи между ними.

К основным моделям представления данных относятся:

· Иерархическая

· Сетевая

· Реляционная

· Постреляционная

· Многомерная

· Объектно-ориентированная

Наибольшее распространение получила реляционная модель данных, она является наиболее универсальной и к ней могут быть сведены другие модели.. Реляционная модель данных ориентирована на организацию данных в виде двумерных таблиц.

Важнейшим понятием реляционных моделей данных является сущность . Сущность - это объект любой природы, данные о котором хранятся в БД. Данные о, сущности хранятся в двумерных таблицах, которые называют реляционными .

Каждая реляционная таблица должна обладать следующими свойствами:

· один элемент таблицы - один элемент данных;

· каждый столбец таблицы содержит однородные по типу данные (целочисленный, числовой, текстовый, и т.д.);

· каждый столбец имеет уникальное имя;

· число столбцов задается при создании таблицы;

· порядок записей в отношении может быть произвольным;

· записи не должны повторяться;

· количество записей в отношении не ограничено.

Объекты, их взаимосвязи и отношения представлены в виде таблиц . Формальное построение таблиц связано с фундаментальным понятием отношение (термин реляционная исходит от английского слова relation - отношение).

Для заданных произвольных конечных множеств М 1 , М 2 , ..., M N множество всевозможных наборов вида (μ 1 , μ 2 , …, μ Ν), где μ 1 Є М 1 , μ 2 Є М 2 , …, μ Ν Є M N называют их декартовым произведением М 1 ×М 2 ×...×M N . Отношением R , определенным на множестве М 1 , М 2 , ..., M N , называется подмножество декартова произведения М 1 ×М 2 ×...×M N . При этом множества М 1 , М 2 , ..., M N называются доменами отношения, а элементы декартова произведения - кортежами отношения. Число N определяет степень отношения, количество кортежей - его мощность .

В реляционной таблице каждый столбец есть домен (его альтернативное название поле ), а совокупность элементов каждой строки - кортеж (или запись ).

Строка заголовков называется схемой отношения .

Например , схема отношения СТУДЕНТ может быть следующей:

СТУДЕНТ (ФАМИЛИЯ, ИМЯ, ОТЧЕСТВО, ФАКУЛЬТЕТ, КУРС, ГРУППА), здесь СТУДЕНТ - отношение, а ФАМИЛИЯ, ИМЯ и т.д. - атрибуты.

В отношении каждый конкретный экземпляр сущности представляется строкой, которая называется кортежем (или записью) .

Следующая таблица представляет отношение СТУДЕНТ

ФАМИЛИЯ ИМЯ ОТЧЕСТВО ФАКУЛЬТЕТ КУРС
Иванов Иван Иванович ИЭФ
Петров Петр Петрович РТФ
Сидоров Антон Егорович ВТ

Первичным ключом отношения называется поле или группа полей, однозначно определяющие запись. В отношении СТУДЕНТ первичным ключом может быть поле ФАМИЛИЯ, если во всем с нет однофамильцев - это будет простой ключ. Если есть однофамильцы, то совокупность полей - фамилия, имя, отчество - создадут составной первичный ключ. На практике обычно в качестве ключевого выбирают поле, в котором совпадения заведомо исключены.

Для рассматриваемого примера таким полем может служить номер зачетной книжки студента.

Свойства первичного ключа:

· уникальность - в таблице может быть назначен только один первичный ключ, у составного ключа поля могут повторяться, но не все;

· неизбыточность - не должно быть полей, которые, будучи удаленными из первичного ключа, не нарушат его уникальность;

· в состав первичного ключа не должны входить поля типа, комментарий и графическое.

Чтобы избежать повторяющихся записей, приходят к связыванию таблиц. Например, если в отношении СТУДЕНТ надо описать вуз, в котором он обучается, то, на первый взгляд, можно было бы включить в отношение следующие поля СТУДЕНТ (ФАМИЛИЯ ИМЯ, ОТЧЕСТВО, ФАКУЛЬТЕТ, КУРС, ГРУППА, НАЗВАНИЕ вуза, АДРЕС). Но при заполнении такой таблицы для каждого студента придется указывать довольно длинное наименование вуза и его адрес, что неудобно. Более того, любая незначительная ошибка во вводе этих полей приведет к нарушению непротиворечивости базы данных. Например, ошибка в адресе вуза приведет к тому, что в БД появятся два вуза с одинаковым наименованием и разными адресами. Поступают в таком случае так: в отношение СТУДЕНТ вводят поле «код вуза» (целое число) и добавляют еще одно отношение ВУЗ (код вуза, название, адрес). Тогда отношения СТУДЕНТ и ВУЗ при этом будут связаны по полю «код вуза».

СТУДЕНТ (ФАМИЛИЯ, ИМЯ, ОТЧЕСТВО, ФАКУЛЬТЕТ, КУРС, ГРУППА, КОД вуза)

ВУЗ (КОД вуза, НАЗВАНИЕ, АДРЕС, ТЕЛЕФОН)

При работе с такими таблицами повторяться могут только данные в поле «КОД вуза», а все необходимые сведения о вузе можно взять из отношения ВУЗ. Заметим при этом, что ввод в поле «КОД вуза» целого числа, вместо длинного названия, принесет гораздо меньше ошибок. В отношении ВУЗ поле «КОД вуза» будет первичным ключом, а в отношении СТУДЕНТ поле «КОД вуза» будет внешним ключом.

Для связи реляционных таблиц необходимо ввести в обе таблицы одинаковые по типу поля, по которым определится связь между записями обеих таблиц. Связи бывают нескольких типов «один к одному», «один ко многим», «многие ко многим». В вышеприведенном примере была установлена связь «один ко многим», т.е. одной записи в таблице ВУЗ соответствуют многие записи в таблице СТУДЕНТ.

Информационные объекты и связи.

Информационным объектом называется описание реального объекта, процесса или явления в виде совокупности его характеристик (информационных элементов), называемых реквизитами . Информационный объект определенной структуры (реквизитного состава) образует тип (класс), которому присваивают уникальное имя. Информационный объект с конкретными характеристиками называют экземпляром. Каждый экземпляр идентифицируется заданием ключевого реквизита (ключа). Одни и те же реквизиты в различных информационных объектах могут быть как ключевыми, так и описательными. Информационный объект может иметь несколько ключей.

Пример . Информационный объект СТУДЕНТ имеет реквизитный состав: номер (номер зачетной книжки - ключевой реквизит), фамилия , имя , отчество , дата рождения , код места обучения . Информационный объект ЛИЧНОЕ ДЕЛО: номер студента , домашний адрес , номер аттестата о среднем образовании , семейное положение , дети . Информационный объект МЕСТО ОБУЧЕНИЯ включает реквизитъг, код (ключевой реквизит), наименование вуза , факультет , группа . Информационный объект ПРЕПОДАВАТЕЛЬ: код (ключевой реквизит), кафедра , фамилия , имя , отчество , ученая степень , ученое звание , должность .

Отношения, существующие между реальными объектами, определяются в информационных моделях как связи . Существует три вида связей: один к одному (1:1), один ко многим (1:∞) и многие ко многим (∞:∞).

Связь один к одному определяет соответствие одному экземпляру информационного объекта X не более одного экземпляра информационного объекта Y, и наоборот.

Пример . Информационные объекты СТУДЕНТ и ЛИЧНОЕ ДЕЛО будут связаны отношением один к одному. Каждый студент имеет определенные уникальные данные в личном деле.

При связи один ко многим одному экземпляру информационного объекта X может соответствовать любое количество экземпляров информационного объекта Y, но каждый экземпляр объекта Y связан не более чем с одним экземпляром объекта X.

Пример . Между информационными объектами МЕСТО ОБУЧЕНИЯ и СТУДЕНТ необходимо установить связь один ко многим. Одно и то же место обучения может многократно повторяться для различных студентов.

Связь многие ко многим предполагает соответствие одному экземпляру информационного объекта X любое количество экземпляров объекта Y, и наоборот.

Пример . Информационные объекты СТУДЕНТ и ПРЕПОДАВАТЕЛЬ имеют связь многие ко многим. Каждый студент обучается у множества преподавателей, а каждый преподаватель учит множество студентов.

В Access можно задать три вида связей между таблицами: один ко многим , многие ко многим и один к одному . Связь один ко многим является наиболее часто используемым типом связи между таблицами. Связи многие ко многим реализуется только с помощью третьей (связующей) таблицы, ключ которой состоит из, по крайней мере, двух полей, одно из которых является общим с табли­цей X, а другое - общим с таблицей Y. Связь один к одному используют не очень часто, поскольку такие данные могут быть помещены в одну таблицу. Связь с отношением один к одному используют для разделения очень широких таблиц, для отделения части таблицы по соображениям защиты, а также для сохранения сведений, относящихся к подмножеству записей в главной таблице.


Похожая информация.


Одно – однозначные связи

Одно – однозначные связи имеют место, когда каждому экземпляру первого объекта (А) соответствует только один экземпляр второго объекта (В)и наоборот, каждому экземпляру второго объекта (В) соответствует только один экземпляр первого объекта (А). Следует заметить, что такие объекты легко могут быть объединены в один, структура которого образуется объединением реквизитов обоих исходных объектов, а ключевым реквизитом может быть выбран любой из альтернативных ключей, т.е. ключей исходных объектов. Графическое изображение одно – однозначных связей являются группа – староста, фирма – расчетный счет в баке и т.п.

Рис.1 Графическое изображение одно – однозначных отношений объектов

Одно – многозначные связи (1:М)

Одно – многозначные связи (1:М) – это такие связи, когда экземпляру одного объекта (А) может соответствовать несколько экземпляров другого объекта (В), а каждому экземпляра второго объекта (В) может соответствовать только один экземпляр первого объекта (А).

Рис.2 Графическое изображение одно – многозначный связи отношений объектов.

В такой связи объект А является главным объектом, а объект В – подчиненным, т.е. имеет место иерархическая подчиненность объекта В объекту А. Примером одно – многозначных связей являются подразделения – сотрудники, кафедра – преподаватель, группа студент и т.п.

Много – многозначные связи (M:N)

Много – многозначные связи (M:N) – это когда, каждому экземпляру одного объекта (А) могут соответствовать несколько экземпляров второго объекта (В) и наоборот, каждому экземпляру второго объекта (В) может соответствовать тоже несколько экземпляров первого объекта (А).

Рис.3 Преобразование связи типа M:N через объект – связку

Объект – связка должен иметь идентификатор, образованный из идентификаторов исходных объектов Ка и Кб.
Примером много – многозначных связей является связь поставщики – товары, если один поставщик поставляет разные наименования товаров, а товар одного наименования поставляется несколькими поставщиками.

Определение связей между информационными объектами

Рассмотрим определение связей между информационными объектами и тип отношений, которыми они характеризуются, для предметной области Учебный процесс .

Связи между объектами ГРУППА - СТУДЕНТ характеризуются одно – многозначными отношениями (1:М), поскольку одна группа включает много студентов, а один студент входит только в одну группу. Связь между ними осуществляется по номеру группы, который является уникальным идентификатором главного объекта ГРУППА входит в составной идентификатор объекта СТУДЕНТ (см.табл.1)

Аналогично устанавливается связь между объектами КАФЕДРА ПРЕПОДАВАТЕЛЬ , которые также находятся в одно – многозначных отношениях. Связь между ними осуществляются по уникальному ключу главного объекта КАФЕДРА – коду кафедры, который в подчиненном объекте ПРЕПОДАВАТЕЛЬ является описательным.

Таблица 1. Объекты справочной информации о студентах, группах и предметах

Таблица 2. Группировка реквизитов по информационным объектам документа Список преподавателей кафедры

В таблице приняты обозначения для ключа: П – простой, У – уникальный.

В каждой группе в течение семестра проводятся занятия по разным предметам (объект ИЗУЧЕНИЕ ). С другой стороны, каждое занятие определенно для каждой группы. Поэтому имеет место связь типа один – ко – многим между объектами ПРЕДМЕТ - ИЗУЧЕНИЕ .

По каждому предмету проводится множество занятий в различных группах разными преподавателями. С другой стороны, каждое занятие проводится по конкретному предмету, что определяет отношения типа один – ко – многим между объектами ПРЕДМЕТ - ИЗУЧЕНИЕ . Аналогично определяются отношения типа один – ко – многим между объектами ПРЕПОДАВАТЕЛЬ – ИЗУЧЕНИЕ .
Объект ИЗУЧЕНИЕ фактически играет роль объекта связки в много – многозначных отношениях объектов.

Рис.4 Много – многозначные связи информационных объектов


Рис.5 Информационно – логическая модель предметной области Учебный процесс

Объект УСПЕВАЕМОСТЬ содержит данные об успеваемости (оценку) конкретного студента по конкретному занятию. Поэтому он является связанным с объектом СТУДЕНТ и объектом ИЗУЧЕНИЕ . Один студент имеет оценки по нескольким занятиям, но каждая оценка всегда относится к одному конкретному студенту. Это означает, объект УСПЕВАЕМОСТЬ является подчиненным и находится в одно – многозначных отношениях с объектом СТУДНТ . Объект УСПЕВАЕМОСТЬ , а также является подчиненным и находится в одно – многозначных отношениях с объектом ИЗУЧЕНИЕ. Объект УСПЕВАЕМОСТЬ выполняет роль объект – связки много – многозначных отношениях объектов СТУДЕНТ и ИЗУЧЕНИЕ . Много – многозначные отношения между этими объектами определяются тем, что одному студенту соответствует много занятий, отображаемых объектом ИЗУЧЕНИЕ , а одно занятие проводится со многими студентами.

В табл.3 перечислены все одно – многозначные связи между объектами, указаны ключи, по которым должны устанавливаться связи, и определены главные и подчиненные информационные объекты в этих связях.

Таблица 3 Связи информационных объектов

Информационно – логическая модель предметной области Учебный процесс

Информационно – логическая модель приведена в каноническом виде и объекты в ней размещены по уровням. Уровень остальных объектов определяется наиболее длинным путем к объекту от нулевого уровня. Такое размещение объектов дает представление об их иерархической подчиненности, делает модель более наглядной и облегчает понимание одно – многозначных отношений между объектами.

Логическая структура реляционной базы данных

Логическая структура реляционной базы данных Access является адекватным отображением полученной информационно – логической модели, не требующим дополнительных преобразований. Каждый информационный объект модели данных отображается соответствующей реляционной таблицей. Структура реляционной таблицы определяется реквизитным составом соответствующего информационного объекта, где каждый столбец (поле) соответствует одному из реквизитов объекта. Ключевые реквизиты объекта образуют уникальный ключ реляционной таблицы. Для каждого столбца задается тип, размер данных и другие свойства. Строки (записи) таблицы соответствуют экземплярам объекта и формируются при загрузке таблиц.

Связи между объектами модели данных реализуются одинаковыми реквизитами – ключами связи в соответствующих таблицах. При этом ключом связи всегда является уникальный ключ главной таблицы. Ключом связи в подчиненной таблице является либо некоторая часть уникального ключа в ней, либо поле, не входящее в состав первичного ключа (например, код кафедры в таблице ПРЕПОДАВАТЕЛЬ ). Ключ связи в подчиненной таблице называется внешним ключом . В Access может быть создана схема данных , наглядно отображающая логическую структуру базы данных. Определение одно – многозначных связей в этой схеме должно осуществляться в соответствии с построенной моделью данных. Внешний вид схемы данных практически совпадает с графическим представлением информационно – логической модели. Для модели данных, построенной в рассмотренном примере, логическая структура базы данных в виде схемы данных Access приведена на рис.2.7.

На этой схеме прямоугольники отображают таблицы базы данных с полным списком их полей, а связи показывают, по каким полям осуществляется взаимосвязь таблиц. Имена ключевых полей находятся в левой части полного списка полей каждой таблицы.