Методы визуализации. Моделирование процессов и явлений. Статистика и отчеты

ВИЗУАЛИЗАЦИЯ РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ

(Томск, Томский политехнический университет)

Введение. Область применения и возможности численного экспериментов растут вместе с развитием вычислительной техники. Увеличиваются сложности и многообразие решаемых задач. Огромный объём получаемой в ходе эксперимента информации требует адекватных способов её представления. Вместо массивов числовых данных и простых графиков всё шире используются наглядные визуальные образы, облегчающие полноценное и своевременное осмысление получаемых результатов.

Визуализация данных – задача, с которой сталкивается в своей работе любой исследователь. К задаче визуализации данных сводится проблема представления в наглядной форме данных эксперимента или результатов теоретического исследования. Традиционные инструменты в этой области – графики и диаграммы – плохо справляются с задачей визуализации, когда возникает необходимость изобразить более трех взаимосвязанных величин. С другой стороны, существует мощнейший инструмент изображения информации, привязанной к географической сетке координат. Это очень быстро развивающийся сегодня арсенал ГИС-технологий (ГИС – геоинформационные системы). К сожалению, как только исчезает подложка для изображения информационных слоев – географическая карта – все методы ГИС остаются не у дел.

Основные принципы визуализации информации. Для оптимального отображения информации в приводится ряд рекомендаций, которые могут быть использованы при разработке подсистем визуализации:

1. Состав и форма отображаемой информации, а также задачи и цели подсистемы визуализации определяются целями и задачами системы. В информационные модели должны быть представлены только те свойства отношения, связи управляемых объектов, которые существенны и имеют определенное функциональное значение. Объем, состав, форма предъявленной информации должна соответствовать как решаемым задачам, так и психофизиологическим возможностям человека.

2. Модель должна быть наглядной, т. е. оператор должен иметь возможность воспринимать сведения быстро и без кропотливого анализа. Таким образом, модель может давать наглядное представление о пространственном расположении объектов, что означает быть геометрически подобной их действительному расположению. В этом случае оператор будет иметь наглядное представление о таких свойствах управляемых объектов, как расстояние между ними, их принадлежность к какой-либо территориальной группе и т. п.

Достоинства наглядных моделей заключаются в том, что процесс восприятия такой же, как процесс восприятия реального объекта. Основная задача при разработке наглядных информационных моделей заключается в определении признаков, которые целесообразно отобразить наглядно и в допустимой степени схематизации. Но наглядность информационных моделей не всегда легко достижима, так как нередки случаи, когда объекты управления не обладают наглядными признаками. В этих случаях приходится решать задачи, близкие к тому, что в методологии науки определяется как визуализация понятий. Информационные модели, построенные по данному принципу, называются абстрактными, Достоинства абстрактных моделей заключается в том, что они отображают свойства объекта, которые недоступны непосредственному наблюдателю.

3. Достижением легкой воспринимаемости отображаемой информации обеспечивается правильной организацией ее структуры. Это означает, что в информационной модели должны быть представлены не коллекция или пара сведений, так или иначе упорядоченных, а находящиеся к определенном и очевидном взаимодействии. Одним из средств достижения оптимальной структуры является хорошая компоновка информационной модели. В этом смысле разработка отображения на экране представляет собой задачу в какой-то степени эквивалентную задаче хорошей компоновки картины.

4. Важнейшим психическим процессом при слежении за сложными динамическими образами является антиципация , т. е. возможность прогнозирования развития ситуации оператором, для обеспечения которой следует наглядно графически отображать изменения параметров. Данное положение обеспечивается, если при проектировании информационной модели предусмотрено:

Отображение конкретных изменений свойств элементов ситуации, которые происходят при их взаимодействии. В этих случаях изменения свойств отдельных элементов воспринимаются не изолированно, а в контексте ситуации в целом. Более того, изменение свойств одного элемента воспринимается как симптом изменения ситуации в: целом;

Отображение динамических отношений управляемых объектов. При этом связи и взаимодействия информационной модели должны отображаться в развитии;

Отображение конфликтных отношений, в которые вступают элементы ситуации.

5. Компоновка информации на экране должна учитывать, что горизонтальные движения глаз совершаются наиболее легко и быстро. Скорость движения глаз по кривым зависит от формы, и с помощью выбора формы можно варьировать время фиксации взгляда в той или иной области экрана. В местах расположения наиболее важных данных для процесса управления помещают структурные элементы, при движении по которым снижается скорость движения глаз.

Кодирование информации формой. Наиболее информативным обозначением тождественности информации является кодирование данных формой. Известно, что время декодирования и период латентной реакции на предметное изображение минимально по сравнению с другими методами кодирования (среднее время реакции на предмет – 0,4с, на цветное изображение – 0,9с, время фиксации взгляда па простых геометрических фигурах – 0,18мс, на буквах и цифрах – 0,3мс).

Основное значение при восприятии формы человеком имеет отношение "фигура-фон". Данное отношение имеет несколько видов описания:

Фигура имеет форму, фон относительно бесформен, фигура имеет характер вещи, фон же выглядит как неоформленный материал;

Фигура имеет, тенденцию выступать вперед, фон - отступать назад, фон кажется непрерывно продолжающимся позади фигуры;

Фигура производит большее впечатление, чем фон и легче запоминается.

В психологии эмпирически выявлены некоторые принципы организации поля сигналов, пользуясь которыми можно влиять на отношение "фигура-фон".

1. Чем меньшую замкнутую площадь занимает какая-либо конфигурация, тем больше тенденция именно этому изображению выступать в роли фигуры.

2. В качестве фигуры, прежде всего, выделяются замкнутые конфигурации.

3. Симметричные конфигурации легче воспринимаются как фигуры, чем конфигурации ассиметричные.

4. В том случае, когда поле изображения заполнено однородными элементами, фигуру образуют те из них, которые пространственно расположены ближе друг к другу.

5. Если поле изображения заполнено разнородными элементами, то фигура образуется, прежде всего, теми из них, которые имеют сходство по форме или цвету.

6. Если те или иные элементы перемещаются по полю изображения в одном направлении и с одинаковой скоростью, то именно они выделяются как фигура.

7. Если расположить часть элементов в определенном порядке, то можно создать у наблюдателя установку, которая повлияет на восприятие остальных элементов.

Решающий момент выделения фигуры из фона имеет восприятие контура. Именно восприятие контура обеспечивает возможность дифференцированного восприятия формы, известного единства строения, пропорций и взаимосвязи частей. При восприятии контура наиболее информативными являются точки, в которых происходит резкое изменение направления линий.

Чем сильнее контраст между фоном и фигурой, тем легче и быстрее происходит выделение фигуры. Контур любой фигуры - это комбинации элементарных форм: прямая линия, угол и т. д. Вырез в фигуре или контуре различается лучше, чем выступ. Достаточно хорошо глаз воспринимает также величины углов. Чем сложнее контур фигуры, чем больше информации получает при восприятии человек. Процент ошибки опознания для симметричных фигур меньше, чем для несимметричных. Но при этом необходимо учитывать, что на сложном фоне правильность опознании контуров уменьшается. При кодировании данных формой используются следующие типы или методы: числом точек, линий, величиной площади фигуры, пространственной конфигурации изображения.

Кодирование числом точек используется для обозначения числа объектов в группе или числа групп; при этом можно вместо точек использовать простые геометрические фигуры. Человек без счета может определить количество точек, расположенных в случайном порядке, если их не более пяти. Если же количество точек больше пяти, то число ошибок опознании резко увеличивается. Группировка точек в определенные схемы увеличивает точность оценки их количества. Если точки предъявляются на фоне других групп, сходных по структуре, то опознавание таких конфигураций резко понижается.

Размер или область, занятая какой-то конфигурацией, также может эффективно представлять значение данных, хотя подобно длине это плохая размерность стимула для кодирования тождественности данных. Эффективное разрешение при кодировании размером меньше, чем при кодировании длиной, потому что для кодирования размером требуется большая область отображения в пересчете ни единицу данных. Однако, такое кодирование оказывает большой психологический эффект. Достаточно хорошо идентифицируется 4-5 градаций фигур но площади. Использование изображений объемных тел нецелесообразно, так как при оценке величины человек обычно ориентируется на площадь фигуры, а не на ее объем. При сравнении с некоторыми эталонами, находящимися в информационном поле оператора, точность оценки величины площади фигуры резко возрастает. Кроме всего сказанного можно добавить, что само изменение площади фигуры несет в себе некоторую информацию, а размещение изображения в определенном месте поля зрения оператора может нести определенную смысловую нагрузку.

Представление информации в виде образов. Наиболее эффективным и несущим наибольший объем информации является представление данных в виде образов или картин. Восприятие человека устроено гак, что его мозг, взаимодействуя с внешним миром, воспринимая и осмысливая поступающую информацию, настраивается на определенные образы или эталоны, которые легко, без необходимого приспособления и тренировки, воспринимаются им и требуют дополнительного кодирования.

Основными преимуществами метода образного кодирования являются:

Возможность согласования большого потока информации с пропускной способностью сенсорных анализаторов человека;

Значительное сокращение объема ненужной информации;

Существенное снижение необходимости в априорных сведениях об изучаемом объекте;

Компактность в отношении занимаемой площади; .

Широкие возможности перестройки для обслуживания объектов различного назначения.

Поскольку человек - существо социальное, то наибольшее значение для него приобретают контакты с другими людьми. Это приводит к тому, что человек обучается распознавать огромное количество лиц. По выражению лица, мимике мы мгновенно определяем эмоциональнее состояние человека, но на ряду с основными эмоциональными состояниями мы различаем десятки их оттенков. Причем малейшие изменения. Этим определяется высокая информативность как самого лица, так и его выражения. Эта информативность лица передается в фотографиях, рисунках, карикатурах и т. д.

Анализ графической информации базируется на способности индивида интуитивно находить сходство и различия в объектах, при этом особенно хорошо запоминаются и распознаются черты лица. Указанные особенности человеческого восприятия эффективно используются в диаграммах "лица Чернова". Каждый объект представляет собой схематичное изображение лица, определенным чертам которого (ширине лица, длине носа, изгибу бровей, форме рта и т. д.) соответствуют относительные значения выбранных переменных (рис 1).

Рис.1. Примеры визуализации информации с помощью алгоритма Чернова.

Область применения системы лица разнообразна, но особенно перспективным является применение подобной системы для отображения медицинской информации, поскольку ряд физиологических характеристик человека непосредственно проявляется в чертах лица. Так по лицу можно с большой вероятностью правильно определить возраст человека, наличие избыточного веса, эмоциональное состояние, пол и т. п. Использование таких прямых ассоциаций резко сокращает время декодирования, т. е. перехода от изображения к исходному кодируемому значению параметра. Применение компьютерной графики, для синтеза изображения лиц из физиологических данных позволяет получать физиологический портрет испытуемого в прямом смысле этого слова.

Визуализация экспериментальных данных, представленных в виде числовых таблиц. В медико-психологических исследованиях результаты эксперимента часто представлены в виде числовых таблиц. Методы визуализации такого рода информации основаны, как правило, на переходе от многомерной к двумерной системе координат (метод главных компонент , методы структурного упорядочения, предложенные с соавторами ).

Рассмотрим алгоритм формирования координат объектов в методе начального упорядочения .

Для оценки рассогласования структур в RL и R2 вычисляется матрица взаимных расстояний dnk между элементами Xn и Xk из выборки X:

В n-й строке такой матрицы записаны расстояния от некоторого n-го элемента Xn до всех остальных (N-1) элементов множества https://pandia.ru/text/78/605/images/image004_27.gif" width="48" height="29 src="> до некоторого k-го элемента. Любую n-ю строку матрицы DN(X) можно рассматривать как результат упорядочения элементов относительно n-го элемента Xn путем отображения этого множества на числовую ось действительных чисел . Задавая на оси положение n-го элемента и принимая его за начало отсчета (точку Yn, координата которой на оси равна нулю), можно упорядочить образы выборки X на оси относительно n-го элемента, используя в качестве меры упорядочения расстояние от элемента Xn до всех остальных (N-1) элементов. Из точки Yn https://pandia.ru/text/78/605/images/image005_23.gif" width="23" height="24 src=">) построим перпендикулярно к оси другую числовую ось при этом k-й элемент выборки X расположим в точке пересечения осей https://pandia.ru/text/78/605/images/image008_14.gif" width="23" height="24 src=">.gif" width="48" height="29 src=">, подобно тому как это было осуществлено для оси . Координаты элементов на оси представляют собой расстояния от k-го элемента до всех остальных (N-1) элементов и позволяют судить о группируемости векторов около вектора Xk..gif" width="23" height="24 src="> определят некоторую псевдоплоскость . оценки и мониторинга психофизиологического состояния беременных женщин .

Эффективность данного метода зависит от “хорошего” выбора строк матрицы DN(X), который не должен быть совсем случаен. Выбор близких в RL элементов Xn и Xk в качестве центров упорядочения остальных (N-1) элементов на осях и нерационален, так как не дает существенно новой информации об упорядоченности выборки X, так что необходимо выбирать элементы X, относительно удаленные друг от друга. Поэтому в качестве центров упорядочения нами были выбраны «эталонный» объект и объект, имеющий наихудшие параметры (рис. 2).

Заключение. Суть приведенных методов - пути решения проблемы рационального обобщения и повышения наглядности отображаемой информации с целью создания оптимальных и комфортных условий труда оператора, с целью высвобождения его для решения задач высших уровней управления объектом или общей оценки задачи и условий функционирования на данном этапе принятия решений.

Результаты междисциплинарных исследований позволяют уверенно утверждать, что визуализация является одним из наиболее перспективных направлений повышения эффективности методов анализа и представления информации.

В работе представлены различные подходы к визуализации результатов экспериментальных социальных и медико-психологических исследований.

Работа выполнена при финансовой поддержке РГНФ (проект № в) и РФФИ (проект № а).

ЛИТЕРАТУРА

1. Зиновьев многомерных данных. - Красноярск: Изд. Красноярского государственного технического университета, 2000. - 180 с.

2. Современные методы представления и обработки биомедицинской информации: учебное пособие / Томский политехнический университет; Сибирский государственный медицинский университет; Под ред. ; . - Томск: Изд-во ТПУ, 2004. - 336 с.

3. , . Современные методы когнитивной визуализации многомерных данных - Томск: Некоммерческий фонд развития региональной энергетики, 2007. - 216 с.

4. , Эммануэль В. Информационные технологии в медико-биологических исследованиях. – СПб: Питер, 2003. – 528 с.

5. , . Аналитические исследования в медицине, биологии и экологии: учебное пособие - М. : Высшая школа, 2003. - 279 с.

6. , Шаропин система выявления групп риска среди беременных женщин //Информатика и системы управления, 2008, - № 2(16). - c. 22-23

Поговорка «лучше один раз увидеть, чем сто раз услышать» отражает суть такого процесса как визуализация.

Визуализация (от лат. visualis , «зрительный») - общее название приёмов представления числовой информации или физического явления в виде, удобном для зрительного наблюдения и анализа (wikipedia).

Что такое визуализация? Само по себе понятие является достаточно многогранным, существует несколько определений в зависимости от того, о каком поле деятельности идет речь. Целью визуализации является передача данных. Визуализация информации - это процесс представления абстрактных данных в виде изображений, которые могут помочь в понимании смысла данных. (FB.ru)

Не только дети, но и многие люди плохо воспринимают информацию на слух, часть ее не распознается и теряется, часть воспринимается неверно, сухой монолог быстро утомляет, может вызывать демотивирование обучающихся. Визуализация подаваемого материала обеспечивает наглядность, четкое восприятие и понимание, возможность многократного обращения к представленной информации, возможность сравнения с предыдущей и последующей информацией.

Выделяют следующие Методы визуализации:

1 Рисунок

Рисунок, видимо, был первой в мире сознательной попыткой визуализации образов для их демонстрации другому человеку.

2 График

Графики предназначены прежде всего для иллюстрирования математических понятий, функциональных зависимостей или связей между объектами.

3 Диаграмма

Диаграммы позволяют иллюстрировать количественные соотношения в определённой области.

4 Фотография

5 Карта (wikipedia).

Включение визуализации в образовательный процесс позволяет активно задействовать мощный зрительный канал получения информации. Помимо более понятной и наглядной формы получения информации, происходит дополнительная активизация нервной системы, обеспечивающая повышенное внимание и концентрацию учащихся на предмете изучения.

Есть еще один важный эффект визуализации. Оформляя результаты самостоятельного обсуждения новой темы, учащиеся подключают к обучению мощнейший потенциал творчества. Поиск оригинальных форм отражения результатов работы команды, реализация в этом процессе всех своих способностей, свободное самовыражение и связанные с этим яркие положительные эмоции обеспечивают эффективное усвоение и надежное закрепление новых знаний и умений!

Для визуализации в образовательном процессе можно использовать привычные цветные мелки, разноцветные карточки, наклейки, вырезки из журналов, акварельные краски, материалы для лепки и другие подходящие для этой цели предметы. Театрализация представления результатов обсуждения также обеспечит яркий визуальный эффект и прочное запоминание материала. На самом деле, варианты представления процесса и результатов обучения безграничны, точнее, определяются задачами каждого раздела урока и ограничиваются исключительно фантазией педагога, обучающихся и ресурсными возможностями.

Активные методы представления информации, различные техники и способы визуализации материала оживляют образовательный процесс, позитивно воспринимаются обучающимися и положительно сказываются на результатах обучения. Не жалейте времени на планирование и осуществление на уроке данного процесса!

Скачать:


Предварительный просмотр:

Визуализация

Поговорка «лучше один раз увидеть, чем сто раз услышать» отражает суть такого процесса как визуализация.

Визуализация (от лат. visualis , «зрительный») - общее название приёмов представления числовой информации или физического явления в виде, удобном для зрительного наблюдения и анализа (wikipedia).

Что такое визуализация? Само по себе понятие является достаточно многогранным, существует несколько определений в зависимости от того, о каком поле деятельности идет речь. Целью визуализации является передача данных. Визуализация информации - это процесс представления абстрактных данных в виде изображений, которые могут помочь в понимании смысла данных. (FB.ru)

Не только дети, но и многие люди плохо воспринимают информацию на слух, часть ее не распознается и теряется, часть воспринимается неверно, сухой монолог быстро утомляет, может вызывать демотивирование обучающихся. Визуализация подаваемого материала обеспечивает наглядность, четкое восприятие и понимание, возможность многократного обращения к представленной информации, возможность сравнения с предыдущей и последующей информацией.

Выделяют следующие Методы визуализации:

1 Рисунок

Рисунок, видимо, был первой в мире сознательной попыткой визуализации образов для их демонстрации другом у человеку.

2 График

Графики предназначены прежде всего для иллюстрирования математических понятий, функциональных зависимостей или связей между объектами.

3 Диаграмма

Диаграммы позволяют иллюстрировать коли чественные соотношения в определённой области.

4 Фотография

5 Карта (wikipedia).

Включение визуализации в образовательный процесс позволяет активно задействовать мощный зрительный канал получения информации. Помимо более понятной и наглядной формы получения информации, происходит дополнительная активизация нервной системы, обеспечивающая повышенное внимание и концентрацию учащихся на предмете изучения.

Есть еще один важный эффект визуализации. Оформляя результаты самостоятельного обсуждения новой темы, учащиеся подключают к обучению мощнейший потенциал творчества. Поиск оригинальных форм отражения результатов работы команды, реализация в этом процессе всех своих способностей, свободное самовыражение и связанные с этим яркие положительные эмоции обеспечивают эффективное усвоение и надежное закрепление новых знаний и умений!

Для визуализации в образовательном процессе можно использовать привычные цветные мелки, разноцветные карточки, наклейки, вырезки из журналов, акварельные краски, материалы для лепки и другие подходящие для этой цели предметы. Театрализация представления результатов обсуждения также обеспечит яркий визуальный эффект и прочное запоминание материала. На самом деле, варианты представления процесса и результатов обучения безграничны, точнее, определяются задачами каждого раздела урока и ограничиваются исключительно фантазией педагога, обучающихся и ресурсными возможностями.

Активные методы представления информации, различные техники и способы визуализации материала оживляют образовательный процесс, позитивно воспринимаются обучающимися и положительно сказываются на результатах обучения. Не жалейте времени на планирование и осуществление на уроке данного процесса!


Аннотация: В этой лекции мы рассмотрим такие вопросы: ассоциации как основа работы человеческого мозга, понятие о теориях обработки, систематизации и визуализации информации, Mind mapping и визуальное мышление.

Как уже говорилось выше, предметом этого курса является mind mapping – эффективная техника повышения персональной продуктивности. Но прежде чем обсуждать области применимости mind map "ов, правила их построения и типичные ошибки их использования, более того, прежде чем пытаться объяснить, что такое mind mapping вообще, нужно поговорить о визуальном (или радиантном) мышлении, воплощением и результатом которого являются mind map "ы.

Ассоциации как основа работы человеческого мозга

Вы когда-нибудь задумывались о том, на каких принципах основана работа тех сверхмощных компьютеров, которые каждый из нас носит внутри своего черепа? Готов держать пари – первая мысль, пришедшая в голову большинству читателей, была о микропроцессорах, лежащих в основе наших ноутбуков и рабочих станций. Однако смутные подозрения о несопоставимости "весовых категорий" кремниевого микрочипа и головного мозга все же не дают нам с уверенностью рассуждать о том, как все просто – двоичная арифметика, "есть импульс – нет импульса" и все такое. Да, как модель работы мозга двоичная машина вполне приемлема, но очень уж грубая это модель (мы же помним, что любая модель отражает только одно, наиболее важное в данном контексте свойство объекта, правда?). Как-то слишком примитивно получается – свести наше мышление к нулям и единичкам. А как же тогда объяснить тот каскад мелких воспоминаний – ощущений, цветов, запахов, идей, проносящихся перед нашим мысленным взором, когда мы о чем-то думаем? Многие из этих образов для большинства посторонних людей никак не связаны с предметом наших размышлений и значат что-то конкретное только для них, поскольку связаны с какими-то личными воспоминаниями и переживаниями. Позвольте себе подумать о чем-то и не придерживайтесь какого-то определенного направления мысли – вы будете удивлены тем, как быстро и далеко вы уйдете от первоначальной темы размышлений: сменяющиеся образы, связанные, как звенья одной цепи, вытаскивая друг друга из закромов памяти, быстро уведут вас от объекта, о котором вы подумали. Конечно, можно попытаться объяснить подобное поведение нашего мозга тем, что он просто отрабатывает гениально сложную разветвленную программу обработки информации с учетом данных, уже хранящихся в памяти, но все далеко не так просто.

Любая информация , поступающая в наш мозг (неважно, что это – прикосновение, вкус, запах, цвет, звук), вытаскивает за собой на свет Божий массу мелких воспоминаний, мыслей и ощущений, подобно тому, как от упавшего в пруд камня расходятся по поверхности воды концентрические круги. А каждое из этих воспоминаний тянет за собой массу других, которые, в свою очередь , вызывают к жизни все новые и новые образы, мысли или идеи. Да, я понимаю, что уже немного утомил читателя своими пространными рассуждениями. А суть их состояла в том, что единички и нолики, возможно хороши для того, чтобы объяснить, как работает наш мозг на "физическом уровне", но если речь идет о принципах его работы , то следует говорить не о битах, а об ассоциациях как минимальных единицах обработки информации человеческим мозгом . Помните понятие лексемы как минимальной единицы языка, имеющей самостоятельный смысл? Так вот, в том языке, на котором "говорит" наш мозг, такими лексемами являются ассоциации. Что же такое ассоциация ?

Ассоциация :

  • в физиологии – образование временной связи между индифферентными раздражителями в результате их многократного сочетания по времени;
  • в психологии – закономерная связь между отдельными событиями, фактами, предметами или явлениями, отраженными в сознании и закрепленными в памяти.

При наличии ассоциативной связи между психическими явлениями A и B возникновение в сознании человека явления A закономерным образом влечет появление в сознании явления B.

Итак, каждая ассоциация связана с огромным числом новых ассоциаций, которые, в свою очередь , связаны с новыми и новыми понятиями. Таким образом, мышление можно представить в виде сложного ассоциативного алгоритма, своего рода слалома по ветвям дерева ассоциаций, расходящимся от ствола – основной мысли. В свое время профессор Анохин (http://ru.wikipedia.org/wiki/Анохин,_Пётр_Кузьмич) говорил, что возможности мозга по формированию ассоциативных связей намного превосходят его возможности по хранению информации. Что же касается информационной емкости мозга, то она тоже весьма впечатляет – доктор Марк Розенцвейг (http://en.wikipedia.org/wiki/Mark_Rosenzweig) писал, что даже в том случае, если бы человек запоминал 10 единиц информации ( слово , изображение или другое элементарное впечатление) каждую секунду в течение 100 лет, заполнить удалось бы менее одной десятой суммарного объема человеческой памяти. И сколько бы таких единиц информации ни хранилось у нас в голове, количество ассоциаций, связанных с ними, еще на несколько порядков выше! Потенциал человеческого мозга, связанный с созданием ассоциаций, поистине безграничен: все наши идеи, воспоминания и ощущения хранятся у нас в голове в виде своеобразных "треков" – извилистых ветвящихся дорожек, связывающих их с другими нашими мыслями.

Вот пример того, что обычно творится у нас в голове:

Не правда ли, весьма знакомая картина?

Таким образом, в основе работы нашего мозга лежат два важнейших принципа.

  • Ассоциативное мышление – связь каждого воспоминания с массой других образов, и именно об этом принципе мы с вами говорили последние десять минут.
  • Иерархия понятий – в каждом таком ассоциативном "треке" один из образов является главным (корневым), от которого расходятся ветви-дорожки к другим понятиям, идеям, воспоминаниям. В результате мы получаем некое дерево (или граф) образов, связанных с исходным понятием.

Если же постараться объединить эти два принципа (которые работают в комплексе, дополняя друг друга), то следует сказать о так называемом радиантном , или визуальном , мышлении . О нем мы поговорим в этой же лекции, но чуть позже. А пока постараемся разобраться в том, какие же теории обработки, систематизации и визуализации информации существуют в данный момент, и не имеют ли они каких-то общих черт с описанными нами выше принципами работы человеческого мозга.

Понятие о теориях обработки, систематизации и визуализации информации

Cуществующие теории обработки информации

Начнем с определений.

Обработка информации – любое преобразование информации из одного вида в другой, производимое по строгим формальным правилам.

Теория обработки информации (information-processing theory) – направление научного знания, изучающее то, как люди обращаются с информацией, отбирают и усваивают ее, а затем используют в процессе принятия решений и управления своим поведением.

Теории обработки информации применяются при изучении восприятия, памяти, внимания, речи, мышления и решения задач экспериментальной психологии. В свою очередь, большой вклад в развитие упомянутых теорий внесли математическая логика, техника связи, теория информации и теория вычислительных систем. Почему же мы говорим "теории" – во множественном числе? Дело в том, что на самом деле следует говорить о целом семействе абсолютно разрозненных теоретических и исследовательских программ. Естественно, как и в любом научном сообществе, согласия между исследователями нет и в помине – мнения ученых сходятся лишь в некоторых исходных посылках, теории и методологии исследований. В рамках упомянутого семейства можно выделить такие широко известные в узких кругах подходы, как трансформационная лингвистика (http://ru.wikipedia.org/wiki/Генеративная_лингвистика), психология Пиаже (http://www.gumer.info/bibliotek_Buks/Psihol/Jaroschev/11.php) и радикальный бихевиоризм. Бихевиоризм, в частности, занимался изучением поведения животных и активно распространял свои принципы на все области психологии. Однако возникли некоторые трудности при попытке распространить теорию и методы бихевиоризма на символические процессы человека, в частности, на языковые способности. Когда разочарование ученых в привычных методах стало всеобщим, исследователи-психологи обратились к другим теориям, в результате чего о бихевиоризме почти забыли. Тем не менее, ученые, развивающие теории обработки информации, разделяют со своими предшественниками-бихевиористами веру в эмпиризм, операционализм и т.п. Да, психологи отказались от распространения на людей выводов, полученных вследствие экспериментов с животными, и от объяснения видимого поведения индивидов внешними причинами, в частности, влияниями окружающей среды. В то же время общая методология и статистические методы обработки результатов экспериментов остались прежними – просто животных в качестве испытуемых сменили люди. Ученая братия вновь признала существование врожденных способностей и начала активно обсуждать такие внутренние процессы, как планы, стратегии, образы, решения и ассоциации .

ХХ век ознаменовался бурным развитием технологий связи – телефонии, радио и телевидения. Очень показательной была продемонстрированная психологами аналогия между обработкой информации человеческим мозгом и работой описанного в теории связи информационного канала. Большую роль в создании математической теории информации и переносе понятий теории связи на работу человеческого мозга сыграли исследования Клода Шеннона (знакомое имя, не правда ли?). Созданная им теория описывает передачу сообщений любой природы от любого источника любому получателю, в том числе и передачу сигналов внутри человеческого мозга.

Но вспомним еще об одном непонятном названии, упомянутом нами в начале этого раздела, – трансформационной лингвистике. В свое время Ноам Хомский (http://ru.wikipedia.org/wiki/Хомский,_Ноам) утверждал, что человеческий язык невозможно научно объяснить с позиций бихевиоризма. Он настаивал на том, что этот подход абсолютно неправильно представляет природу языка, игнорируя его структуру, правила и грамматику. Взамен этого он говорил о "правилах в голове" человека, позволяющих преобразовать (трансформировать) передаваемую информацию – разбить ее на смысловые единицы (слова) и связать эти единицы между собой. Отойдя от бихевиоризма, новая парадигма обработки информации в поисках идей все больше склонялась к лингвистике. Вот и современные исследователи стремятся обнаружить психологические процессы или умственные операции, которые лежат в основе языковой активности. Активно изучаются такие виды когнитивной активности, как восприятие, память, мышление и понимание. И понятие ассоциации опять не осталось в стороне.

Что же касается теории вычислительных систем, то за этим названием также скрывается целый выводок абсолютно разношерстных дисциплин. Сюда входят теория алгоритмов, численные методы, теория конечных автоматов, языки программирования, теория искусственного интеллекта и многое другое… И это не единственная черта, которая роднит теорию вычислительных систем с психологией обработки информации, – оба направления выросли из математической логики, оба занимались изучением природы разумного поведения, а появление вычислительных машин и развитие принципов, на которых они строились, привело к возникновению еще одной аналогии человеческих психических и интеллектуальных способностей. Машинные модели помогли в изучении мышления и в особенности – процесса решения задач. Отталкиваясь от этой аналогии, психологи пытаются объяснить, каким образом мозг получает информацию, перекодирует и сохраняет ее в памяти, каким образом он затем использует ее для принятия решений и управления поведением. Конечно, полного соответствия между работой мозга и компьютера нет и быть не может, но все же ученым удалось создать стройную концепцию, способную объяснить, каким образом интеллектуальная система – будь это человек или некое устройство – создает новые знания. Догадайтесь, какое понятие играет тут важнейшую роль? Да, конечно, вы правы – это понятие ассоциации !

Систематизация и структурирование информации

Итак, с обработкой информации мы разобрались, перейдем теперь к систематизации. Конечно, мы не забываем о том, что систематизация информации – это составная часть алгоритма обработки информации, некий его этап, но все равно, об этом этапе нужно сказать отдельно. Как всегда, сначала обратимся к определению:

Систематизировать – распределить элементы информации по признакам родства, сходства, т. е. классифицировать и типизировать их.

Мозг человека (в контексте процессов восприятия, запоминания, преобразования информации и т.п.) работает именно с систематизированной информацией. Например, процесс запоминания проходит намного эффективнее, если человеку удается рационально структурировать получаемую информацию, разложить по полочкам, как говорят в народе. В коммуникативных процессах (помните, мы говорили о языке и лингвистике?) систематизированное представление передаваемой информации также играет важную роль. Систематизация и структурирование информации – важнейшие психологические механизмы, благодаря которым человеческий мозг может эффективно обрабатывать большие потоки информации.

Стремление к целостному охвату объекта изучения, к систематизации знаний свойственно любому процессу познания. Многие исследователи отмечали, что процесс работы мозга над проблемой идет от осознания свойств, характеристик и функций объекта изучения к поиску недостающих структурных элементов, связей и отношений между ними. А если овладеть системным подходом и развить свое умение систематизировать и структурировать информацию, можно помочь мозгу работать эффективнее в процессе учебы и при решении профессиональных задач.

Структуры данных бывают разные – линейные (список), табличные, иерархические (дерево). Деревья (графы) понятий, построенные на основе ассоциативных связей, – наиболее естественный для нашего мозга способ представления (структурирования) данных (хотя, строго говоря, не следует путать ассоциативные и классификационные отношения). Вспомним о визуальном мышлении? Кстати, раз уж мы заговорили о деревьях, то нам пора плавно перейти к рассмотрению вопроса о визуализации информации. Но прежде отметим, что существует целое направление научного знания, изучающее методы и приемы структурирования информации, которое называется информационной архитектурой . Классики говорят, что

информационная архитектура – как наука занимается принципами систематизации информации и навигации по ней с целью помочь людям более успешно находить и обрабатывать нужные им данные.

Первое, что приходит нам в голову при слове "визуализация", – это графики и диаграммы (вот она, сила ассоциаций!). С другой стороны, визуализировать таким образом можно только числовые данные, никому еще не удавалось построить график на основе связного текста. Для текста мы можем построить план, выделить основные мысли (тезисы) – сделать краткий конспект. О недостатках и вреде конспектирования мы поговорим чуть позже, а сейчас скажем о том, что если объединить план и краткий конспект – "развесить" тезисы по ветвям дерева, структура которого соответствует структуре (плану) текста, – то мы получим отличную структурную схему текста, которая запомнится намного лучше, чем любой конспект. В этом случае ветви будут играть роль тех "треков" – дорожек, связывающих понятия и тезисы, о которых мы говорили ранее.

Помните, как мы строили UML-диаграммы на основе описания проектируемой программной системы, полученного от ее будущих пользователей? Полученные картинки воспринимались и клиентами, и разработчиками намного проще и быстрее, чем текстовое описание. Точно так же можно "изобразить" абсолютно любой текст, не только техническое задание на разработку системы. Подход, описанный нами выше, позволяет визуально представить абсолютно любой текст – будь это сказка, техническое задание, лекция, фантастический роман или результаты совещания – в виде удобного и простого для восприятия дерева. Строить его можно как угодно – лишь бы получилась наглядная и понятная схема, которую хорошо бы еще проиллюстрировать подходящими по смыслу рисунками.

Такие схемы удобно применять и в общении при обсуждении каких-либо вопросов и проблем. Как показывает практика, отсутствие четких стандартов нотации не создает абсолютно никаких коммуникативных сложностей для участников обсуждений. Наоборот, использование невербальных форм представления информации позволяет концентрировать внимание именно на ключевых точках проблемы. Таким образом, визуализация является одним из наиболее перспективных направлений повышения эффективности анализа, представления, восприятия и понимания информации.

Ух, наконец-то мы покончили с нудным описанием научных теорий, методов и приемов, применяющихся для обработки, систематизации и визуализации информации! Предыдущая часть главы сильно утомила и автора, и читателей, и тем не менее, она была необходима: в результате мы увидели, что особенности работы нашего мозга уже активно применяются учеными в самых разных областях науки, многие вещи, которые кажутся нам привычными, – персональные компьютеры, пользовательские интерфейсы, базы знаний и т.д. – изначально строились с учетом ассоциативного характера человеческого мышления и его склонности к иерархическому представлению и визуализации информации. Но вершиной и естественным графическим выражением мыслительных процессов человека является mind mapping, к обсуждению которого мы наконец-то переходим. А заодно попытаемся расширить наше понимание принципов визуального мышления.

Тема визуализации информации и инфографики регулярно всплывает при работе, да и в целом интересна как практика проектирования и дизайна. Хотя мы в компании работаем над веб-системами, где большинство задач решается стандартными средствами конструирования вроде форм или информационных блоков, иногда требуется емко и компактно подать большое количество информации. Часто это достаточно специфичные задачи, на продумывание интерфейса которых уходит немало времени. Правда, и задачи это одни из самых интересных.

У практики отображения информации в графическом виде много синонимов, но в последнее время чаще всего используются два — визуализация данных и инфографика. Существуют эти подходы уже достаточно давно , литературы по этому поводу написано много. Среди известных авторов и дизайнеров — Edward Tufte , Stephen Few , Ben Fry . Но в первую очередь интересно, где и как используется инфографика.

Применение

Сейчас существует множество интересных примеров визуализации, но многие из них скорее объекты искусства, чем практически полезные носители информации. Я вижу следующие области использования:

  • Статистика и отчеты . Самодостаточный жанр, когда данные за некий период времени показываются вместе. Например, статической картинкой в приложении к отчету или настраиваемым графиком в сервисе статистики, с возможностью изменения параметров его отображения.
  • Справочная информация . Дополнение к основному тексту, наглядно иллюстрирующее его упоминаемыми данными. Скажем, дать общее представление о динамике одного из показателей, либо отобразить какой-то процесс и его этапы; может быть — показать структуру некого явления.
  • Интерактивные сервисы . Продукты и проекты, в которых инфографика является частью функциональности. Так, в качестве средства навигации по сервисам со сложным workflow может являться диаграмма процесса. Почти все, что связано с работой с картами и вовсе редко обходится без микса инфографики и интерактивности, не говоря уже о специализированных системах вроде диспетчерских и большей части компьютерных игр.
  • Иллюстрации . Не совсем чистый жанр — скорее, использование практик и подходов красивого отображения данных для создания самостоятельных иллюстраций. Они несут некий смысл, но это не основная их задача — основной ценностью является качество исполнения.
  • Чертежи и схемы . Специализированные документы, показывающие структуру и процесс работы сложных инженерных и природных систем. Помимо различных карт, зачастую это редко использующиеся в повседневной жизни вещи вроде схем печатных плат.
  • Эксперименты и искусство . Визуализация данных без особого практического смысла, скорее в качестве экспериментов или инсталляций. Чаще всего это сложные и громоздкие изображения, которые сложно “прочитать” бегло — объем данных и взаимосвязей между ними таков, что нужно разбираться с картинкой по частям; либо просто абстрактные изображения, автоматически сгенерированные. В последнее время направление все более популярно и периодически выходит за рамки компьютерной графики — например, в виде графиков-скульптур.

Классификация

Набор инструментов визуализации достаточно обширен — от простейших линейных графиков до сложных отображений множества связей. Разбить их можно на несколько типов:

Графики

Показывают зависимость данных друг от друга. Строятся по осям X и Y, хотя могут быть и трехмерными.


(line chart, area chart). Наиболее распространенный случай. Объединяет линией набор точек, соответствующих значениям по осям. Например, ежедневная посещаемость сайта за месяц. Может показывать сразу несколько наборов данных — например, статистику просмотров для 3 наиболее популярных страниц.
Примеры: © BFM.ru , SmartMoney , TeleGeography Research
(scatterplot). Показывает распределение ограниченного набора точек, соответствующих значениям по осям. Между точек часто рисуется линия тренда — она наглядно показывает закономерности среди значений. Например, связь между стажем работы и производительностью труда среди 50 сотрудников компании (просто соединить полученные точки в виде линейного графика нельзя — и смысл искажается, и линия будет будет дерганой).
Примеры: © Statcon
Другие примеры в галерее паттернов

Диаграммы сравнения

Показывают соотношения набора данных. Во многих случаях строятся вокруг осей, хотя и необязательно.

(bar chart). Показывает один или несколько наборов данных, сравнивая их между собой. Существует два варианта отображения в случае нескольких наборов — либо в виде нескольких стоящих рядом столбиков, либо в виде одного, но поделенного внутри в соответствии с долями значений. Например, ежегодная прибыль трех компаний за последние 5 лет или доли рынка трех компаний за это же время.
Примеры: © SmartMoney
Другие примеры в галерее паттернов
(histogram). Показывает распределение набора данных внутри выборки в виде столбиков. Например, количество сотрудников компании в нескольких возрастных группах.
Примеры: © Студия Артемия Лебедева , Большая Советская Энциклопедия
Другие примеры в галерее паттернов
(pie chart). Отображает процент, занимаемый каждым значением внутри набора данных, в виде разбитого на части круга. Например, доли рынка сотовых операторов. Может отображать сразу несколько наборов данных — в этом случае диаграммы наложены друг на друга, причем каждая из них меньше предыдущей. Например, доли рынка сотовых операторов за последение 3 года.
Примеры: © Candy Chang , Density Design , GraphJam
Другие примеры в галерее паттернов
(bubble chart). Микс графика и диаграммы — по двум осям расставлен набор точек, соответствующий значениям. При этом сами точки не соединены и имеют различную величину, которая задается третьим параметром. Например, сравнение количества купленных товаров, общей стоимости покупки и величины общего бюджета покупателя.
Примеры: © (автор неизвестен), Секрет Фирмы , Коммерсантъ.Деньги
Другие примеры в галерее паттернов
(ring chart). Показывает процент от максимального количества, которое занимает одно из значений в наборе данных, в виде частично закрашенного кольца. Например, количество завоеванных на чемпионате медалей относительно максимального. Часто используется сразу несколько таких диаграмм, сравнивая разные значения.
Примеры: © Wired , New York Times
Другие примеры в галерее паттернов
(span chart). Показывает минимальную и максимальную величину значений внутри набора данных в виде урезанной столбиковой диаграммы. Начало столбика лежит не на горизонтальной оси, а в точке минимального значения по вертикали. Например, разброс стоимости квадратного метра жилья в разных районах города.
Примеры: © Potsdam University of Applied Sciences
Другие примеры в галерее паттернов
(radar chart). Сравнивает величины нескольких значений, каждая из которых соответствует точке на оси. Количество осей соответствует количеству значений, а точки объединены линями. Например, сравнение рентабельности каждого из 8 направлений деятельности компании.
Примеры: © Секрет Фирмы , Pedro Monteiro , Main Library at Queen Mary (University of London)
Другие примеры в галерее паттернов
(tag cloud). Сравнивает ключевые слова или фразы (значения), содержащиеся внутри фрагмента текста (набора данных), задавая каждому из них свой размер шрифта. Размер шрифта зависит от величины параметра. Например, 25 самых часто упоминаемых в газетах слов за декабрь 2008 года.
Примеры: © Flickr , Martin Ignacio Bereciartua
Другие примеры в галерее паттернов
(heat map). Сравнивает значения внутри набора данных, закрашивая их одним из цветов в заранее выбранном спектре. Основой является изображение или другая диаграмма, на которой расставлены значения. Цвет зависит от величины параметра и чаще всего накладывается в виде пятен. Например, страны мира с наиболее высоким атмосферным давлением или элементы главной страницы сайта, по которым пользователи кликают чаще всего.
Примеры: © Dylan Vester , CrazyEgg
Другие примеры в галерее паттернов

Деревья и структурные диаграммы

Показывают структуру набора данных и взаимосвязи между его элементами.

Граф и дерево (graph, tree). Показывает иерархию набора данных, в которой элементы являются родительскими или дочерними по отношению друг к другу. Выстраивается в виде соединенных линиями узлов либо сверху вниз, либо из центра композиции. Узел обычно отображается кругом или прямоугольником. Например, карта сайта.
Примеры: © Concept Draw , Karen Leech, (автор неизвестен)
Другие примеры в галерее паттернов
(mind map). Показывает состав и структуру явления или понятия в виде графа, в котором каждый узел имеет один или несколько дочерних элементов. Это частный случай графа, с той разницей что ветви обычно симметрично расходятся из узла, расположенного в центре изображения. Например, конспект книги по управлению проектами, который отражает ее содержание и основные понятия.
Примеры: © Adaptive Path , Ethan Hein , Comic vs Audience
Другие примеры в галерее паттернов
Формализованные структурные диаграммы . Показывают состав и структуру системы или ее части в виде карточек, которые описаны с разной степенью детализации и связаны друг с другом как родительские и дочерние. Отображается в стандартизованном виде — например, с помощью UML (Unified Modeling Language) или IDEF1X (Integration Definition for Information Modeling). Например, все сущности, необходимые для работы одного из модулей программной системы.
Примеры: © Concept Draw , Wikipedia
Другие примеры в галерее паттернов
(Venn/Euler diagram). Показывает отношения между значениями набора данных в виде накладывающихся друг на друга кругов (чаще всего трех). Область, в которой пересекаются все круги, показывает общее между ними. Например, пересечением соблюдения сроков, бюджета и поставленных задач является успех проекта.
Примеры: © Phil Glockner , Dan Saffer
Другие примеры в галерее паттернов
(tree map). Показывает иерархию набора данных, в которой элементы являются родительскими или дочерними по отношению друг к другу. Отображается в виде набора вложенных прямоугольников, каждый из которых является ветвью дерева, а находящиеся внутри него — дочерними элементами и ветвями. Прямоугольники различаются по размеру в зависимости от параметра и имеют цвет, который задается другим параметром. Например, детальная структура бюджета компании, в котором цветом показан процент изменения каждого пункта по сравнению с предыдущим годом.
Примеры: © Tableau Software , Panopticon , Panopticon
Другие примеры в галерее паттернов

Диаграммы визуализации процесса

Показывают процесс, состоящий из последовательности действий. Может включать один или несколько сценариев развития событий.

(block diagram). Показывает ключевые шаги, которые проходит процесс, в виде связанных друг с другом однонаправленными стрелками блоков. Отображается в стандартизированном формате, где вид блока зависит от его роли в процессе. Например, схема процесса утверждения и публикации статьи внутри редакции.
Примеры: © Density Design , Allen Holub , Concept Draw
Другие примеры в галерее паттернов
(block diagram). Показывает ключевые шаги, которые проходит процесс, в виде связанных друг с другом стрелками блоков. Отображается в свободной форме, когда шаги показаны произвольными фигурами, а стрелки могут быть двунаправленными или вообще не иметь направления. Кроме того, блоки могут быть объединены в группы. Например, упрощенная схема передвижения средств при SMS-платежах.
Примеры: © Tapulous , Секрет Фирмы , David Armano
Другие примеры в галерее паттернов
. Показывает ключевые шаги процесса, который содержит набор повторяющихся действий. Циклическая часть отображается в виде кольца, которое образуют соединенные стрелками шаги. А начало и окончание процесса — входящей и выходящей из круга стрелками. Например, последовательность процесса проверки качества, который проходит во время работы над программным продуктом.
Примеры: © Fruitful, eStrara, Idiagram
Другие примеры в галерее паттернов
(Sankey diagram). Показывает ключевые шаги процесса и интенсивность его протекания на каждом из участков. Отображается без узлов, в виде соединяющихся и разветвляющихся линий разной толщины (в зависимости от величины параметра). Имеет любое количество начальных и конечных точек, а значит и множество сценариев развития. Например, процесс передачи тепла от ТЭЦ к бойлерной станции, включая его потери по различным причинам.
Примеры: © , Sankey-diagrams.com , IBM
Другие примеры в галерее паттернов

Матрицы

Сопоставляют между собой значения внутри набора данных в виде таблицы.

Таблица (matrix). Показывает набор данных в виде заполненных его значениями ячеек, которые образуют собой строки и столбцы. Каждому столбцу и строке соответствует параметр, который определяет конкретную ячейку для значения. Например, бюджет отделов компании за каждый год ее существования.
Примеры: © Известия , PresseBox , Elliance
Другие примеры в галерее паттернов
. Частный случай таблицы. Показывает календарный месяц по номерам и дням недели.
Примеры: © thenonhacker , Yahoo! UI Patterns Library
Другие примеры в галерее паттернов

Диаграммы времени

Показывают распределение данных в зависимости от времени.

(timeline). Показывает значения из набора данных на горизонтальной оси, которая соответствует времени. Отрезки между значениями могут быть любой величины. Например, линия годов XX века, на которой отмечены крупные военные конфликты.
Примеры: © Секрет Фирмы , Rodrigo Ronda Leon , GOOD Magazine
Другие примеры в галерее паттернов
(Gantt diagram). Показывает последовательность, длительность, а также время начала и окончания этапов и конкретных задач, необходимых для выполнения проекта. Отображается в виде “водопада” из одного или нескольких каскадов — соединенных стрелками блоков, выстроенных по диагонали сверху вниз, слева направо (т.е. “лестницей”). Причем длина блока зависит от необходимого для выполнения времени. Например, задачи, которые нужно выполнить для написания, подготовки к печати и выпуска книги. Диаграмму можно также отнести и к группе визуализирующих процесс, но обе ее части (длительность и последовательность действий) одинаково важны, поэтому тут уже дело вкуса.
Примеры: © MS Project , Todd R. Warfel
Другие примеры в галерее паттернов

Карты

Показывают данные, зависимые от географии или архитектуры некого объекта.

. Показывает в схематичном виде состав и расположение частей географического объекта. Например, мир в целом или остров.
Примеры: © Google Maps , TeleGeography Research , Flowing Data
Другие примеры в галерее паттернов
. Показывает географический объект в виде фотографии со спутника или самолета. Например, мир в целом или город.
Примеры: © Google Maps , Яндекс.Карты
Другие примеры в галерее паттернов
. Показывает в схематичном виде трассы, магистрали, железные и другие дороги, наложенные на очертания географических объектов. Например, автомобильная карта дорог области.
Примеры: © MapQuest , Яндекс.Карты
Другие примеры в галерее паттернов
. Показывает различные объекты в виде маркеров на карте мира, страны или города. Объектами чаще всего являются те, что построены человеком: дома, магазины, памятники, объекты инфраструктуры и т.п. на карте города; либо города на карте страны; либо страны на карте мира. Основой может являться практически любая карта, но обычно используются географическая, фотографическая, дорожная или топографическая карты. Например, расположение офисов компании на карте города.
Примеры: © Яндекс.Карты , Автокадабра
Другие примеры в галерее паттернов
(cartogram). Показывает в виде схематичной карты набор данных, каждое из значений которого привязано к географическому объекту. При этом размер и форма объекта зависит от величины значения. Например, карта мира, на которой величина страны зависит от количества ее населения.
Примеры: © Density Design , (автор неизвестен), Manuel Marino
Другие примеры в галерее паттернов
(floor plan). Показывает в схематичном виде форму и внутреннее строение одного из этажей здания или другого архитектурного сооружения. Также может показывать расстановку мебели и других предметов наполнения помещений. Например, план помещений двухкомнатной квартиры.
Примеры: © Christian’s of Bucks Point , (автор неизвестен), (автор неизвестен)
Другие примеры в галерее паттернов
. Показывает остановки общественного транспорта в виде одной или нескольких пересекающихся линий разного цвета. Линия соответствует заранее определенной последовательности станций. В некоторых случаях накладывается на упрощенную географическую карту. Например, карта метро.
Круговая диаграмма связей (network diagram, arc diagram). Показывает связи внутри набора данных в виде кольца, на котором расставлены значения. Значения связаны дугами или линиями, находящимися во внутренней области круга. При большом количестве значений они могут находиться и внутри кольца, хотя это менее наглядно. Связи также могут иметь направление. Например, являются ли взаимными друзьями участники группы в социальной сети.
Примеры: © Ethan Hein , Ethan Hein , Josef Muller-Brockmann
Другие примеры в галерее паттернов
. Показывает связи внутри набора данных в виде линии, на которой расставлены значения. Значения связаны дугами, находящимися сверху и снизу линии. Связи также могут иметь направление. Это альтернативный вариант отрисовки круговой диаграммы связей — смысл и задачи у них одинаковые.
Примеры: © Martin Dittus , Andreas Koller & Philipp Steinweber , TeleGeography Research
Другие примеры в галерее паттернов
. Показывает связи внутри набора данных в виде земного шара или географической карты, на которой расставлены значения. Значения связаны дугами, если изображение трехмерное, или линиями, если карта плоская. Связи также могут иметь направление. Например, маршруты всех находящихся сейчас в воздухе самолетов.
Примеры: © National Science Foundation , Ensci , MIT Senseable City Lab
Другие примеры в галерее паттернов
(dendrogram). Показывает близость значений набора данных по одному из параметров, используя ось Y для расстановки самих значений, а ось X — величины параметра. Отображается в виде набора соединяющихся друг с другом горизонтальных линий, которые соединяются, если значения совпадают по параметру. Причем чем раньше совпадение значений находится по оси X, тем ближе они друг к другу. Например, сравнение годовой выручки 30 предприятий.
Примеры: © GUI.ru , New York Times , Kate Jones
Другие примеры в галерее паттернов

Иллюстрации

Показывают процесс или явление в неформализованном виде.

. Показывает ключевые шаги, которые проходит процесс, в виде изображенного на картинке сюжета. Либо структуру явления в виде визуальной метафоры. По сути является аналогом графика, диаграммы или неформальной блок-схемы. Например, изображение круговорота воды в природе в книге по природоведению.
Примеры: © Athletics NYC , Christian Montenegro , журнал «Популярные Финансы»
Другие примеры в галерее паттернов
. Показывает ключевые шаги последовательного процесса или явления в виде набора картинок, каждая из которых показывает один из его этапов в виде небольшого сюжета. Например, три этапа процесса параллельной парковки в инструкции для водителей.
Примеры: © Scenic Valley Driving School , Elliance
Другие примеры в галерее паттернов

Само по себе понятие является достаточно многогранным, существует несколько определений в зависимости от того, о каком поле деятельности идет речь. Целью визуализации является Это означает, что данные должны исходить от чего-то абстрактного или, по крайней мере, не быть очевидными сразу. Визуализация объектов исключает фотосъемку и это превращение из невидимого в видимое.

Визуализация данных

Визуализация информации - это процесс представления абстрактных деловых или научных данных в виде изображений, которые могут помочь в понимании смысла данных. Что такое визуализация информации? Это понятие можно определить как сопоставление дискретных данных и их визуальное представление. Это определение не охватывает все аспекты визуализации информации, такие как статическая, динамичесая (анимация) и наиболее актуальная на сегодняшний день интерактивная визуализация. Помимо различий между интерактивной визуализацией и анимацией, самая полезная категоризация основывается на научной визуализации, которая обычно осуществляется при помощи специализированного программного обеспечения. Важная роль отводится наглядности в образовательной сфере. Это очень полезно, когда речь идет о преподавании тем, которые трудно представить без конкретных примеров, например, строение атомов, которые слишком малы, чтобы можно было их изучить без дорогостоящего и сложного в использовании научного оборудования. Визуализация позволяет проникнуть в любой мир и представить себе то, что, казалось бы, представить невозможно.

3D-визуализация

Программное обеспечение помогает конструкторам и специалистам цифрового маркетинга создавать визуальное изображение продукта, проекта или виртуальных прототипов в формате 3D. Визуализация предоставляет разработчикам инструменты, которые могут расширить передовые Визуализация с помощью визуальных образов является эффективным способом общения. Зрительное представления является одним из лучших способов коммуникации с потенциальными клиентами. Эффективное общение позволяет тратить больше времени на улучшение своих проектов и продуктивное взаимодействие. Визуализация 3D представляет собой технику создания объемных изображений, диаграмм или анимации.

Использование визуализации в науке

Сегодня визуализация имеет постоянно расширяющийся ассортимент приложений в области науки, образования, техники, интерактивных мультимедиа, медицины и многих других. Свое применение нашла визуализация также в области компьютерной графики, наверное, одном из самых важных событий компьютерного мира. Развитие анимации также способствует продвижению визуализации. Использование визуализации для представления информации - это не новое явление. Она была использована в картах, научных рисунках на протяжении более тысячи лет. Компьютерная графика с самого начала использовалась для изучения научных проблем. Большинство людей знакомы с цифровой анимацией, например, в виде представления метеорологических данных во время сводки погоды по телевидению. Телевизор также предлагает версию научной визуализации, когда он показывает прорисованные с помощью компьютерных программ и анимированных реконструкций дорог или аварий самолета. Некоторые из самых интересных примеров, созданных компьютером, включают изображение реального космического корабля в действии, в пустоте далеко за пределами Земли или на других планетах. Динамические формы визуализации, такие как образовательные анимации или графики, имеют потенциал для повышения качества обучения, так как системы визуализации меняются с течением времени.

Ключ к достижению поставленных целей

Что такое важный инструмент личностного развития. Подобно тому как мотивирующие аффирмации могут помочь сосредоточиться на достижении своих целей, то же самое можно сделать и с помощью визуализации или мысленных образов. Хотя методы визуализации в этом смысле стали очень популярны в качестве средства для развития личности с конца семидесятых и в начале восьмидесятых, люди использовали ментальные образы для осуществления своих желаний еще в древности.

Творческий инструмент

Что такое визуализация? Это использование воображения для создания ментальных образов того, чего мы хотим в нашей жизни. Вместе с фокусированием и эмоциями она становится сильным творческим инструментом, который помогает в достижении желаемой цели. При правильном использовании это может привести к самосовершенствованию, хорошему здоровью и различным достижениям, например, в карьере. В спорте ментальные образы как средства визуализации часто используются спортсменами для повышения своих навыков. Использование визуализации как техники неизменно приводит к гораздо лучшей производительности и результатам. Это также справедливо и в бизнесе, и в жизни.

Как это работает?

Визуализация, или воображение, работает на физиологическом уровне. Нейронные связи, возникающие в мозгу, иначе говоря, мысли, могут стимулировать нервную систему точно так же, как реальное событие. Такого рода "репетиции", или прогонка определенных событий в голове, создают нейронные колебания, которые заставят мышцы делать то, что от них требуется. Взять, например, тех же спортсменов. На время спортивных соревнований важным является не только исключительные физические навыки, но и четкое понимание игры и определенный психологический и эмоциональный настрой. Для большей эффективности, как и любой другой навык, воображение необходимо регулярно тренировать. Без чего является невозможной визуализация? Уроки развития воображения включают в себя важные элементы, а именно ментальные образы релаксации, реалистичность и систематичность.

Когда использовать визуализацию?

Зрительное наблюдение успешных результатов своей деятельности можно проводить абсолютно по любому поводу. Многие используют визуализацию для оживления своих целей. Многие спортсмены, актеры и певцы достигают чего-то сначала в своих умах, а затем только в реальности. Это помогает сосредоточиться и устранить некоторые предварительные страхи и сомнения. Это своеобразная разминка или репециция, которую можно проводить перед важным и волнительным событием. Визуализация - это прекрасный инструмент для подготовки, который неизменно приводит к повышению уровня производительности.

Как осуществляется процесс визуализации?

Можно пойти куда-нибудь в тихое и уединенное место, где вас никто не побеспокоит, закрыть глаза и думать о цели, настрое, поведении или навыках, которые вы хотите приобрести. Сделайте несколько глубоких вдохов и расслабьтесь. Старайтесь визуализировать предмет или ситуацию так четко и во всех подробностях, как это возможно. Эмоции и чувства при этом также играют большую роль, старайтесь прочувствовать то, чего хочется больше всего на свете. Практиковать упражнение стоит, по крайней мере, дважды в день примерно по 10 минут каждый раз и упорствовать до тех пор, пока не добьетесь успеха. Немаловажно также поддерживать и хорошее настроение на протяжении всего процесса.

Преимущества визуализации

Систематическая визуализация модели своего желания поможет лучше ориентироваться на пути достижения поставленных целей, будет вдохновлять и мотивировать, повысит настроение с помощью позитивных, приятных изображений и избавит от негативных эмоций. В жизни и в работе успех начинается с цели. Это может быть потеря веса, повышение по службе, избавление от вредных привычек, начало собственного бизнеса. Большие или маленькие цели дают важный ориентир. Они как компас - помогают двигаться в правильном направлении. Визуализация была описана еще Аристотелем более 2000 лет тому назад. Великий мыслитель своего времени описал этот процесс такими словами: "Во-первых, должен быть определенный, ясный, практический идеал, цель или задача. Во-вторых, есть необходимые средства для их достижения: мудрость, деньги, средства и методы. В-третьих, самое главное - это научиться управлять всеми необходимыми средствами для достижения желаемого результата".

Видеть - значит верить

Обычно происходит так: не поверю, пока не увижу. Прежде чем поверить в достижимость цели, сначала нужно иметь об этом визуальное представление. Техника создания мысленного образа будущего события дает возможность представить желаемые результаты и прочувствовать радость от их достижения. Когда это происходит, человек мотивируется и приобретает готовность добиваться своей цели.
Стоит помнить, что это не хитрый трюк, не просто мечты и надежды на будущее. Скорее, визуализация - это хорошо разработанный метод повышения эффективности, которым пользуются успешные люди в самых разных областях. Исследования показывают, что визуализация повышает спортивные показатели за счет улучшения мотивации, координации и концентрации. Это также помогает в релаксации и позволяет уменьшить страх и тревогу.

Почему визуализация работает?

По данным исследований, в которых использовались снимки мозга, запечатлевшие работу визуализации, можно сделать вывод о том, что нейроны в мозгу, эти электрически возбудимые клетки, которые передают информацию, интерпретируют образы в качестве эквивалента реальных жизненных действий. Мозг генерирует импульс, это создает новые нейронные пути — скопления клеток в нашем мозге, которые работают вместе, чтобы воссоздать воспоминания или поведенческие шаблоны. Все это происходит без физической активности, но таким образом мозг как бы программирует сам себя на успех. Огромным плюсом силы визуализации является то, что она доступна абсолютно для всех людей.

Неразрывная связь между умом и телом

Визуализация является психической практикой. С ее помощью мощно задействуются естественные силы разума. Мы можем использовать силу разума, чтобы стать успешными во всех сферах нашей жизни. Психологические методики учат нас, как использовать воображение, чтобы представить себе конкретные вещи, которые мы хотим иметь в нашей жизни. Весьма замечательно то, что наши мысли влияют на нашу реальность.

Ученые доказали, что мы используем всего 10% от общего потенциала нашего мозга, и это в лучшем случае. Можно ли научиться более эффективно использовать наши природные способности? Системы визуализации представляют собой неразрывные биологические связи между умом и телом, а также связь между умом и реальностью. Если мы научимся использовать воображение и визуализацию в правильном направлении, то она может стать чрезвычайно мощным средством для получения того, что мы хотим в нашей жизни. Важно научиться использовать силу нашего разума совместно с творческими подходом, который помогает раскрыть и развить скрытые таланты и возможности.