Заблуждение о том, что ЭВМ и компьютер – это «две большие разницы. Основные характеристики ЭВМ. Основные термины, определения и понятия ЭВМ

ЭВМ и микропроцессор

Электронная вычислительная машина (ЭВМ ) – это устройство, выполняющее операции ввода данных, их обработку по программе, вывод результатов обработки в форме, пригодной для восприятия человеком.

В составе ЭВМ можно выделить устройства ввода информации (клавиатура, мышка, …), арифметико-логическое устройство (АЛУ), оперативное запоминающее устройство (ОЗУ), устройство управления (УУ), устройства вывода информации (экран дисплея, принтер, …) .

АЛУ осуществляет непосредственную обработку данных: сложение двух чисел, умножение одного числа на другое, перенос информации из одного места в другое. УУ координирует взаимодействие всех устройств ЭВМ. ОЗУ предназначено для записи, считывания и временного хранения программ (при выключении компьютера, информация в ОЗУ стирается), исходных данных, промежуточных и окончательных результатов. Доступ к элементам памяти прямой. Все ячейки памяти объединены в группы по 8 бит (1 байт) и каждая такая группа имеет адрес, по которому к ней можно обратиться.

Первая миниатюрная ЭВМ, размещенная в одной сверхбольшой интегральной схеме (СБИС) на кристалле кремния, была разработана и выпущена в 1971 г. фирмой Intel (США). Такая СБИС была названа микропроцессором (МП) типа i8008. В этой схеме содержалось несколько тысяч активных элементов (транзисторов), реализующих принципиальную схему ЭВМ (АЛУ, УУ, ОЗУ).

Количество таких активных элементов в кристалле МП называется его степенью интеграции . Вместе с величиной тактовой частоты , разрядностью и адресным пространством они определяют основные параметры МП .

Тактовая частота МП характеризует его быстродействие. Она задается микросхемой, которая называется генератором тактовой частоты. Современные МП имеют тактовую частоту до двух и более ГигаГерц (ГГц).

Разрядность МП – это число одновременно обрабатываемых МП битов (8, 16, 32, 64 бит). Чем больше разрядность МП, тем больше информации он может обработать в единицу времени, тем выше его эффективность.

Максимальное количество памяти, которое МП может обслужить, называется его адресным пространством . Определяется адресное пространство разрядностью адресной шины.

Сегодня принято делить МП по особенностям их архитектуры на следующие 4 группы . RISC – это высокоскоростные МП с сокращенным набором команд. Их основные производители фирмы Sun, DEC, HP, IBM. CISC – это МП со сложным набором команд. К ним относятся все МП х86, Pentium, Pentium Pro, Pentium II, III, 4. Их основные производители фирмы Intel, AMD. VLIW – это МП со сверхдлинным командным словом (Intel Itanium). EPIC – это МП вычислений с "явным параллелизмом" (Intel Itanium).

Персональная ЭВМ, центральным устройством которой является микропроцессор, называется персональным компьютером. Т.е. персональный компьютер (ПК) - это ЭВМ, реализованная на базе микропроцессорной техники и ориентированная на личное использование человеком.

2. Классификация современных компьютеров

В литературе предложен вариант деления современных компьютеров на следующие категории.

1) Карманные ПК гораздо проще ПК других категорий, однако в комплекте с сотовым телефоном, факс-модемом и принтером они могут представлять полноценное оборудование мобильного офиса. OС Windows CE. ОЗУ не менее 4 Мб. Связь с настольными ПК - беспроводная инфракрасная. Вес около 200 гр. Батареи работают около 10 часов без подзарядки.

2) Ноутбуки являются полноценными ПК. Для них используются мобильные МП Intel Сeleron/Pentium III/IV и SVGA-дисплеи. ОС - Windows 2000. Имеются приводы CD-ROM или DVD-ROM. Масса 3-4 кг. Толщина - 5 см.

3) ПК для сферы автоматизации домашнего хозяйства (Home PC ) появились относительно недавно (в 1998 г.). Развиваются две линии таких ПК. Первая – это eHome (разработка фирмы MicroSoft) для управление электроникой дома (холодильник, стиральная машина, кондиционер), для работы с игровой приставкой и просмотра Интернет-страниц. Вторая – это беспроводной ПК (разработка фирмы Intel). Обеспечивается связь ПК с телевизором или со стерео-системой по беспроводной сети.

4) Базовые настольные ПК являются самыми распространенными. С 2002 г. в их основе микропроцессор Intel Pentium 4.

В спецификации РС 99 (это рекомендации Intel и MicroSoft) предложено ПК 2000-го года делить на категории : Consumer PC (потребительский ПК), Office PC (ПК для офиса), Entertainment PC (ПК развлекательного назначения), Mobile PC (мобильный ПК), Workstation PC (рабочая станция).

Спецификация РС 2001 (также разработана фирмами Intel и MicroSoft) содержит требования к ПК:

    В ПК не должно быть ISA слотов, PS/2 портов, 1,2/1,44 Мбайт дисководов и MS-DOS.

    Обязательна поддержка шины USB, т.к. все клавиатуры, мыши, джойстики должны иметь USB интерфейс.

    Процессор от 500 МГц (рабочая станция - от 700 МГц).

    КЭШ от 128 Кбайт (рабочая станция - от 512 Кбайт).

    Память от 64 Мбайт (рабочая станция - от 128 Мбайт).

    Система должна контролировать встроенный вентиллятор.

    Видео в формате не менее 1024*768 пикселей (при частоте регенерации не ниже 85 Гц).

    Аудиоподсистема должна поддерживать 2 ключевых формата 44,1 48 КГц, не загружая МП более чем на 10%.

    Накопители CD-ROM должны работать со скоростью 8х или более высокой.

    Если есть DVD-ROM, то он должен воспроизводить DVD-RАM, DVD+RW диски, а также все форматы CD-ROM дисков.

    Приветствуется ASDN, ADSL и адаптеры беспроводной связи.

Спецификация ПК для Windows XP требует:

      ОЗУ 128 Мб, видеопамять 64 Мб, загрузка ПК быстрее 30 с, выход из состояния временного отключения за 20 с.

      НЖМД не менее 40 Гб.

      Магнитооптические накопители CD-R/W, DVD и комбинированные.

      В системе должно быть 4 порта USB.

      Графическая подсистема 1024*768 (но лучше 1280*1024).

      Иметь цифровой интерфейсный разъем DVI для ЖК-мониторов.

      Иметь сетевой Ethernet адаптер 10/100, встроенный DSL или кабельный модем.

      Шум от ПК не выше 37 db.

5) Сетевые ПК продвигаются фирмами Sun, IBM, Oracle, а также Intel, MicroSoft и HP. Такие ПК, как правило, не имеют жесткого диска и зависят от дисковой памяти сервера. Они имеют низкую стоимость. Часто - это запечатанный ПК без возможности установки плат расширения.

6) Высокопроизводительные настольные ПК и серверы начального уровня являются более дорогими устройствами. Они предназначены для пользователей настольных издательских систем, где нужно работать со сложной графикой. Они обычно имеют корпус миди-тауэр с большим количеством разъемов расширения. Могут поддерживать несколько накопителей. Имеют большую кэш-память. Их главное качество – надежность и отказоустойчивость.

7) Многопроцессорные рабочие станции и серверы высокого уровня имеют от двух до восьми производительных процессоров. Для них важно понятие "масштабируемости" – т.е. возможность наращивания количества процессоров, модулей памяти и других ресурсов для выполнения практических задач более высокого уровня.

8) Суперкомпьютеры предназначены для научных исследований, для метеорологии, аэродинамики, сейсмологии, атомной и ядерной физики, математическое моделирование и т.п. Производительность и цена этих компьютеров огромные.

9) Кластерная система – это объединение компьютеров, являющееся единым целым для ОС, системного ПО, прикладных программ и пользователей. Они обеспечивают высокую степень отказоустойчивости и в то же время эти системы дешевле чем суперкомпьютеры.

Выбор персонального компьютера (ПК) для решения прикладных задач – это серьезная задача. Обычно она не имеет однозначного решения и во многом зависит от предполагаемой сферы применения ПК (класса решаемых прикладных задач).

Например, для компьютерного контроля знаний студентов можно сформулировать следующие требования к оборудованию в современном компьютерном классе.

1) Оснащение персональных компьютеров русской версией Windows 2000/XP.

2) Наличие выхода в Интернет (достаточно иметь один выход на все классы для передачи файлов с протоколами через Интернет на сервер университета).

3) Наличие в классе одного компьютера со звуковой картой и с колонками для субтеста "Аудирование" при тестировании по английскому языку, по русскому языку как иностранному и т.п.

4) Специальные требования к дополнительному оборудованию в классе (фальшпанели, видеокамера, панорамное стекло и др.), связанные со спецификой процедуры компьютерного тестирования и с необходимостью обеспечить информационную безопасность.

Что такое ЭВМ ?

Компьютер (англ. computer - вычислитель ) - программируемое электронно-вычислительное устройство для обработки данных, передачи и хранения информации. То есть, компьютер - это комплекс программно-управляемых электронный устройств.

Термин «компьютер » (или «персональный компьютер ») является синонимом аббревиатуры «ЭВМ » (электронной вычислительной машины) или «ПЭВМ» (персональной ЭВМ). После появления персональных компьютеров (от англ. personal computer, PC), термин ЭВМ впоследствии практически вытеснен из употребления и заменен заимствованным термином «компьютер», «ПК» или «PC». Дело в том, что если обозначения «ПК» и «ПЭВМ» характеризуют компьютер как «однопользовательскую универсальную ЭВМ», то термин «PC» означает именно IBM PC-совместимый компьютер.

При помощи вычислений компьютер способен обрабатывать информацию по заранее определённому алгоритму. Кроме того, компьютер при помощи программного обеспечения способен принимать, хранить и осуществлять поиск информации, выводить информацию на различные виды устройств вывода. Своё название компьютеры получили по своей основной функции – проведению вычислений. В настоящее время кроме непосредственно функций вычислений, компьютеры используются для обработки и управления информацией, а также игр.

Схему устройства компьютера предложил знаменитый математик Джон фон Нейман в 1946 г., её принципы работы во многом сохранились в современных компьютерах.

Прежде всего, компьютер, согласно принципам фон Неймана, должен иметь следующие устройства:

* арифметическо-логическое устройство (АЛУ), выполняющее арифметические и логические операции;
* устройство управления (УУ), которое организует процесс выполнения программ;
* запоминающее устройство (ЗУ), или память для хранения про­грамм и данных;
* внешние устройства для ввода-вывода информации.

Память компьютера должна состоять из некоторого количества пронумерованных ячеек, в каждой из которых могут находиться или обрабатываемые данные, или инструкции программ. Все ячейки памяти должны быть одинаково легко доступны для других устройств компью­тера.

Кроме архитектуры ЭВМ Нейман предложил основополагающие принципы логического устройства ЭВМ.

Принципы Джона фон Неймана:

1. Принцип программного управления (программа состоит из набора команд, которые выполняются процессором друг за другом в определенной последовательности);

2. Принцип однородности памяти (программы и данные хранятся в одной и той же памяти);

3. Принцип адресности (основная память состоит из пронумерованных ячеек, и процессору в любой момент времени доступна любая ячейка).

Компьютеры, построенные на этих принципах, относят к типу «фон-нейманских». На сегодняшний день это подавляющие большинство компьютеров, в том числе и IBM PC-совместимые. Но есть и компьютерные системы с иной архитектурой - например системы для параллельных вычислений.

Обычно компьютер проектируется на основе принципа открытой архитектуры:
* Описание принципа действия ПК и его конфигурации, что позволяет собирать ПК из отдельных узлов и деталей;
* Наличие в ПК внутренних расширительных гнезд, в которые пользователь может вставлять различные устройства, удовлетворяющие заданному стандарт.

В большинстве современных компьютеров проблема сначала описывается в понятном им виде, при этом вся необходимая информация представляется в двоичной форме (в виде единиц и нулей), после чего действия по её обработке сводятся к применению простой алгебры логики. Поскольку практически вся математика может быть сведена к выполнению булевых операций, достаточно быстрый электронный компьютер может быть применим для решения большинства математических задач (а также и большинства задач по обработке информации, которые могут быть легко сведены к математическим).

Результат выполненной задачи может быть представлен пользователю при помощи различных устройств вывода информации, таких, как ламповые индикаторы, мониторы, принтеры, проекторы и т.п.

Было обнаружено, что компьютеры всё-таки не могут решить любую математическую задачу. Впервые задачи, которые не могут быть решены при помощи компьютеров, были описаны английским математиком Аланом Тьюрингом.

Применение компьютеров

Первые компьютеры создавались непосредственно для вычислений (что отражено в названиях «компьютер» и «ЭВМ»). Не случайно первым высокоуровневым языком программирования был Фортран, предназначенный исключительно для выполнения математических расчётов.

Вторым крупным применением были базы данных. Прежде всего, они были нужны правительствам и банкам. Базы данных требуют уже более сложных компьютеров с развитыми системами ввода-вывода и хранения информации. Для этих целей был разработан язык Кобол. Позже появились СУБД (системы управления базами данных) со своими собственными языками программирования.

Третьим применением было управление всевозможными устройствами. Здесь развитие шло от узкоспециализированных устройств (часто аналоговых) к постепенному внедрению стандартных компьютерных систем, на которых запускаются управляющие программы. Кроме того, всё большая часть техники начинает включать в себя управляющий компьютер.

Наконец, компьютеры развились настолько, что компьютер стал главным информационным инструментом как в офисе, так и дома. То есть, теперь почти любая работа с информацией осуществляется через компьютер - будь то набор текста или просмотр фильмов. Это относится и к хранению информации, и к её пересылке по каналам связи.

Современные суперкомпьютеры используются для моделирования сложных физических и биологических процессов - например, ядерных реакций или климатических изменений. Некоторые проекты проводятся при помощи распределённых вычислений, когда большое число относительно слабых компьютеров одновременно работает над небольшими частями общей задачи, формируя таким образом очень мощный компьютер.

Наиболее сложным и недостаточно развитым применением компьютеров является искусственный интеллект - применение компьютеров для решения таких задач, где нет чётко определённого более или менее простого алгоритма. Примеры таких задач - игры, машинный перевод текста, экспертные системы.

ОБЩИЕ СВЕДЕНИЯ ОБ ЭВМ И ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМАХ

Наименование параметра Значение
Тема статьи: ОБЩИЕ СВЕДЕНИЯ ОБ ЭВМ И ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМАХ
Рубрика (тематическая категория) Компьютеры

Для обработки информации используются электронные вычислительные машины (ЭВМ), вычислительные системы (ВС) и вычислительные сети.

ЭВМ - ϶ᴛᴏ электронное устройство для накопления и автоматической обработки информации.

Основные функциональные блоки ЭВМ:

1) устройство ввода (УВв);

2) запоминающее устройство (ЗУ);

3) арифметико-логическое устройство (АЛУ);

4) устройство управления (УУ);

5) устройство вывода (УВыв).

Для решения поставленной задачи составляется программа , ᴛ.ᴇ. последовательность команд, записанная на языке, понятном ЭВМ. Записанные на машинный носитель (к примеру, магнитный диск) программы и данные через УВв вводятся в ЭВМ и передаются в ЗУ (память ЭВМ).

Наибольшее количество команд и данных, которые могут одновременно храниться в ЗУ, определяют емкость памяти . Время, ĸᴏᴛᴏᴩᴏᴇ требуется для поиска, записи и считывания информации, определяет быстродействие ЭВМ .

В состав ЗУ обязательно входят оперативное (ОЗУ) и постоянное (ПЗУ) запоминающие устройства, составляющие внутреннюю память .

Внешняя память ЭВМ предназначена для хранения промежуточных результатов, которые не помещаются в ОЗУ, входных и выходных данных. Внешняя память практически не ограничена, но ее скорость значительно меньше ОЗУ.

Для организации взаимодействия между устройствами ЭВМ при выполнении программы служит УУ. По указанию УУ вводится и расшифровывается очередная команда, передается указание в ЗУ, какие данные передать в АЛУ и какую операцию произвести. Промежуточные результаты пересылаются на хранение в ОЗУ. В АЛУ происходит выполнение над данными арифметических и логических операций. Результаты работы передаются на УВыв. Так как одни и те же устройства могут использоваться и для ввода, и для вывода, их называют устройствами ввода-вывода (УВВ).

Устройство управления, арифметико-логическое устройство и высокоскоростная регистровая память (сверхоперативная память) составляют центральный процессор (ЦП). В ПЭВМ его функции выполняет микропроцессор.

Вычислительные системы – совокупность средств вычислительной техники, в которую входят не менее двух базовых процессоров или ЭВМ (универсальных или специализированных) и развитая система периферийных устройств.

Периферийные устройства - ϶ᴛᴏ внешние запоминающие устройства и устройства ввода-вывода.

ПЕРСОНАЛЬНАЯ ЭВМ (ПЭВМ) или ПК – универсальный однопользовательский компьютер ниверсальный – так как может использоваться для решения задач разного типа, а однопользовательский – так как в каждый момент времени может работать один пользователь). Из названия видно, что такой компьютер предназначен для обслуживания одного рабочего места.

Конфигурацию (состав оборудования) ПК можно гибко изменять при крайне важно сти. При всœем многообразии вычислительных машин в любой ЭВМ можно выделить следующие компоненты:

· системный блок;

· дисплей для визуального отображения информации;

· клавиатура для ввода символьной информации;

· мышь (или другое указательное устройство);

· периферийные устройства.

Первые четыре компонента составляют базовую конфигурацию , которая может расширяться за счёт дополнительных внешних устройств.

В системном блоке размещаются основные компоненты ПК (называемые внутренними) , важнейшим из которых является материнская (системная) плата. На ней расположен базовый комплект электроники ПК (ЦП, электронные устройства (чипсеты) и другие).

К системному блоку подключаются всœе внешние устройства: монитор, клавиатура, мышь, принтер, модем, сканер, динамики и др.

В СИСТЕМНОМ БЛОКЕ размещаются следующие устройства.

1. Материнская плата , на которойрасположены приведенные ниже устройства.

· Микропроцессор (МП). Это – основная микросхема ПК, выполняющая большинство логических и математических операций. Конструктивно процессор состоит из массива кристаллических ячеек, в которых данные могут храниться и изменяться. Внутренние ячейки процессора называются регистрами. С остальными устройствами компьютера, и в первую очередь с ОЗУ, процессор связан несколькими группами проводников, называемыми шинами . Основных шина три: шина данных, адресная шина и командная шина.

Адресная шина у процессоров Intel Pentium 32-разрядная, то есть состоит из 32 параллельных линий, на которых выставляется единица или ноль исходя из того, есть напряжение на линии или нет. Комбинация из 32 нулей и единиц образует 32-разрядный адрес, указывающий на одну из ячеек оперативной памяти. К ней и подключается процессор для копирования данных из ячейки в один из своих регистров.

По шинœе данных происходит копирование данных из оперативной памяти в регистры процессора и обратно. В компьютерах с процессором Intel Pentium шина данных 64-разрядная, то есть состоит их 64 линий, по которым за один раз на обработку поступают сразу 8 байтов.

Шина команд предназначена для передачи в процессор команд из тех областей ОЗУ, где хранятся программы (а не массивы данных), поскольку для того, чтобы процессор мог обрабатывать данные, ему нужны команды. Команды представлены в виде байтов. В процессоре Intel Pentium шина команд 32-разрядная.

Современные процессоры выполняют сотни миллионов операций в секунду, позволяя ПК решать очень сложные задачи за короткие промежутки времени.

Процессор отвечает за характеристики производительности ПК. Микропроцессоры различаются рядом важных характеристик: разрядностью процессора, тактовой частотой обработки информации.

Разрядность процессора показывает, сколько бит данных он может принять и обработать в своих регистрах за один такт. Первые процессоры были 16-разрядными, начиная с 80386 – 32-разрядные.

Тактовая частота обработки информации . Все процессы, связанные с вычислениями, обработкой и пересылкой данных между модулями ПК, должны быть взаимосогласованы во времени, ᴛ.ᴇ. синхронизованы. Синхронизация ЦП и всœех узлов ПК осуществляется с помощью тактового генератора, который формирует периодические последовательности тактовых импульсов. Тактом называют интервал времени между началом подачи двух последовательных импульсов электрического тока, которые вырабатывает тактовый генератор.
Размещено на реф.рф
Последовательность тактовых импульсов направляется в ЦП, в систему памяти, во всœе остальные устройства компьютера для синхронизации работы ЦП и всœех узлов компьютера. Тактовая частота - ϶ᴛᴏ количество тактов в секунду и измеряется в мегагерцах (1МГц = 1млн. тактов в сек), влияет на скорость работы, быстродействие МП.

Быстродействие процессора - ϶ᴛᴏ количество операций, выполняемых им в секунду. Производит сотни различных операций со скоростью, достигающей сотен миллионов операций в секунду.

В ПЭВМ используются микропроцессоры, разработанные фирмами Intel, AMD и другими. Сегодня на смену микропроцессорам INTEL 80486 приходят более мощные микропроцессоры Рentium (Рentium 3, Рentium 4 с частотами 500 мегагерц и выше.

· Видеоадаптер (видеокарта) - ϶ᴛᴏ устройство, управляющее выводом на экран текстовой информации и графических изображений. Видеоадаптер организует интерфейс между ПК и дисплеем. Физически видеоадаптер выполнен в виде отдельной платы, которая вставляется в один из слотов материнской платы.

Сегодня применяются видеоадаптеры SVGA , обеспечивающие по выбору воспроизведение до 16,7 млн. цветов с возможностью выбора разрешения экрана из ряда значений (к примеру, 1024*768 пикселœей для мониторов размером 17 дюймов).

· ОЗУ - ϶ᴛᴏ массив кристаллических ячеек, способных хранить данные. Служит для записи и считывания информации. При отключении питания информация, записанная в память, пропадет. Характеризуется быстродействием, сопоставимым с быстродействием микропроцессора.

Основными характеристиками оперативной памяти являются емкость и время доступа. Емкость современных ОЗУ составляет несколько Гб. Время доступа показывает, сколько времени крайне важно для обращения к ячейкам памяти, измеряется в миллиардных долях секунды (наносœекундах, нс). Важно заметить, что для современных модулей памяти оно составляет 7-10 нс.

· ПЗУ ‑ предназначено для хранения коротких программ, необходимых для функционирования ПК.

В момент включения компьютера в его ОЗУ нет ничего ‑ ни данных, ни программ, поскольку оперативная память не может ничего хранить без подзарядки ячеек более сотых долей секунды, но процессору нужны команды, в т.ч. и в первый момент включения. По этой причине сразу после включения на адресной шинœе процессора выставляется стартовый адрес (это происходит аппаратно, без участия программ). Процессор обращается по выставленному адресу за своей первой командой и далее начинает работать по программам. Этот адрес указывает на ПЗУ. Микросхема ПЗУ способна хранить информацию, даже когда компьютер выключен. Комплекс программ, находящихся в ПЗУ, образует базовую систему ввода-вывода . Основное назначение программ этого пакета состоит в том, чтобы проверить состав и работоспособность компьютерной системы и обеспечить взаимодействие всœех ее компонентов.

· Кэш-память – ее называют еще ʼʼсверхоперативной памятьюʼʼ.

Обмен данными внутри процессора происходит в несколько раз быстрее, чем обмен с другими устройствами, к примеру, с ОЗУ. Для того чтобы уменьшить количество обращений к оперативной памяти, внутри процессора создают буферную область ‑ так называемую кэш-память . Когда процессору нужны данные, он сначала обращается в кэш-память, и только если там нужных данных нет, происходит его обращение в оперативную память. Принимая блок данных из оперативной памяти, процессор заносит его одновременно и в кэш-память. Кэш-память функционально предназначена для согласования скорости работы сравнительно медленных устройств с относительно быстрым ЦП. По сравнению с ОП кэш-память имеет малую емкость. Кроме встроенной в ЦП кэш-память должна быть вынесена из ЦП. Встроенная кэш-память является самой быстрой, кэш-памятьпервого уровня имеет емкость, как правило, 32 кбайт.

· Чипсет - ϶ᴛᴏ комплект микросхем, предназначенный для поддержки в ПК функциональных возможностей, предоставляемых процессором, ОП, кэш-памятью, дисковой и видеопамятью и другими компонентами и объединœения составных частей ПК. Его микросхемы генерируруют большинство сигналов для системных и периферийных компонентов, преобразуют сигналы между шинами.

· Контроллеры предназначены для управлением доступом из системы к какому-либо из устройств, а также для выполнения операций информационного обмена. Каждое внешнее устройство имеет свой контроллер.
Размещено на реф.рф
После получения команд от ЦП контроллер выполняет операции по обслуживанию внешнего устройства. Широко используются контроллеры, встроенные на материнской плате (контроллеры клавиатуры, НЖМД, НГМД, портов, видиосистемы).

2. Дисковод (накопитель) для гибких магнитных дисков (НГМД). Для оперативного переноса небольших объёмов данных используют гибкие магнитные диски (дискеты), которые вставляются в специальный накопитель – дисковод . Правильное направление подачи гибкого диска в отверстие накопителя, расположенное на лицевой панели системного блока, отмечено стрелкой на его пластиковом кожухе.

Дисковод служит для записи, чтения и хранения информации на гибких дисках (дискетах). В наши дни используются гибкие диски диаметром 3,5" емкостью 1440 байт (1,4 Мб ) и маркировкой HD .

Гибкие диски – ненадежные носители информации. Пыль, грязь, влага, температурные перепады и внешние электромагнитные поля часто становятся причиной частичной или полной утраты информации. По этой причине использовать их в качестве основного средства хранения данных недопустимо. Их используют для транспортировки данных или в качестве дополнительного (резервного) средства хранения.

3. Накопитель на жестком магнитном диске (НЖМД) или Винчестер. Предназначен для долговременного хранения (может хранить информацию десятки лет).

Жесткий диск на самом делœе не один диск, а группа соосных дисков, имеющих магнитное покрытие и вращающихся с высокой скоростью. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, жесткий диск имеет не две поверхности, а 2n поверхностей, где n – число отдельных дисков в группе.

Емкость жестких дисков сегодня – от нескольких Гб до нескольких десятков Гб.

4. Дисковод компакт-дисков CD-ROM . Цифровая запись на компакт-диске отличается от записи на магнитных дисках очень высокой плотностью, и стандартный компакт-диск может хранить примерно 650 Мб данных. Οʜᴎ отличаются высокой надежностью хранения информации, долговечностью (прогнозируемый срок их службы при качественном исполнении составляет 30-50 лет). Диаметр диска должна быть как 5,25", так и 3,5".

Принцип действия этого устройства состоит в считывании числовых данных с помощью лазерного луча, отражающегося от поверхности диска. Большие объёмы данных характерны для мультимедийной информации (графика, музыка, видео), в связи с этим дисководы CD-ROM относятся к аппаратным средствам мультимедиа .

5. Шины. Все электронные элементы ПК обмениваются информацией друг с другом и взаимосвязаны с помощью шин – совокупности линий и микросхем, осуществляющих передачу электрических сигналов между различными компонентами ПК. Совокупность всœех шин принято называть системной магистралью. По шинам передаются сигналы: адресные, управляющие и данные, в связи с этим различают: шину данных (для передачи данных), шину адреса (для передачи кодов адресной информации в ОЗУ) и шину управления (включает линии для передачи сигналов управления).

Шины характеризуются разрядностью , ᴛ.ᴇ. количеством одновременно переданных по линиям шины битов информации. В архитектуре ПК чаще всœего встречаются 8-, 16- и 32-разрядные шины. Количество информации, переданной по каналу за 1 времени, принято называть пропускной способностью шины.

6. Коммуникационные порты (порты ввода-вывода) . Служат для связи ПЭВМ с устройствами, которые конструктивно выполнены отдельно от системного блока. Специализиpованные поpты служат для обмена с внутpенними устpойствами. Поpты общего назначения используются для подключения внешних устpойств: паpаллельные LPT1-LPT* и последовательные COM1-COM*.

МОНИТОР (дисплей )– устройство визуального представления данных. Это – основное устройство вывода. Служит для вывода текстовой и графической информации, вводимых с клавиатуры или выводимых из ПК данных, системных сообщений и информации пользователя.

Размер экрана измеряется между противоположными углами экрана кинœескопа по диагонали в дюймах. Сегодня широко применяются мониторы размером 19" и 21".

Разрешение экрана является одним из важных параметров монитора. Чем оно выше, тем больше информации можно отобразить на экране, но тем меньше размер каждой отдельной точки, и значит, меньше видимый размер элементов изображения.

Дисплей и плата видеоадаптера (графическая плата) составляют видеосистему ПК. В видеосистемах применяется аналоговая и цифровая технология получения отображения на экране. В аналоговых технологиях используются дисплеи на электронно-лучевых трубках, в цифровых – применяются жидкокристаллические плоскоэкранные дисплеи.

КЛАВИАТУРА служит для ввода в ПК алфавитно-цифровых данных и команд управления. Основные функции клавиатуры не нуждаются в поддержке драйверами (специальными программами). Необходимое программное обеспечение для начала работы с компьютером уже имеется в микросхеме ПЗУ в BIOS.

МЫШЬ позволяет указывать на элементы экрана с помощью указателя и после щелчка кнопками выполнять определœенные операции.

ПРИНТЕР выводит на бумагу или пленку текстовую и графическую информацию (черно-белую или цветную).

МОДЕМ служит для подключения ПК к телœефонной линии.

СКАНЕР – устройство для ввода в ПК текстовой или графической информации (черно-белой и цветной) для ее дальнейшей обработки.

ЗВУКОВАЯ СИСТЕМА состоит из звуковой карты и звуковых колонок (бывают встроены в дисплей). Колонки имеют свои усилители и органы регулировки уровня звука.

Наиболее перспективным является использование ПЭВМ в составе вычислительной сети (ВС). При этом несколько ПЭВМ, а, возможно, и ЭВМ других классов, соединяются вместе посредством каналов связи и аппаратуры сопряжения с ними для обмена информацией.

Компьютерной сетью принято называть совокупность взаимосвязанных через каналы передачи данных ПК, которые обеспечивают пользователям обмен информацией и коллективное использование ресурсов сети.

Аппаратное обеспечение сети:

- рабочие станции (рабочая станция - ϶ᴛᴏ ПК, подключенный к сети, на котором пользователь сети выполняет свою работу);

- сервер (компьютер, подключенный к сети и предоставляющий пользователям сети определœенные услуги общего назначения);

- сетевые платы (адаптеры);

- модемы ;

- кабели или другие передающие среды.

По степени территориальной распределœенности сети классифицируются на: глобальные, региональные и локальные сети.

Глобальные сети объединяют пользователœей, расположенных по всœему миру, используют часто спутниковые каналы связи (расстояние между узлами сети – 10-15 тыс. км). Носят название WAN .

Региональные – объединяют пользователœей города, области. Используют в качестве каналов связи телœефонные линии (расстояние между узлами сети – 10-1000 км). Носят название MAN .

Локальные сети связывают абонентов одного или нескольких близлежащих зданий. ПЭВМ связаны единым высокоскоростным каналом передачи данных. Расстояния между ЭВМ небольшие – до 10 км. Каналы в локальных сетях являются собственностью организаций, и это упрощает их эксплуатацию.

Сети, состоящие из программно-совместимых ЭВМ, называются однородными . В случае если в сеть включена программно-несовместимая ЭВМ, то сеть принято называть неоднородной .

Использование локальных сетей дает следующие преимущества:

· одновременную работу нескольких пользователœей с данными общего применения (СУБД, ЭТ);

· защиту данных на уровне каталогов и файлов;

· возможность постоянного хранения программных средств, необходимых многим пользователям, в одном экземпляре;

· обмен информацией между всœеми ПК сети, при этом обеспечивается диалог между пользователями сети, а также возможность организации работы электронной почты;

· одновременную печать всœеми пользователями сети на общесетевых принтерах;

· повышение эффективности систем обработки информации за счёт снижения затрат и т. д.

Глобальной сетью, способной объединить множество сетей и позволяющей войти в мировое сообщество, является Internet .

Сегодня единого владельца Internet нет. Каждая компания является хозяином своей части сети. Она обладает также необходимым программным и аппаратным обеспечением, с помощью которого производится обмен данными как внутри своей сети, так и в пределах Internet. Эта фирма обеспечивает и транзитное прохождение информации через свою сеть. В случае сбоев на каком-то участке сети, вся информация будет ʼʼобтекатьʼʼ данный участок.

Способы подключения к Internet

· Подключение индивидуального ПК. Для этого нужно иметь модем, телœефонную линию и организацию, которая имеет шлюз (вход) в Internet. Такие организации – поставщики сетевых услуг – называются провайдерами . Вход в Internet осуществляется через ПК провайдера. Этот ПК принято называть хостом . Пользователь работает в сети, не имея адреса. Его содержит хост-ПК. Вся информация, которую пользователь перекачивает, идет через хост.

· Прямое подключение . Прямое подключение к Internet осуществляется по выделœенным арендуемым линиям связи при использовании дополнительного программного обеспечения.

Анализ практики использования ВС показал, что есть достаточно много путей утечки информации: незаконное подключение к аппаратуре и линиям связи, перехват электронных излучений, перехват акустических излучений и восстановление текста принтера, хищение носителœей информации, считывание данных из массивов других пользователœей, чтение остаточной информации в памяти системы после выполнения санкционированного запроса, маскировка под зарегистрированного пользователя, внедрение вирусов и др.
Размещено на реф.рф
В связи с этим особое значение имеют меры защиты информации:

Организационные (ограничение доступа в помещение, где происходит обработка информации; хранение в сейфах машинных носителœей; использование защитных кодов при передаче информации и др.);

Технические и программные.

ОБЩИЕ СВЕДЕНИЯ ОБ ЭВМ И ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМАХ - понятие и виды. Классификация и особенности категории "ОБЩИЕ СВЕДЕНИЯ ОБ ЭВМ И ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМАХ" 2017, 2018.

Основные термины, определения и понятия ЭВМ.

ЭВМ (комп) – устройство, способное исполнять четко определенную последовательность операций, предписанную программой.

Персоналъный компьютер (ПК) обычно ориентирован на интерактивное взаимодействие с 1 пользователем, причем взаимодействие происходит через множество сред общения – от алфавитно-цифрового и графического диалога с помощью дисплея, клавиатуры и мыши до устройств виртуальной реальности.

Когда используется аббревиатура PC (Personal Computer), подразумевается ПК, совместимый с самым массовым семейством ПК фирмы IBM и их клонов. PC может быть использован и коллективно: возможности многих компьютеров этого семейства позволяют использовать их и в качестве серверов в локальных сетях. Словосочетание PC-сервер предполагает повышенную мощность (скорость вычислений, объем оперативной и внешней памяти) и особое конструктивное исполнение (просторный корпус) компа.

Файл-сервер является ядром локальной сети. Этот компьютер (обычно высокопроизводительный мини-компьютер) запускает ОС и управляет потоком данных, передаваемых по сети. Отдельные рабочие станции и любые совместно используемые периферийные устройства, такие, как принтеры, - все подсоединяются к файл-серверу.

Рабочая станция – представляет собой обычный ПК, работающий под управлением собственной ОС. Однако в отличие от автономного ПК рабочая станция содержит плату сетевого интерфейса и физически соединена кабелями с файлом-сервером. Кроме того, раб. станция запускает специальную программу (оболочку сети), которая позволяет ей обмениваться информацией с файл-сервером, другими рабочими станциями и прочими устройствами сети. Оболочка позволяет рабочей станции использовать файлы и программы, хранящиеся на файл-сервере, так же легко, как и находящиеся на ее собственных дисках.

Супер-ЭВМ – ЭВМ, имеющие самую высокую производительность, и в основном предназначенные для решения сложных научно-технических задач.

ЭВМ общего назначения – ЭВМ, предназначенные для решения широкого класса задач с примерно одинаковой технико-экономической эффективностью.

Мини-ЭВМ – ЭВМ, разрабатываемые из требования минимизации стоимости и предназначенных для решения достаточно простых задач.

МикроЭВМ – ЭВМ, центральная часть которых построена на одном или нескольких микропроцессорах и разработанных исходя из требования минимизации физического объема.

Специализированная ЭВМ – ЭВМ, имеющая функциональные возможности и конструктивные особенности, позволяющие использовать ее для эффективного решения ограниченного класса задач в определенных условиях окружающей среды.

ОС – совокупность сист. программ, предназначенная для обеспечения определенного уровня эффективности системы обработки информации за счет автоматизированного управления ее работой и предоставляемого пользователю определенного набора услуг.

Процессор – функциональная часть вычислительной машины или системы обработки информации, предназначенная для интерпретации программ.

Центральный процессор (ЦП) – процессор, выполняющий в данной выч. машине или системе обработки информации основные функции по обработке информации и управлению работой других частей выч. машины или системы.

Архитектура – это наиболее общие принципы построения ЭВМ, реализующие программное управление работой и взаимодействием основных ее функциональных узлов.

Основные характеристики ЭВМ.

1) отношение стоимость/производительность 2) надежность 3) отказоустойчивость 3) быстродействие 5) объём памяти 6) точность вычислений 7) система команд 8) масштабируемость; 9) совместимость ПО 10) мобильность ПО.

Производительность ЭВМ определяется количеством операций, выполняемых процессорами в единицу времени, а также объемами памяти, имеющейся в машине и используемой для хранения и обработки информации.

Стоимость ЭВМ зависит от большого количества факторов: быстродействия, емкости памяти, системы команд и т. д. Основное влияние на стоимость оказывает конкретная комплектация ЭВМ и, в главную очередь, внешние устройства, входящие в конечный состав машины. Также, ПО довольно весомо влияет на стоимость ЭВМ.

Надежность ЭВМ – способность компьютера сохранять свои свойства при заданных условиях эксплуатации в течение некоторого промежутка времени.

Отказоустойчивость – свойство вычислительной системы, которое обеспечивает ей, как логической машине, возможность продолжения действий, заданных программой, после возникновения неисправностей. Введение отказоустойчивости требует избыточного аппаратного и программного обеспечения. Направления, связанные с предотвращением неисправностей и с отказоустойчивостью, – основные в проблеме надежности.

Быстродействие ЭВМ рассматривается с двух сторон. С одной стороны, оно характеризуется количеством элементарных операций (любая простейшая операция типа сложения, пересылки, сдвига и т. д.), выполняемых процессором за секунду. С другой стороны, быстродействие ЭВМ существенно зависит от того, как организована ее память. Время, необходимое на поиск нужной информации в памяти, существенно сказывается на быстродействии ЭВМ.

Емкость , или объем памяти определяется предельным кол-вом инфы, которое можно разместить в памяти ЭВМ. Память ЭВМ делится на внутреннюю и внешнюю. Внутренняя, или оперативная память, по своему объему у различных типов машин различна и определяется системой адресации ЭВМ. Емкость внешней памяти благодаря блочной структуре и съемным конструкциям накопителей практически безгранична.

Точность вычислений зависит от количества разрядов, используемых для представления одного числа. Современные ЭВМ снабжаются 32- или 64-разрядными микропроцессорами, что достаточно для обеспечения весьма высокой точности расчетов в самых различных приложениях. Однако, если этого окажется мало, можно использовать удвоенную или утроенную сетку разрядов.

Система команд - это перечень команд, которые способен исполнить процессор ЭВМ. Система команд устанавливает, какие именно операции может выполнять процессор, сколько операндов необходимо указать в команде, какой вид (формат) имеет команда для ее распознания.

Масштабируемость – возможность наращивания числа и мощности процессоров, объемов оперативной и внешней памяти и других ресурсов вычислительной системы. Масштабируемость должна обеспечиваться архитектурой и конструкцией компьютера, а также соответствующими средствами ПО.

Концепция программной совместимости – возможность выполнения одних и тех же программ на разных ЭВМ с получением одинаковых результатов.

Мобильность программного обеспечения – возможность запуска одних и тех же программных систем на различных аппаратных платформах.

Модель открытой среды(Open System Environment)-комитет IEEE POSIX.

Компьютерная грамотность предполагает наличие представления о пяти поколениях ЭВМ, которое Вы получите после ознакомления с данной статьей.

Когда говорят о поколениях, то в первую очередь говорят об историческом портрете электронно-вычислительных машин (ЭВМ).

Фотографии в фотоальбоме по истечении определенного срока показывают, как изменился во времени один и тот же человек. Точно так же поколения ЭВМ представляют серию портретов вычислительной техники на разных этапах ее развития.

Всю историю развития электронно-вычислительной техники принято делить на поколения. Смены поколений чаще всего были связаны со сменой элементной базы ЭВМ, с прогрессом электронной техники. Это всегда приводило к росту быстродействия и увеличению объема памяти. Кроме этого, как правило, происходили изменения в архитектуре ЭВМ, расширялся круг задач, решаемых на ЭВМ, менялся способ взаимодействия между пользователем и компьютером.

ЭВМ первого поколения

Онибыли ламповыми машинами 50-х годов. Их элементной базой были электровакуумные лампы. Эти ЭВМ были весьма громоздкими сооружениями, содержавшими в себе тысячи ламп, занимавшими иногда сотни квадратных метров территории, потреблявшими электроэнергию в сотни киловатт.

Например, одна из первых ЭВМ – представляла собой огромный по объему агрегат длиной более 30 метров, содержала 18 тысяч электровакуумных ламп и потребляла около 150 киловатт электроэнергии.

Для ввода программ и данных применялись перфоленты и перфокарты. Не было монитора, клавиатуры и мышки. Использовались эти машины, главным образом, для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор .

ЭВМ второго поколения

Транзисторы

В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Машины стали компактнее, надежнее, менее энергоемкими. Возросло быстродействие и объем внутренней памяти. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах.

В этот период стали развиваться языки программирования высокого уровня: ФОРТРАН, АЛГОЛ, КОБОЛ. Составление программы перестало зависеть от конкретной модели машины, сделалось проще, понятнее, доступнее.

В 1959 г. был изобретен метод, позволивший создавать на одной пластине и транзисторы, и все необходимые соединения между ними. Полученные таким образом схемы стали называться интегральными схемами или чипами. Изобретение интегральных схем послужило основой для дальнейшей миниатюризации компьютеров.

В дальнейшем количество транзисторов, которое удавалось разместить на единицу площади интегральной схемы, увеличивалось приблизительно вдвое каждый год.

ЭВМ третьего поколения

Это поколение ЭВМ создавалось на новой элементной базе – интегральных схемах (ИС) .

Микросхемы

ЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM-360. Немного позднее появились машины серии IBM-370.

В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая система ЭВМ) по образцу IBM 360/370. Скорость работы наиболее мощных моделей ЭВМ достигла уже нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств – магнитные диски.

Успехи в развитии электроники привели к созданию больших интегральных схем (БИС) , где в одном кристалле размещалось несколько десятков тысяч электрических элементов.

Микропроцессор

В 1971 году американская фирма Intel объявила о создании микропроцессора. Это событие стало революционным в электронике.

Микропроцессор – это миниатюрный мозг, работающий по программе, заложенной в его память.

Соединив микропроцессор с устройствами ввода-вывода и внешней памяти, получили новый тип компьютера: микро-ЭВМ.

ЭВМ четвертого поколения

Микро-ЭВМ относится к машинам четвертого поколения. Наибольшее распространение получили персональные компьютеры (ПК). Их появление связано с именами двух американских специалистов: и Стива Возняка. В 1976 году на свет появился их первый серийный ПК Apple-1, а в 1977 году – Apple-2.

Однако с 1980 года «законодателем мод» на рынке ПК становится американская фирма IBM. Ее архитектура стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC (Personal Computer). Появление и распространение ПК по своему значению для общественного развития сопоставимо с появлением книгопечатания.

С развитием этого типа машин появилось понятие «информационные технологии», без которых невозможно обойтись в большинстве областей деятельности человека. Появилась новая дисциплина – информатика.

ЭВМ пятого поколения

Они будут основаны на принципиально новой элементной базе. Основным их качеством должен быть высокий интеллектуальный уровень, в частности, распознавание речи, образов. Это требует перехода от традиционной фон-неймановской к архитектурам, учитывающим требования задач создания искусственного интеллекта.

Таким образом, для компьютерной грамотности необходимо понимать, что на данный момент создано четыре поколения ЭВМ :

  • 1-ое поколение: 1946 г. создание машины ЭНИАК на электронных лампах.
  • 2-ое поколение: 60-е годы. ЭВМ построены на транзисторах.
  • 3-ье поколение: 70-е годы. ЭВМ построены на интегральных микросхемах (ИС).
  • 4-ое поколение: Начало создаваться с 1971 г. с изобретением микропроцессора (МП). Построены на основе больших интегральных схем (БИС) и сверх БИС (СБИС).

Пятое поколение ЭВМ строится по принципу человеческого мозга, управляется голосом. Соответственно, предполагается применение принципиально новых технологий. Огромные усилия были предприняты Японией в разработке компьютера 5-го поколения с искусственным интеллектом, но успеха они пока не добились.