Вирусология ученые. Химический состав вирусов. Примеры употребления слова вирусология в литературе

В данном обзоре мы обратим Ваше внимание на то, что является предметом вирусологии, вкратце обозначив основные аспекты.

Прежде всего, необходимо обозначить, что предметом вирусологии являются вирусы - это микроскопические организмы. Например, размер вируса полиомиелита равен 20 нанометрам (одной тысячной миллиметра).

Природа вирусов

Строение вирусов настолько примитивно, что их принадлежность к живым организмам вызывает сомнение. Практически все вирусы состоят из нуклеиновой кислоты (ДНК или РНК), покрытой белковой оболочкой. Эти кислоты являются носителями генетической информации, передаваемой из поколения в поколение. Именно ДНК поддерживает процесс воспроизводства и содержится в ядрах всех живых клеток. Она посылает сигналы «химическим фабрикам», находящимся внутри клеток, инициируя выработку ими различных видов белков. Сигналы передаются через РНК.

Таким образом, чертой, доказывающей принадлежность вирусов к живым организмам, является их способность передавать свои свойства из поколения в поколение посредством генетического материала. Два вида нуклеиновых кислот, ДНК и РНК, являются основой жизни, и, даже будучи заключенными лишь в тонкую оболочку, они представляют собой живой организм.

Строение вирусов

Размеры вирусов чрезвычайно малы: ширина мельчайших из них составляет 20-30 нанометров, а самых крупных - в 10 раз больше. Большинство вирусов по своей форме приближается к сфере. Исключение составляют вирусы бешенства и родственные им, имеющие палочковидную форму, а также вирусы оспы и родственные им, напоминающие кирпич.

Вирусы классифицируются в основном по типу образующей их нуклеиновой кислоты. Нуклеиновые кислоты, формирующие ядро вируса, называют геномом, а белковую капсулу - капсидом. Капсид состоит из множества одинаковых белковых молекул - капсомеров. Расположение капсомеров вокруг генома определяет форму отдельно взятой вирусной частицы.

Различные группы вирусов имеют разную форму, самая распространенная из которых - икосаэдр, который состоит из 20 плоских граней одинакового размера, образующих сферу. Капсид других вирусов имеет форму полого цилиндра. Эти различия в структуре можно определить исключительно при исследовании вирусов под мощным электронным микроскопом (с помощью электронной микрофотографии). Некоторые вирусы имеют иную форму капсида, которую иногда сравнивают с конвертом.

В работе, датированной 1892 годом, Д. И. Ивановский приходит к выводу, что мозаичная болезнь табака вызывается «бактериями, проходящими через фильтр Шамберлана, которые, однако, не способны расти на искусственных субстратах». На основании этих данных были определены критерии, по которым возбудителей заболеваний относили к этой новой группе: фильтруемость через «бактериальные» фильтры, неспособность расти на искусственных средах, воспроизведения картины заболевания фильтратом, освобождённым от бактерий и грибов . Возбудитель мозаичной болезни называется Д. И. Ивановским по-разному, термин «вирус» ещё не был введён, иносказательно их называли то «фильтрующимися бактериями», то просто «микроорганизмами».

Пять лет спустя, при изучении заболеваний крупного рогатого скота, а именно - ящура , был выделен аналогичный фильтрующийся микроорганизм. А в 1898 году , при воспроизведении опытов Д. Ивановского голландским ботаником М. Бейеринком , он назвал такие микроорганизмы «фильтрующимися вирусами». В сокращённом виде это название и стало обозначать данную группу микроорганизмов.

Природа вирусов

Вирусы обладают уникальными свойствами, которые позволяют выделить их из общей массы микроорганизмов:

Общая вирусология изучает основные принципы строения, размножения вирусов, их взаимодействие с клеткой-хозяином, происхождение и распространение вирусов в природе. Один из важнейших разделов общей вирусологии - молекулярная вирусология, изучающая структуру и функции вирусных нуклеиновых кислот, механизмы экспрессии вирусных генов, природу устойчивости организмов к вирусным заболеваниям, молекулярную эволюцию вирусов.

  • Частная вирусология

Частная вирусология исследует особенности определённых групп вирусов человека, животных и растений и разрабатывает меры борьбы с вызываемыми этими вирусами болезнями.

  • Молекулярная вирусология

В 1962 г. вирусологи многих стран собрались на симпозиуме в США , чтобы подвести первые итоги развития молекулярной вирусологии. На этом симпозиуме звучали не совсем привычные для вирусологов термины: архитектура вирионов, нуклеокапсиды, капсомеры. Начался новый период в развитии вирусологии - период молекулярной вирусологии.

Молекулярная вирусология, или молекулярная биология вирусов, - составная часть общей молекулярной биологии и в то же время - раздел вирусологии. Это и неудивительно. Вирусы - наиболее простые формы жизни, и поэтому вполне естественно, что они стали и объектами изучения, и орудиями молекулярной биологии. На их примере можно изучать фундаментальные основы жизни и её проявления.

С конца 50-х годов, когда начала формироваться синтетическая область знаний, лежащая на границе неживого и живого и занимающаяся изучением живого, методы молекулярной биологии хлынули обильным потоком в вирусологию. Эти методы, основанные на биофизике и биохимии живого, позволили в короткие сроки изучить строение, химический состав и репродукцию вирусов.

Поскольку вирусы относятся к сверхмалым объектам, для их изучения нужны сверхчувствительные методы. С помощью электронного микроскопа удалось увидеть отдельные вирусные частицы, но определить их химический состав можно, только собрав воедино триллионы таких частиц. Для этого были разработаны методы ультрацентрифугирования . Современные ультрацентрифуги - это сложноустроенные приборы, главной частью которых являются роторы, вращающиеся со скоростью в десятки тысяч оборотов в секунду.

Здесь нет надобности рассказывать о других методах молекулярной вирусологии, тем более что они меняются и совершенствуются из года в год быстрыми темпами Если в 60-х годах основное внимание вирусологов было фиксировано на характеристике вирусных нуклеиновых кислот и белков, то к началу 80-х годов была расшифрована полная структура многих вирусных генов и геномов и установлена не только аминокислотная последовательность, но и третичная пространственная структура таких сложных белков, как гликопротеид гемагглютинина вируса гриппа. В настоящее время можно не только свя.

С 1974 года начала бурно развиваться новая отрасль биотехнологии и новый раздел молекулярной биологии - генная, или генетическая, инженерия . Она немедленно была поставлена на службу вирусологии.

Семейства, включающие вирусы человека и животных

  • Семейство: Poxviridae (поксвирусы)
  • Семейство: Iridoviridae (иридовирусы)
  • Семейство: Herpesviridae (вирусы герпеса)
  • Семейство: Aflenoviridae (аденовирусы)
  • Семейство: Papovaviridae (паповавирусы)
  • Предполагаемое семейство: Hepadnaviridae (вирусы, подобные вирусу гепатита В)
  • Семейство: Parvoviridae (парвовирусы)
  • Семейство: Reoviridae (реовирусы)
  • Предполагаемое семейство: (вирусы с двухцепочечной РНК, состоящей из двух сегментов)
  • Семейство: Togaviridae (тогавирусы)
  • Семейство: Coronaviridae (коронавирусы)
  • Семейство: Paramyxoviridae (парамиксовирусы)
  • Семейство: Rhabdoviridae (рабдовирусы)
  • Предполагаемое семейства: (Filoviridae) (вирусы Марбург и Эбола)
  • Семейство: Orthomyxoviridae (вирусы гриппа)
  • Семейство: Bunyaviridae (буиьявирусы)
  • Семейство: Arenaviridae (аренавирусы)
  • Семейство: Retroviridae (ретровирусы)
  • Семейство: Picornaviridae (пикорнавирусы)
  • Семейство: Caliciviridae (калицивирусы)

Литература

  • Белоусова Р.В., Преображенская Э.А., Третьякова И.В. Ветеринарная вирусология. - КолосС, 2007. - 448 с. - ISBN 978-5-9532-0416-3
  • Букринская А.Г. Вирусология. - М.: Медицина, 1986. - 336 с.
  • Вирусология: В 3-х т. Т. 1: Пер. с англ. / Под ред. Б. Филдса, Д. Найпа, при участии Р. Ченока, Б. Ройзмана, Дж. Мелника, Р. Шоупа. - М.: Мир, 1989. - 492 с. - ISBN 5-03-000283-9
  • Вирусология: В 3-х т. Т. 2: Пер. с англ. / Под ред. Б. Филдса, Д. Найпа, при участии Р. Ченока, Б. Ройзмана, Дж. Мелника, Р. Шоупа. - М.: Мир, 1989. - 496 с. - ISBN 5-03-000284-7
  • Вирусология: В 3-х т. Т. 3: Пер. с англ. / Под ред. Б. Филдса, Д. Найпа, при участии Р. Ченока, Б. Ройзмана, Дж. Мелника, Р. Шоупа. - М.: Мир, 1989. - 452 с. - ISBN 5-03-000285-5

См. также

  • Генетика вирусов

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Вирусология" в других словарях:

    Вирусология … Орфографический словарь-справочник

    - (от вирусы и...логия) наука о вирусах. Общая вирусология изучает природу вирусов, их строение, размножение, биохимию, генетику. Медицинская, ветеринарная и сельскохозяйственная вирусология исследует патогенные вирусы, их инфекционные свойства,… … Большой Энциклопедический словарь

    ВИРУСОЛОГИЯ, наука о ВИРУСАХ. Существование вирусов было установлено в 1892 г. русским ботаником Д. Ивановским, который обнаружил, что возбудитель болезни «табачная мозаика» может проходить сквозь фарфоровый фильтр, непроницаемый для БАКТЕРИЙ.… … Научно-технический энциклопедический словарь

    ВИРУСОЛОГИЯ, и, жен. Наука о вирусах. | прил. вирусологический, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    - (от вирусы и...логия), наука о вирусах. Возникла в кон. 19 в. как ветвь микробиологии в связи с открытием Д. И. Ивановским в 1892 способности возбудителя мозаичной болезни табака проходить через фильтры, задерживающие бактерии. Позднее эти… … Биологический энциклопедический словарь

    Сущ., кол во синонимов: 4 биология (73) инфрамикробиология (1) медицина (189) … Словарь синонимов

    вирусология - — EN virology The study of submicroscopic organisms known as viruses. (Source: MGH) Тематики охрана окружающей среды EN… … Справочник технического переводчика

Словарь медицинских терминов

вирусология (вирус + греч. logos учение, наука)

медико-биологическая наука, изучающая вирусы: их строение, биохимию, систематику, генетику, а также значение в жизни человека.

Толковый словарь русского языка. С.И.Ожегов, Н.Ю.Шведова.

вирусология

И, ж. Наука о вирусах.

прил. вирусологический, -ая -ое.

Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова.

вирусология

    Научная дисциплина, изучающая вирусы (2).

    Учебный предмет, содержащий теоретические основы данной дисциплины.

    разг. Учебник, излагающий содержание данного учебного предмета.

Энциклопедический словарь, 1998 г.

вирусология

ВИРУСОЛОГИЯ (от вирусы и... логия) наука о вирусах. Общая вирусология изучает природу вирусов, их строение, размножение, биохимию, генетику. Медицинская, ветеринарная и сельскохозяйственная вирусология исследует патогенные вирусы, их инфекционные свойства, разрабатывает меры предупреждения, диагностики и лечения вызываемых ими заболеваний. Раздел вирусологии, изучающий наследственные свойства вирусов, тесно связан с молекулярной генетикой.

В методическом отношении В. существенно отличается от микробиологии, так как вирусы не удаётся культивировать на искусственных питательных средах. Для опытов с вирусами приходится использовать чувствительных к ним животных и растения, куриные эмбрионы (1932) и изолированные ткани (с 1913 и особенно с 1925). Успехи В. зависели, прежде всего, от разработки удобного метода культивирования вирусов. Так, изучение вируса гриппа продвинулось вперёд, когда определили, что к этому вирусу чувствительны хорьки (1933) и белые мыши (1934). В изучении вирусов полиомиелита и кори, а также в создании предохранительных вакцин против этих болезней решающее значение имело культивирование вирусов в изолированных тканях обезьян и человека. Для количественного учёта вируса и динамики его размножения применяют различные методы титрования. Важнейшие из них основаны на том, что вирус, размножаясь в клетках, вызывает видимые простым глазом поражения. Бактериальные вирусы (бактериофаги) титруют по числу стерильных пятен (Ф. Д"Эрелль, 1917), вирусы растений ≈ по числу некрозов на зараженном вирусом листе (Ф. Холмс, 1929), вирусы животных и человека ≈ на однослойных культурах тканей (Р. Дульбекко, 1952). Впервые химическим путём был очищен У. Стэнли (1935) вирус мозаичной болезни табака. Создание ультрацентрифуг облегчило концентрацию вирусов и определение массы вирусных частиц. Так называемое градиентное, или фракционированное, центрифугирование в растворах сахарозы или солей металлов дало возможность «рассортировать» вирусные частицы, так как даже при незначительном различии их веса они распределяются слоями на разных уровнях раствора. Этот метод сыграл большую роль в изучении стадий размножения вирусов. Для изучения физиологических условий размножения вирусов предложен (В. Л. Рыжков, 1938) метод метаболитов и антиметаболитов, которым стали определять, как влияют на размножение вируса вещества, стимулирующие или подавляющие отдельные биохимические процессы. Применение изотопов (преимущественно радиоактивных) позволило проследить, из каких источников черпает вирус вещества для построения своего тела. Отдельные этапы размножения вируса изучают в бесклеточных препаратах, содержащих, кроме вируса, рибосомы , ферменты клетки и вещества, нужные для построения белков и нуклеиновых кислот. Электронная микроскопия (с 1938) позволила увидеть вирусные частицы, а возможность приготовлять ультратонкие срезы ≈ изучать развитие вируса в тканях (1945).

В. тесно связана с морфологией и физиологией клеток, так как для вирусов клетки являются средой обитания; с другой стороны, размеры вирусных частиц близки к размерам крупных молекул, и это даёт возможность изучать их методами, применяемыми к молекулам (рентгеноструктурный анализ и т.п.). Основные проблемы современной В. ≈ это систематика вирусов и химиотерапия вирусных заболеваний, а также вопросы, связанные с генетикой и молекулярной биологией.

Журналы по В.: «Вопросы вирусологии» (М., 1956≈); «Archiv für die gesamte Virusforschung» (W., 1939≈), «Virus» (Kyoto, 1951≈); «Virology» (N. Y., 1955≈); «Acta virologica» (Praha, 1957≈); «Journal of General Virology» (L., 1967≈); «Journal of Virology» (Baltimore, 1967≈).

Лит.: Рыжков В. Л., Краткий очерк истории изучения вирусов, «Тр. института истории естествознания и техники АН СССР», 1961, т. 36, в. 8; Актуальные вопросы вирусологии, М., 1965; Молекулярные основы биологии вирусов, М., 1966; Жданов В. М., Гайдамович С. Я., Вирусология, М., 1966: Рыжков В. Л., Вирусология, в сб.: Развитие биологии в СССР, М., 1967; Вирусные болезни растений. Библиография отечественной литературы за 1924≈1966 гг., М., 1967.

В. Л. Рыжков.

Википедия

Вирусология

Вирусология - раздел микробиологии, изучающий вирусы (от латинского слова virus - яд ).

Впервые существование вируса доказал в 1892 году русский учёный Д. И. Ивановский. После многолетних исследований заболеваний табачных растений, в работе, датированной 1892 годом, Д. И. Ивановский приходит к выводу, что мозаичная болезнь табака вызывается «бактериями, проходящими через фильтр Шамберлана, которые, однако, не способны расти на искусственных субстратах». На основании этих данных были определены критерии, по которым возбудителей заболеваний относили к этой новой группе: фильтруемость через «бактериальные» фильтры, неспособность расти на искусственных средах, воспроизведения картины заболевания фильтратом, освобождённым от бактерий и грибов . Возбудитель мозаичной болезни называется Д. И. Ивановским по-разному, термин «вирус» ещё не был введён, иносказательно их называли то «фильтрующимися бактериями», то просто «микроорганизмами».

Пять лет спустя, при изучении заболеваний крупного рогатого скота, а именно - ящура, был выделен аналогичный фильтрующийся микроорганизм. А в 1898 году, при воспроизведении опытов Д. Ивановского голландским ботаником М. Бейеринком, он назвал такие микроорганизмы «фильтрующимися вирусами». В сокращённом виде это название и стало обозначать данную группу микроорганизмов.

В 1901 году было обнаружено первое вирусное заболевание человека - жёлтая лихорадка. Это открытие было сделано американским военным хирургом У. Ридом и его коллегами.

В 1911 году Фрэнсис Раус доказал вирусную природу рака - саркомы Рауса (лишь в 1966 году, спустя 55 лет, ему была вручена за это открытие Нобелевская премия по физиологии и медицине).

Примеры употребления слова вирусология в литературе.

Но эти наши козлы от науки, из этого гребанного Института вирусологии услышали откуда- то о нем, о том что груз будет проходить недалеко от Москвы и упросили инспекторов дать им образцы вируса.

Он, кстати, работал в этом Институте вирусологии , поэтому вопрос откуда они узнали о Эболе, я думаю отпадает.

Цистерна полетит по баллистической траектории, а вертолет позволит точно вывести ее на Институт вирусологии , корректируя полет.

Ты наверно слышала о захвате доминантами Института вирусологии и о том, что на них сбросили напалмовую бомбу?

Я нашел выход в Институте вирусологии , нашел сейчас, и буду настаивать на своем предложении, - твердо ответил Берк.

Конечно, можно много говорить о вирусологии , о том хорошем, что сделали медики для человечества, избавив людей от оспы, чумы, холеры и других грозных болезней, вызванных вирусами.

Откройте любой учебник по вирусологии и вы сразу же, на первой странице, прочтете, что формы вирусов бывают разные: палочкообразные, цилиндрические, сферические и иные.

Ваше поколение пускай ищет ее в чем угодно - в археологии, в вирусологии , как Валесский, а мы, молодежь, будем искать ее в другом и по-другому.

Однако накопление знаний в области вирусологии происходило слишком медленно и обходилось чрезвычайно дорого.

Эти представления менялись и продолжают меняться непрерывно и в наше время по мере обогащения методов исследования, внесения в них достижений ряда смежных наук, особенно микробиологии, вирусологии , общей биологии, генетики, и по мере общего технического прогресса.

По мере развития бактериологии, вирусологии и иммунологии в лабораториях и институтах всего мира происходила интенсивная работа по получению профилактических и лечебных вакцин и сывороток.

Работы в области вирусологии , проводимые Фионой для ФОП, были засекречены.

Генерал курирует некоторые сверхсекретные исследования в области вирусологии , - сообщила она, очнувшись через несколько минут.

Я занимался микробиологией и вирусологией , ибо мне, наивному, как и многим моим однолеткам, казалось, что где-то там, на уровне ядра клетки, а возможно, и глубже, в структуре молекул ДНК и РНК я найду, должен найти, тот волшебный ключ, которым смогу открыть ворота в царство вечности.

Отдельная парадигма может поэтому стать обязательной для всех естественных наук, другая - лишь для астрономии, физики, биологии или молекулярной биологии, еще одна - для таких высокоспециализированных и эзотерических областей, как вирусология или генная инженерия.

Общая вирусология изучает природу вирусов, их строение, размножение, биохимию, генетику. Медицинская, ветеринарная и сельскохозяйственная вирусология исследует патогенные вирусы, их инфекционные свойства, разрабатывает меры предупреждения, диагностики и лечения вызываемых ими заболеваний.

Вирусология решает фундаментальные и прикладные задачи и тесно связана с другими науками. Открытие и изучение вирусов, в частности бактериофагов, внесло огромный вклад в становление и развитие молекулярной биологии. Раздел вирусологии, изучающий наследственные свойства вирусов, тесно связан с молекулярной генетикой. Вирусы не только предмет изучения, но и инструмент молекулярно-генетических исследований, что связывает вирусологию с генетической инженерией. Вирусы - возбудители большого количества инфекционных заболеваний человека, животных, растений, насекомых. С этой точки зрения вирусология тесно связана с медициной, ветеринарией, фитопатологией и другими науками.

Возникнув в конце XIX века как ветвь патологии человека и животных, с одной стороны, и фитопатологии - с другой, вирусология стала самостоятельной наукой, по праву занимающей одно из основных мест среди биологических наук.

Вирусология - молодая наука, ее история насчитывает немногим более 100 лет. Начав свой путь как наука о вирусах, вызывающих болезни человека, животных и растений, в настоящее время вирусология развивается в направлениях изучения основных законов современной биологии на молекулярном уровне, основываясь на том, что вирусы являются частью биосферы и важным фактором эволюции органического мира.

ИСТОРИЯ ВИРУСОЛОГИИ

История вирусологии необычна тем, что один из ее предметов - вирусные болезни - стал изучаться задолго до того, как были открыты собственно вирусы. Начало истории вирусологии - это борьба с инфекционными заболеваниями и только впоследствии - постепенное раскрытие источников этих болезней. Подтверждением тому служат работы Эдуарда Дженнера гг.) по предупреждению оспы и работы Луи Пастера гг.) с возбудителем бешенства.

К концу XIX-го столетия выяснилось, что целый ряд заболеваний человека, таких как бешенство, оспа, грипп, желтая лихорадка являются инфекционными, однако их возбудители не обнаруживались бактериологическими методами.

Благодаря работам Роберта Коха гг.), который впервые использовал технику чистых бактериальных культур, появилась возможность различать бактериальные и небактериальные заболевания. В 1890 г. на X конгрессе гигиенистов Кох вынужден был заявить, что «…при перечисленных болезнях мы имеем дело не с бактериями, а с организованными возбудителями, которые принадлежат к совсем другой группе микроорганизмов». Это высказывание Коха свидетельствует, что открытие вирусов не было случайным событием. Не только опыт работы с непонятными по своей природе возбудителями, но и понимание сущности происходящего способствовали тому, что была сформулирована мысль о существовании оригинальной группы возбудителей инфекционных заболеваний небактериальной природы. Оставалось экспериментально доказать ее существование.

Определенный период времени в зарубежных публикациях открытие вирусов связывали с именем голландского ученого Бейеринка гг.) который также занимался изучением мозаичной болезни табака и опубликовал свои опыты в 1898 г. Профильтрованный сок зараженного растения Бейеринк поместил на поверхность агара, проинкубировал и получил на его поверхности бактериальные колонии. После этого верхний слой агара с колониями бактерий был удален, а внутренний слой был использован для заражения здорового растения. Растение заболело. Из этого Бейеринк сделал вывод, что причиной заболевания являются не бактерии, а некая жидкая субстанция, которая могла проникнуть внутрь агара, и назвал возбудителя «жидкий живой контагий». В связи с тем, что Ивановский только подробно описал свои опыты, но не уделил должного внимания небактериальной природе возбудителя, возникло недопонимание ситуации. Известность работы Ивановского приобрели только после того, как Бейеринк повторил и расширил его опыты и подчеркнул, что Ивановский впервые доказал именно небактериальный характер возбудителя самой типичной вирусной болезни табака. Сам Бейеринк признал первенство Ивановского и в настоящее время приоритет открытия вирусов Д.И. Ивановским признан во всем мире.

Слово ВИРУС означает яд. Этот термин применял еще Пастер для обозначения заразного начала. Следует отметить, что в начале 19 века все болезнетворные агенты назывались словом вирус. Только после того, как стала понятна природа бактерий, ядов и токсинов терминами «ультравирус», а затем просто «вирус» стали обозначать «новый тип фильтрующегося возбудителя». Широко термин «вирус» укоренился в 30-е годы нашего столетия.

Вирусы − уникальный класс, мельчайший класс инфекционных агентов, которые проходят через бактериальные фильтры и отличаются от бактерий по своей морфологии, физиологии и способу размножения.

Вирусы − внеклеточные формы жизни, надцарство Безядерных (аккариоты), царство Вира.

В настоящее время ясно, что вирусы характеризуются убиквитарностью, то есть повсеместностью распространения. Вирусы поражают представителей всех царств живого: человека, позвоночных и беспозвоночных животных, растения, грибы, бактерии.

ПРИРОДА ВИРУСОВ

Вирусы – внеклеточная форма жизни.

Вирусы − мельчайшие инфекционные агенты

Способ размножения. Вирусы не размножаются делением, размножение вирусов – репродукция – сборка отдельных вирусных компонент в вирусную частицу.

Вирусы встречаются в природе в двух состояниях: вне клетки вирусная частица находится в форме вириона – структуры вируса, в которой можно обнаружить все основные вирусные компоненты; внутри клетки вирус находится в вегетативной форме – это реплецирующаяся вирусная нуклеиновая кислота.

Вирусы не могут размножаться на обычных питательных средах, а только - в клетках, тканях или организмах.

Химический состав. Вирусная частица имеет белковую оболочку – белок, один тип нуклеиновой кислоты, либо РНК, либо ДНК, а также – зольный компонент. Сложно устроенные вирусы имеют ещё капсиды и углеводы.

Структура нуклеиновой кислоты (НК). НК вирусов (РНК или ДНК) являются хранителями генетической информации. У вирусов встречаются атипичные формы НК – двухцепочечные РНК и одноцепочечные ДНК.

Вирусные частицы не растут.

РАЗМЕРЫ ВИРУСОВ

Вирусы – мельчайшие агенты,нм (0,01-0,35 мкм). Они не видны в обычный световой микроскоп, и для определения размера вирусов используют различные методы:

1. фильтрация через фильтры с известной величиной пор;

2. определение скорости осаждения частиц при центрифугировании;

3. фотографирование в электронном микроскопе.

ХИМИЧЕСКИЙ СОСТАВ ВИРУСОВ

Вирусы имеют три основных компонента: белок, НК, зольный компонент.

Белки построены из аминокислот (а/к) L-ряда. Все а/к тривиальной природы, как правило, в структуре преобладают нейтральные и кислые дикарбоновые кислоты. В составе сложных вирусов имеются основные гистоноподобные белки, связанные с НК, для стабилизации структуры и для увеличения антигенной активности.

Все вирусные белки делятся на: структурные – формируют белковую оболочку – капсид; функциональные – белки ферменты, часть белков ферментов находятся в структуре капсида, этими белками связана ферментативная активность и способность вируса проникать внутрь клетки (например, АТФаза, сиалаза – неиромеидаза, которые встречаются в структуре вируса человека и животных, а также лизоцим).

Капсид состоит из длинных полипептидных цепей, что могут состоять из одного или нескольких белков с маленькой молекулярной массой. В структуре полипептидной цепи различают химическую, структурную и морфологическую единицы.

Химическая единица – это отдельный белок, формирующий полипептидную цепь.

Структурная единица – это повторяющаяся единица в структуре полипептидной цепи.

Морфологическая единица – это капсомер, который наблюдается в структуре вируса, что видна в электронном микроскопе.

Белки вирусного капсида имеют ряд свойств: они устойчивы к протеазам и причина устойчивости в том, что белок организован так, что пептидная связь, на которую действует протеаза, спрятана внутрь. В такой устойчивости большой биологический смысл: так как вирусная частица собирается внутри клетки, где высока концентрация протеолитических ферментов. Такая устойчивость предохраняет вирусную частицу от разрушения внутри клетки. Вместе с тем, эта устойчивость вирусной оболочки к протеолитическим ферментам теряется в момент прохождения вирусной частицы через клеточные покровы, в частности через ЦПМ.

Предполагают, что в процесс транспортировки вирусной частицы через ЦПМ, происходят изменения конформационной структуры и пептидная связь становится доступной для ферментов.

Функции структурных белков:

Защитная (предохраняют НК, которая расположена внутри капсида);

Некоторые белки капсиды несут адресную функцию, что рассматривается как рецепторы вирусов, с помощью которых вирусная частица прикрепляется на поверхности специфических клеток;

В составе вирионов обнаружен внутренний гистоноподобный белок связанный с НК, который обладает антигенной функцией и ещё участвует в стабилизации НК.

Функциональные белки-ферменты связанные с капсодом:

Сиалаза-неиромиедаза. Обнаружен в вирусах животных и человека, облегчает выход вирусной частицы из клетки и делает дырку (плешь) в вирусных структурах;

Лизоцим. Структурно связан с вирусной частицей, разрушает β-1,4-гликозидную часть в муреиновом каркасе и облегчает проникновение НК бактериофага внутрь бактериальной клетки.

АТФаза. Встроен в структуру бактериофага и некоторых вирусов человека и животных клеточного происхождения. Функции изучены на примере бактериофагов, с помощью АТФазы происходит гидролиз АТФ, которые интеркалированы в структуру вируса и имеют клеточное происхождение, выделяющаяся энергия расходуется сокращение хвостового отростка, это облегчает транспортировку НК внутрь бактериальной клетки.

Молекулярная масса вирусной ДНК колеблетсяД, а РНК – меньшеД.

НК вирусов в 10 раз меньше, чем НК самых мелких клеток.

Количество нуклеотидов в ДНК варьирует от нескольких тысяч до 250 тысяч нуклеотидов. 1 ген – 1000 нуклеотидов, это означает, что в структуре вирусов встречается от 10 до 250 генов.

В состав НК наряду с пятью азотистыми основаниями, имеют место и аномальные основания – основания, которые полностью способны замещать стандартные: 5-оксиметилцитозин – полностью замещает цитозин, 5-оксиметилурацил − замещает тимин.

Аномальные основания встречаются только у бактериофагов, у остальных – классические основания.

Функции аномальных оснований: блокируют клеточную ДНК, не дают возможность реализовать информацию заложенную в ДНК, в момент, когда вирусная частица попадает в клетку.

Помимо аномальных, обнаружены и минорные основания: малое количество 5-метилцитозина, 6-метиламино пурин.

У некоторых вирусов могут встречаться метилированые производные цитозина и аденина.

НК вирусов как РНК, так и ДНК, могут встречаться в двух видах:

В виде кольцевых цепей;

В виде линейных молекул.

Ковалентно-замкнутые цепи (не имеют 3’ – 5’ свободных концов, на них не действуют экзонуклеазы);

Релаксированая форма, когда одна цепь ковалентно замкнутая, а вторая имеет один или несколько разрывов в своей структуре.

Линейные молекулы делятся на две группы:

Линейная структура с фиксированной последовательностью нуклеотидов (начинается всегда одним нуклеотидам);

Линейная структура с пермитированной последовательностью (определенный набор нуклеотидов, но последовательность разлмчная).

В структуре РНК встречаются одноцепочечные +РНК и −РНК цепи.

РНК – с одной стороны хранитель генетической информации, а с другой стороны – выполнять функцию иРНК и узнается рибосомами клетки как иРНК.

−РНК − выполняют только функцию хранителя генетической информации, а иРНК синтезируется на её основе.

В вирусных частицах встречаются катионы металлов: калия, натрия, кальция, мангана, магния, железа, меди, и их содержанием может достигать несколько мг на 1 г вирусной массы.

Функции Ме2+: играют важную роль в стабилизации вирусной НК, формируют упорядоченную четвертичную структуру вирусной частицы. Состав металлов непостоянный и определяется составом окружающей среды. У некоторых вирусов имеются поликатионы связанные с полиаминами, которые играют огромную роль в физической стабильности вирусных частиц. Также ионы металлов обеспечивают нейтрализацию отрицательного заряда НК, которые формируют фосфорно-кислые (фосфатные группы) НК.

И онкологических заболеваний, определяет способы диагностики, терапии и профилактики вирусных заболеваний.

Вследствие развития вирусологии были достигнуты определённые успехи в борьбе с некоторыми вирусными инфекциями. Например, в 20 веке на земном шаре благодаря массовой вакцинации населения была ликвидирована оспа . Существует, однако, ряд вирусных заболеваний, неизлечимых на современном этапе развития науки, самое известное из них - ВИЧ-инфекция .

История

Впервые существование вируса (как нового типа возбудителя болезней) доказал в 1892 году русский учёный Д. И. Ивановский . После многолетних исследований заболеваний табачных растений , в работе, датированной 1892 годом, Д. И. Ивановский приходит к выводу, что мозаичная болезнь табака вызывается «бактериями, проходящими через фильтр Шамберлана , которые, однако, не способны расти на искусственных субстратах». На основании этих данных были определены критерии, по которым возбудителей заболеваний относили к этой новой группе: фильтруемость через «бактериальные» фильтры, неспособность расти на искусственных средах, воспроизведения картины заболевания фильтратом, освобождённым от бактерий и грибов . Возбудитель мозаичной болезни называется Д. И. Ивановским по-разному, термин «вирус» ещё не был введён, иносказательно их называли то «фильтрующимися бактериями», то просто «микроорганизмами».

Пять лет спустя, при изучении заболеваний крупного рогатого скота, а именно - ящура , был выделен аналогичный фильтрующийся микроорганизм. А в 1898 году , при воспроизведении опытов Д. Ивановского голландским ботаником М. Бейеринком , он назвал такие микроорганизмы «фильтрующимися вирусами». В сокращённом виде это название и стало обозначать данную группу микроорганизмов.

Видео по теме

Природа вирусов

Вирусы очень разнообразны, изменчивы и широко распространены, способны заражать практически всех представителей флоры и фауны и даже многие микроорганизмы.

Общая вирусология изучает основные принципы строения, размножения вирусов, их взаимодействие с клеткой-хозяином, происхождение и распространение вирусов в природе. Один из важнейших разделов общей вирусологии - молекулярная вирусология , изучающая структуру и функции вирусных нуклеиновых кислот, механизмы экспрессии вирусных генов, природу устойчивости организмов к вирусным заболеваниям, молекулярную эволюцию вирусов.

Частная вирусология исследует особенности определённых групп вирусов человека, животных и растений и разрабатывает меры борьбы с вызываемыми этими вирусами болезнями.

В 1962 г. вирусологи многих стран собрались на симпозиуме в США , чтобы подвести первые итоги развития молекулярной вирусологии. На этом симпозиуме звучали не совсем привычные для вирусологов термины: архитектура вирионов, нуклеокапсиды, капсомеры. Начался новый период в развитии вирусологии - период молекулярной вирусологии.

Молекулярная вирусология, или молекулярная биология вирусов, - составная часть общей молекулярной биологии и в то же время - раздел вирусологии. Это и неудивительно. Вирусы - наиболее простые формы жизни, и поэтому вполне естественно, что они стали и объектами изучения, и орудиями молекулярной биологии. На их примере можно изучать фундаментальные основы жизни и её проявления.

С конца 50-х годов, когда начала формироваться синтетическая область знаний, лежащая на границе неживого и живого и занимающаяся изучением живого, методы молекулярной биологии хлынули обильным потоком в вирусологию. Эти методы, основанные на биофизике и биохимии живого, позволили в короткие сроки изучить строение, химический состав и репродукцию вирусов.

Поскольку вирусы относятся к сверхмалым объектам, для их изучения нужны сверхчувствительные методы. С помощью электронного микроскопа удалось увидеть отдельные вирусные частицы, но определить их химический состав можно, только собрав воедино триллионы таких частиц. Для этого были разработаны методы ультрацентрифугирования .

Если в 60-х годах основное внимание вирусологов было фиксировано на характеристике вирусных нуклеиновых кислот и белков, то к началу 80-х годов была расшифрована полная структура многих вирусных генов и геномов и установлена не только аминокислотная последовательность, но и третичная пространственная структура таких сложных белков, как гликопротеид гемагглютинина вируса гриппа. В настоящее время можно не только связать изменения антигенных детерминант вируса гриппа с заменой в них аминокислот, но и рассчитывать прошедшие, настоящие и будущие изменения этих антигенов.

С 1974 года начала бурно развиваться новая отрасль биотехнологии и новый раздел молекулярной биологии - генная, или генетическая, инженерия . Она немедленно была поставлена на службу вирусологии.

Семейства, включающие вирусы человека и животных

  • Семейство Poxviridae (поксвирусы)
  • Семейство Iridoviridae (иридовирусы)
  • Семейство Herpesviridae (герпесвирусы)
  • Семейство Adenoviridae (аденовирусы)
  • Семейство Papovaviridae (паповавирусы)
  • Семейство Hepadnaviridae (вирусы, подобные вирусу гепатита B)
  • Семейство Parvoviridae (парвовирусы)
  • Семейство Reoviridae (реовирусы)
  • Семейство Birnaviridae (вирусы с двухцепочечной РНК, состоящей из двух сегментов)
  • Семейство Togaviridae (тогавирусы)
  • Семейство Coronaviridae (коронавирусы)
  • Семейство Paramyxoviridae (