В модели rgb используются цвета. Какие цветовые модели существуют в компьютерной графике и для чего они нужны? Цветовой куб RGB

Доброго времени суток, дорогие читатели, знакомые, посетители, мимопроходящие личности и прочие странные существа! Сегодня мы поговорим о немного специфической, но несомненно важной вещи для любого пользователя, а именно о такой штуке: представление цвета в компьютере.

Как ни крути, но рано или поздно все столкнутся с практической необходимостью понимания, что такое цветовая модель, да и просто сие знание полезно с точки зрения расширения кругозора и осознания - что и как работает в компьютере и из чего он состоит как с программной, так и с физической точки зрения.

Что такое цветовая модель

В общем виде цветовая модель - это некоторая абстрактная вещь, в которой цвет представляется в виде совокупности чисел. И каждая такая модель имеет свои особенности и недостатки. По сути, это как с языком, например, если цвет - это слово "дом", то на разных языках оно будет писаться и звучать по-разному, но при этом смысл слова везде будет одинаковый. Так же и с цветом.

Мы рассмотрим самые основные модели. Их 5 . Как правило, используется одновременно несколько различных моделей, т.к. некоторые удобнее всего использовать в визуальном виде, а другие в численном.

RGB

Это самая распространенная модель представления цвета. В ней любой цвет рассматривается как оттенки трех основных (или базовых) цветов: красный (Red) , зеленый (Green) и синий (Blue). При этом существует два вида этой модели: восьмибитное представление, где цвет задается числами от 0 до 255 (например, цвет будет соответствовать синему, а - желтому), и шестнадцатибитное , которое чаще всего используется в графических редакторах и html , где цвет задается числами от 0 до ff (зеленый - #00ff00 , синий - #0000ff , желтый - #ffff00 ).

Разница представлений в том, что в восьмибитном виде для каждого базового цвета используется отдельная шкала, а в шестнадцатибитном уже сразу вводится цвет. Иными словами, восьмибитное представление - три шкалы с каждым основным цветов, шестнадцатибитное - одна шкала с тремя цветами.

Особенность этой модели в том, что здесь новый цвет получается путем добавления оттенков основных цветов, т.е. "смешивания".

Хотите знать и уметь, больше и сами?

Мы предлагаем Вам обучение по направлениям: компьютеры, программы, администрирование, сервера, сети, сайтостроение, SEO и другое. Узнайте подробности сейчас!

На картинке выше видно, как цвета смешиваются друг с другом, образуя новые цвета (желтый - [255,255,0 ], пурпурный - [255,0,255 ], голубой - [0,255,255 ] и белый [255,255,255 ]).

При этом эта модель чаще всего используется именно в численном виде, а не в визуальном (когда цвет задается вводом его значения в соотв. поля, а не выбирается мышкой). Для визуальной настройки цвета используются другие модели. Потому что визуально модель RGB представляет собой трехмерный кубик, который, как Вы видите на картинке выше, не очень удобно использовать:)

Так что это самая распространенная модель у веб-дизайнеров (передаем пламенный привет css ) и программистов.

Недостаток этой модели в том, что она зависит от аппаратной части, иными словами, одна и та же картинка будет неодинаково выглядеть на разных мониторах (ибо в мониторах используется так называемый люминофор - вещество, которое преобразовывает поглощаемую им энергию в световое излучение, а посему в зависимости от качества этого вещества будут определяться базовые цвета) .

CMYK

Это тоже очень распространенная модель, но многие о ней могли вообще ничего не слышать:)

А всё из-за того, что она используется исключительно для печати. Она расшифровывается как Cyan, Magenta, Yellow, Black (или Key Color ), т.е. Голубой, Пурпурный, Желтый и Черный (или ключевой цвет ).

Использование этой модели на печати обусловлено тем, что смешивать по три оттенка для каждого нового цвета слишком затратно и грязно, т.к. когда на бумагу сначала наносится один цвет, потом поверх него другой и затем поверх них третий цвет, во-первых, бумага сильно намокает (если струйная печать), во-вторых, совсем не факт, что получится именно тот оттенок, что Вы хотели. Да, физика она такая:)

Наиболее внимательные могли заметить, что на картинке присутствуют три цвета, а черный получается путем смешивания этих трех. Так, стало быть, зачем его вынесли отдельно? Опять же причина в том, что, во-первых, смешивать три цвета это затратно с точки зрения использования тонера (спец. порошок для картриджа от принтера, который используется вместо чернил в лазерных принтерах), во-вторых, бумага сильно мокнет, что увеличивает время просушки, в-третьих, цвета в действительности могут не смешаться должным образом, а быть более блеклыми, например. Картинка ниже показывает эту модель в реальности

Таким образом, получится скорее не черный, а грязно-серый или грязно-коричневый.

Поэтому (и не только) ввели еще черный цвет, чтобы не пачкать бумагу, не тратиться на тонеры и вообще жить было проще:)

Очень наглядно иллюстрирует всю суть следующая анимация (открывается по клику, вес около 14 Mb ):

Цвет в этой модели задается числами от 0 до 100 , где эти числа часто называют "частями" или "порциями" выбранного цвета. Например, цвет "хаки" получается путем смешивания 30 частей голубой краски, 45 - пурпурной, 80 - желтой и 5 - черной, т.е. цвет хаки будет .

Трудности этой модели заключаются в том, что в суровых реалиях (или в реальных суровиях) цвет зависит не столько от числовых данных, сколько от характеристики бумаги, краски в тонере, способе нанесения этой краски и т.п. Так что числовые значения будут однозначно определять цвет на мониторе, но они не покажут реальной картины на бумаге.

HSV (HSB) и HSL

Эти две цветовые модели я объединил, т.к. они схожи по своему принципу.

Трехмерная реализация HSL (слева) и HSV (справа) моделей представлена в виде цилиндра ниже, но на практике в ПО (программном обеспечении) не используется, ибо.. ибо трехмерная:)

HSV (или HSB) означает Hue, Saturation, Value (еще может именоваться Brightness ), где:

  • Hue - цветовой тон, т.е. оттенок цвета.
  • Saturation - насыщенность. Чем выше этот параметр, тем "чище" будет цвет, а чем ниже, тем ближе он будет к серому.
  • Value (Brightness ) - значение (яркость) цвета. Чем выше значение, тем ярче будет цвет (но не белее). А чем ниже, тем темнее (0% - черный)

HSL - Hue, Saturation, Lightness

  • Hue - Вы уже знаете
  • Saturation - аналогично
  • Lightness - это светлота цвета (не путать с яркостью) . Чем выше параметр, тем светлее цвет (100% - белый), а чем ниже, тем темнее (0% - черный).

Более распространенная модель - HSV , она часто используется вместе с моделью RGB , где HSV показана в визуальном виде, а числовые значения задаются в RGB . :

Здесь RGB- модель обведена красным и значения оттенков задаются числами от 0 до 255 , либо сразу можно указать цвет в шестнадцатеричном виде. А синим обведена HSV модель (визуальная часть в левом прямоугольнике, числовая - в правом ). Также часто можно указать непрозрачность (так называемый альфа-канал ).

Такая модель чаще всего используется в простой (или непрофессиональной) обработке изображений, т.к. при помощи неё удобно регулировать основные параметры фотографий, не прибегая к куче различных фильтров или отдельных настроек.
Например во всеми любимом (или проклинаемом) фотошопе присутствуют обе модели, только одна из них находится в редакторе выбора цвета, а другая - в окне настроек Hue/Saturation

Здесь красным показа RGB- модель, синим - HSB , зеленым - CMYK и голубым Lab (о ней чуть позже), что видно на картинке:)
А HSL- модель находится в таком вот окошке:

Недостаток HSB- модели в том, что она также зависит от аппаратной части. Она просто не соответствуют восприятию человеческого глаза, т.к. оный воспринимает цвета с разной яркостью (например, синий воспринимается нами более темным, чем красный), а в этой модели у всех цветов одинаковая яркость. У HSL аналогичные проблемы:)

Таких недостатков хотели избежать, поэтому одна небезызвестная компания CIE (Международная комиссия по освещению - Commission Internationale de l"Eclairage ) придумала новую модель, призванную не зависеть от аппаратной части. И назвали её Lab (нет, это не сокращение от Laboratory ).

Lab или L,a,b

Эта модель является одной из стандартных, хотя и малоизвестна рядовому пользователю.

Расшифровывается она следующим образом:

  • L - Luminance - освещенность (это совокупность яркости и интенсивности)
  • a - один из компонентов цвета, меняется от зеленого до красного
  • b - второй из компонентов цвета, меняется от синего до желтого

На рисунке показаны диапазоны компонент a и b для освещенности 25% (слева) и 75% (справа)

Яркость в этой модели отделяется от цветов, поэтому при помощи неё удобно регулировать контраст, резкость и другие светопоказатели, не трогая при этом цвета:)

Однако эта модель совсем неочевидная для использования и ею довольно трудно пользоваться на практике. Поэтому её используют в основном в обработке изображений и для конвертации оных из одной цветовой модели в другую без потерь (да, это единственная модель, которая делает это без потерь), обычным же смертным страждущим пользователям достаточно, как правило, HSL и HSV плюс фильтры.

Ну и в качестве примера работы модели HSV, HSL и Lab вот картинка из Википедии (кликабельно)

Наука о цвете - это довольно сложная и широкомасштабная наука, поэтому в ней время от времени создаются различные цветовые модели, применяемые в той либо иной области. Одной из таких моделей и является цветовой круг .

Многим известно о том, что существует 3 первичные цвета, которые невозможно получить и которые образуют все остальные. Основные цвета - это желтый, красный и синий. При смешивании желтого с красным получается оранжевый, синего с желтым - зеленый, а красного с синим - фиолетовый. Таким образом, можно составить круг, который будет содержать все цвета. Он представлен на рис. и называется большим кругом Освальда .

Наряду с кругом Освальда есть еще и круг Гете , в котором основные цвета расположены в углах равностороннего треугольника, а дополнительные - в углах перевернутого треугольника.

Друг напротив друга расположены контрастные цвета.

Для описания излучаемого и отраженного цвета используются разные математические модели - цветовые модели (цветовое пространство), т.е. - это способ описания цвета с помощью количественных характеристик. Цветовые модели могут быть аппаратно-зависимыми (их пока большинство, RGB и CMYK в их числе) и аппаратно-независимыми (модель Lab). В большинстве «современных» визуализационных пакетов (например, в Photoshop) можно преобразовывать изображение из одной цветовой модели в другую.

В цветовой модели (пространстве) каждому цвету можно поставить в соответствие строго определенную точку. В этом случае цветовая модель - это просто упрощенное геометрическое представление, основанное на системе координатных осей и принятого масштаба.

Основные цветовые модели:

− CMY (Cyan Magenta Yellow);

− CMYK (Cyan Magenta Yellow Key, причем Key означает черный цвет);

− HSV (Hue, Saturation, Value);

− HLS (Hue, Lightness, Saturation);

− и другие.

В цифровых технологиях используются, как минимум четыре, основных модели: RGB, CMYK, HSB в различных вариантах и Lab. В полиграфии используются также многочисленные библиотеки плашечных цветов.

Цвета одной модели являются дополнительными к цветам другой модели. Дополнительный цвет - цвет, дополняющий данный до белого. Дополнительный для красного - голубой (зеленый+синий), дополнительный для зеленого - пурпурный (красный+синий), дополнительный для синего - желтый (красный+зеленый) и т.д.

По принципу действия перечисленные цветовые модели можно условно разить на три класса:

− аддитивные (RGB), основанные на сложении цветов;

− субтрактивные (CMY, CMYK), основу которых составляет операция вычитания цветов (субтрактивный синтез);

− перцепционные (HSB, HLS, LAB, YCC), базирующиеся на восприятии.

Аддитивный цвет получается на основе законов Грассмана путем соединения лучей света разных цветов. В основе этого явления лежит тот факт, что большинство цветов видимого спектра могут быть получены путем смешивания в различных пропорциях трех основных цветовых компонент. Этими компонентами, которые в теории цвета иногда называются первичными цветами, являются красный (R ed), зеленый (G reen) и синий (В lue) цвета. При попарном смешивании пер-
вичных цветов образуются вторичные цвета: голубой (С yan), пурпурный (M agenta) и желтый (Y ellow). Следует отметить, что первичные и вторичные цвета относятся к базовым цветам.

Базовыми цветами называют цвета, с помощью которых можно получить практически весь спектр видимых цветов.

Для получения новых цветов с помощью аддитивного синтеза можно использовать и различные комбинации из двух основных цветов, варьирование состава которых приводит к изменению результирующего цвета.

Таким образом, цветовые модели (цветовое пространство) представляют средства для концептуального и количественного описания цвета. Цветовой режим - это способ реализации определенной цветовой модели в рамках конкретной графической программы.

Закон Грассмана (законы смешивания цветов)

В большинстве цветовых моделей для описания цвета используется трехмерная система координат. Она образует цветовое пространство, в котором цвет можно представить в виде точки с тремя координатами. Для оперирования цветом в трехмерном пространстве Т. Грассман вывел три закона (1853г):

1. Цвет трехмерен - для его описания необходимы три компоненты. Лю­бые четыре цвета находятся в линейной зависимости, хотя существует неограниченное число линейно независимых совокупностей из трех цветов.

Иными словами, для любого заданного цвета можно записать такое цве­товое уравнение, выражающее линейную зависимость цветов.

Первый закон можно трактовать и в более широком смысле, а именно, в смысле трехмерности цвета. Необязательно для описания цвета применять смесь других цветов, можно использовать и другие величины - но их обяза­тельно должно быть три.

2. Если в смеси трех цветовых компонент одна меняется непрерывно, в то время, как две другие остаются постоянными, цвет смеси также изме­няется непрерывно.

3. Цвет смеси зависит только от цветов смешиваемых компонент и не за­висит от их спектральных составов.

Смысл третьего закона становится более понятным, если учесть, что один и тот же цвет (в том числе и цвет смешиваемых компонент) может быть полу­чен различными способами. Например, смешиваемая компонента может быть получена, в свою очередь, смешиванием других компонент.

Цветовая модель RGB

Это одна из наиболее распространенных и часто используемых моделей. Она применяется в приборах, излучающих свет, таких, например, как мониторы, прожекторы, фильтры и другие подобные устройства.

Данная цветовая модель базируется на трех основных цветах: Red - красном, Green - зеленом и Blue - синем. Каждая из вышеперечисленных составляющих может варьироваться в пределах от 0 до 255, образовывая разные цвета и обеспечивая, таким образом, доступ ко всем 16 миллионам (полное количество цветов, представляемых этой моделью равно 256*256*256 = 16 777 216.).

Эта модель аддитивная. Слово аддитивная (сложение) подчеркивает, что цвет получается при сложении точек трех базовых цветов, каждая своей яркости. Яркость каждого базового цвета может принимать значения от 0 до 255 (256 значений), таким образом, модель позволяет кодировать 256 3 или около 16,7 млн цветов. Эти тройки базовых точек (светящиеся точки) расположены очень близко друг к другу, так что каждая тройка сливается для нас в большую точку определенного цвета. Чем ярче цветная точка (красная, зеленая, синяя), тем большее количество этого цвета добавится к результирующей (тройной) точке.

При работе с графическим редактором Adobe PhotoShop можно выбирать цвет, полагаясь не только на тот, что мы видим, но при необходимости указывать и цифровое значение, тем самым иногда, особенно при цветокоррекции, контролируя процесс работы.

Цветовая модель CIE Lab.

В 1920 году была разработана цветовая пространственная модель CIELab (Communi­cation Internationale de I"Eclairage - международная комиссия по освещению. L,a,b - обозначения осей координат в этой системе). Система является аппаратно независи­мой и потому часто применяется для переноса данных между устройствами. В модели CIELab любой цвет определяется светлотой (L) и хроматическими компонентами: параметром а, изменяющимся в диапазоне от зеленого до красного, и параметром Ь, изменяющимся в диапазоне от синего до желтого. Цветовой охват модели CIELab значительно превосходит возможности мониторов и печатных устройств, поэтому перед выводом изображения, представленного в этой модели, его приходится пре­образовывать. Данная модель была разработана для согласования цветных фото­химических процессов с полиграфическими. Сегодня она является принятым по умолчанию стандартом для программы Adobe Photoshop.

Цветовая модель RGB.

Цветовая модель RGB является аддитивной, то есть любой цвет представляет собой сочетание в различной пропорции трех основных цветов - красного (Red), зеле­ного (Green), синего (Blue). Она служит основой при создании и обработке компью­терной графики, предназначенной для электронного воспроизведения (на мони­торе, телевизоре). При наложении одного компонента основного цвета на другой яркость суммарного излучения увеличивается. Совмещение трех компонентов дает ахроматический серый цвет, который при увеличении яркости приближается к белому цвету. При 256 градационных уровнях тона черному цвету соответствуют нулевые значения RGB, а белому - максимальные, с координатами (255,255,255).

Цветовая модель HSB (HSL).

Цветовая модель HSB разработана с максимальным учетом особенностей восприя­тия цвета человеком. Она построена на основе цветового круга Манселла. Цвет описывается тремя компонентами: оттенком (Hue), насыщенностью (Saturation) и яркостью (Brightness). Изначально вместо термина «яркость» использовался термин «светлота» - Lightness. Значение цвета выбирается как вектор, исходящий из центра окружности. Точка в центре соответствует белому цвету, а точки по периметру окружности - чистым спектральным цветам. Направление вектора задается в гра­дусах и определяет цветовой оттенок. Длина вектора определяет насыщенность цвета. На отдельной оси, называемой ахроматической, задается яркость, при этом нулевая точка соответствует черному цвету. Цветовой охват модели HSB перекры­вает все известные значения реальных цветов.



Модель HSB принято использовать создания изображений на компьютере с имитацией приемов работы и инструментария художников. Существуют специ­альные программы, имитирующие кисти, перья, карандаши. Обеспечивается ими­тация работы с красками и различными полотнами. После создания изображения его рекомендуется преобразовать в другую цветовую модель, в зависимости от пред­полагаемого способа публикации.

Цветовая модель CMYK, цветоделение.

Цветовая модель CMYK относится к субтрактивным, и ее используют при подго­товке публикаций к печати. Цветовыми компонентами CMY служат цвета, полу­ченные вычитанием основных из белого:

голубой (cyan) = белый - красный = зеленый + синий; пурпурный (magenta) = белый - зеленый = красный + синий; желтый (yellow) = белый - синий = красный + зеленый.

Такой метод соответствует физической сущности восприятия отраженных от печат­ных оригиналов лучей. Голубой, пурпурный и желтый цвета называются дополни­тельными, потому что они дополняют основные цвета до белого. Отсюда вытекает и главная проблема цветовой модели CMY - наложение друг на друга дополни­тельных цветов на практике не дает чистого черного цвета. Поэтому в цветовую модель был включен компонент чистого черного цвета. Так появилась четвертая буква в аббревиатуре цветовой модели CMYK (Cyan, Magenta, Yellow, blасК).

Для печати на полиграфическом оборудовании цветное компьютерное изображение необходимо разделить на составляющие, соответствующие компонентам цветовой модели CMYK. Этот процесс называют цветоделением. В итоге получают четыре отдельных изображения, содержащих одноцветное содержимое каждого компонента в оригинале. Затем в типографии с форм, созданных на основе цветоделенных пленок, печатают многоцветное изображение, получаемое наложением цветов CMYK.

Индексированный цвет.

Индексированные цвета называются так по той причине, что в этом режиме каждому пикселю изображения присваивается индекс, указывающий на определенный цвет из специальной таблицы, называемой цветовой палитрой. Если изменить порядок расположения цветов в палитре, это самым драматическим образом скажется на внешнем виде изображения, представленного индексированными цветами. В индексированных палитрах не бывает более 256 цветов, однако может быть гораздо меньше. Чем меньше цветов в палитре, тем меньше битов требуется для представления цвета каждого пикселя и, следовательно, тем меньше размер файла изображения.

Индексированные цвета кодируются обычно четырьмя или восемью битами в виде так называемых цветовых таблиц. Глубина индексированного цвета может составлять 2-8 бит. Например, графическая среда Windows 95 поддерживает цветовую таблицу из восьми бит на пиксель, она называется системной палитрой (system palette). В этой таблице цвета уже предопределены, поэтому допускается использовать только их.

Мир, окружающий человека, - это вселенная цвета. Цвет имеет не только информационную, но и эмоциональную составляющую. Человеческий глаз - очень тонкий инструмент, способный различать даже едва заметные опенки цвета. Однако очень трудно пересказать другому человеку свое ощущение цвета, даже если это какой-нибудь известный или привычный цвет, скажем, цвет неба или цвет листвы.
Для многих отраслей производства, в том числе для компьютерных технологий и полиграфии, необходимы численные способы описания цвета. Эта необходимость реализуются в цветовых моделях (color models), в которых цвет представляет собой набор числовых значений для определенных координатных осей.
Все предметы, которые нас окружают, с точки зрения цвета делятся на 3 большие группы:
— Предметы излучающие свет (солнце, лампочка, монитор …)
— Предметы поглощающие и отражающие свет (Прежде всего бумага, а также все не светящиесяпредметы)
— предметы пропускаюшие свет (стекла, пленки и и тд)
Для технических нужд чаще всего используются первая и вторая группы. В силу физической специфики этих предметов для их описания используются разные цветовые модели.

Цветовая модель RGB
Многие цвета видны оттого, что в органы зрения человека попадают излучаемые тем или иным источником световые потоки (цвета на экране телевизора, монитора, кино, слайд-проектора и т. д.). У таких устройств базовым цветом, который он способен показывать даже будучи не подключенным к розетке, является черный цвет. А все остальные цвета в нем синтезируются смешением всего 3 основных цветов разной интенсивности — красного, зеленого и синего. При смешении двух основных цветов результат осветляется. При смешении красного и зеленого получается желтый, при смешении зеленого и синего получается голубой, синий и красный дают пурпурный. Если смешиваются все три цвета, в результате образуется белый. Такие цвета называются аддитивными.

Модель, в основе которой лежат указанные три цвета, носит название RGB по первым буквам английских слов Red (красный), Green (зеленый), Blue (синий). В компьютерной реализации модели RGB значение каждой составляющей принадлежит диапазону от 0 до 255

— Нулевые значения всех составляющих (0, 0, 0) соответствуют черному цвету.
— Максимальные значения всех составляющих (255, 255, 255) соответствуют белому цвету.
— При нулевом значении одной составляющей и двух максимальных обеспечиваются вторичные основные цвета - голубой, пурпурный и желтый.
— Все оттенки серого получаются тогда, когда интенсивность каждого из основных цветов одинакова. Например, 50% серый получается при установке значений red=128 green=128 blue=128
Эта модель, конечно, совсем не очевидна для фотографа, художника или дизайнера, но ее необходимо принять и разобраться в ней, потому что она является теоретической основой процессов фотографирования, сканирования и визуализации изображений на экране монитора.

Цветовая модель CMYK

В модели CMYK к отражаемым относятся цвета, которые остаются после вычитания из белого падающего светового потока на какую-либо поверхность. Такие цвета называются субтрактивными («вычитательными»), поскольку это результат вычитания основных аддитивных (например, полиграфическая краска голубого цвета поглощает красный и отражает синий и зеленый цвета).
К основным субтрактивным цветам относятся: голубой (cyan), пурпурный (magenta), желтый (yellow). Они входят в так называемую полиграфическую триаду (process colors), которая может быть представлена в виде трехмерной модели:

Диапазон каждой составляющей простирается от 0 до 100% (рис. 2.2).
При смешении двух субтрактивных составляющих результирующий цвет затемняется, а при смешении всех трех должен получиться черный цвет. При полном отсутствии краски остается белый цвет (белая бумага).

Данная модель описывает реальные полиграфические краски, которые далеко не столь совершенны, как луч света. Они не могут полностью
перекрыть весь цветовой диапазон, а это приводит, в частности, к тому, что смешение трех основных красок, которое должно давать (согласно теоретической модели) черный цвет, на самом деле дает темный цвет не очень определенного цвета (бурый).
Для исключения этого недостатка в число основных полиграфических красок была внесена черная краска, позволяющая получить глубокий черный цвет. Именно она добавила последнюю букву в название модели CMYK, хотя и не совсем обычно. С - это Cyan (голубой), М - Magenta (пурпурный), Y - Yellow (желтый), а К - это сокращение от Key color - «контурный цвет», т. е. черный цвет.

Цветовая модель HSB

Если основные цвета двух вышеописанных моделей разместить в виде единой последовательности, то получится усеченный вариант цветового круга, в котором цвета располагаются в известном порядке: красный (R), желтый (Y), зеленый (G), голубой (С), синий (В) и пурпурный (М). В цветовой модели HSB этот круг взят за основу.


— По краю этого цветового крута располагаются так называемые спектральные цвета или цветовые тоны (Hue), которые определяются длиной световой волны, отраженной от непрозрачного объекта или прошедшей через прозрачный объект. Цветовой тон характеризуется положением на цветовом круге и определяется величиной угла в диапазоне от 0 до 360 градусов. Эти цвета обладают максимальной насыщенностью.
— Насыщенность (Saturation) - это параметр цвета, определяющий его чистоту. Уменьшение насыщенности цвета означает его разбеливание. С уменьшением насыщенности цвет становится пастельным, блеклым, размытым. На модели все одинаково насыщенные цвета располагаются на концентрических окружностях, т. е. можно говорить об одинаковой насыщенности, например, зеленого и пурпурного цветов, и чем ближе центр круга, тем все более разбеленные цвета получаются. В самом центре любой цвет максимально разбеливается, проще говоря, становится белым цветом. Ось насыщенности - это радиус окружности. Диапазон значений - от 0 до 100%.
— Яркость (Brightness) - это параметр цвета, определяющий затемненность цвета. Уменьшение яркости цвета означает его зачернение. Работу с яркостью можно охарактеризовать как добавление в спектральный цвет определенного процента черной краски. Чем больше в цвете содержание черного, тем ниже яркость цвета, и тем более темным он становится. Ось яркости - это вертикаль, опущенная из центра окружности. Диапазон значений - от 0 до 100%.

В общем случае модель можно представить в форме конуса, любой цвет в модели HSB получается из спектрального цвета добавлением определенного процента белой и черной красок, т. е. фактически серой краски.

Примечание
Название модели HSB - аббревиатура от Hue, Saturation и Brightness
Важной особенностью модели HSB является наличие треугольника (на рис. выше он выделен серым цветом), в пределах которого располагаются все оттенки одного цветового тона, что соответствует привычной логике выбора цвета.

Цветовая модель Lab

Цветовая модель Lab была создана Международной комиссией по освещению (Commission Internationale de I’EcIairage - CIE) с целью преодоления существенных недостатков перечисленных моделей, в частности, она призвана стать аппаратно-независимой моделью и определять цвета без учета особенностей устройства (сканера, монитора, принтера, печатного станка и т. д.).

Что касается цветовых параметров, то в этой модели любой цвет определяется светлотой (Lightness) и двумя хроматическими компонентами: параметром «a», который изменяется в диапазоне от красного до зеленого, и параметром «b», изменяющимся в диапазоне от желтого до синего.

В данной модели так же трудно ориентироваться, как в моделях RGB и CMYK, но нужно иметь представление о ней, поскольку программа Adobe Photoshop использует ее в качестве модели-посредника при конвертировании из одной цветовой модели в другую.
Кроме того, эта модель является центральной в системе управления цветом и имеет максимально широкий цветовой охват (см ниже).
Цветовое пространство модели Lab можно условно представить в виде графика цветности ху. Все цвета, расположенные внутри и на границе «подковы», являются физически реализуемыми.

Цветовой охват

Мы видим естественный цвет в природных условиях - и представленный на экране монитора или на бумаге. Возможный диапазон видимых цветов, или цветовой охват (gamut), при этом отличается.
Самый широкий он, естественно, в природе и ограничивается, естественно, возможностями нормального человеческого зрения.

Часть из того, что существует в природе, может передать монитор (на экране нельзя точно передать, например, чистые голубой и желтый цвета).
Часть из того, что передает монитор, можно напечатать (например, при полиграфическом исполнении совсем не передаются цвета, составляющие которых имеют очень низкую плотность).
Представить цветовой охват можно на графике цветности ху (площадь «подковы» совпадает с цветовым охватом модели Lab).

Цветовая модель

Цветовая модель - термин, обозначающий абстрактную модель описания представления цветов в виде кортежей чисел, обычно из трёх или четырёх значений, называемых цветовыми компонентами или цветовыми координатами . Вместе с методом интерпретации этих данных (например, определение условий воспроизведения и/или просмотра - то есть задание способа реализации), множество цветов цветовой модели определяет цветовое пространство .

Трёхкомпонентное цветовое пространство стимулов

Человек является трихроматом - сетчатка глаза имеет 3 вида рецепторов света, ответственных за цветное зрение (см.: колбочки). Каждый вид колбочек реагирует на определённый диапазон видимого спектра . Отклик, вызываемый в колбочках светом определённого спектра, называется цветовым стимулом , при этом свет с разными спектрами может иметь один и тот же цветовой стимул и, таким образом, восприниматься человеком одинаково. Это явление называется метамерией - два излучения с разными спектрами, но одинаковыми цветовыми стимулами, будут неразличимы для человека.

Трёхмерное представление цветового пространства человека

Можно определить цветовое пространство стимулов как линейное пространство , если задать координаты x, y, z в качестве значений стимулов, соответствующих отклику колбочек длинноволнового (L), средневолнового (M) и коротковолнового (S) диапазона оптического спектра. Начало координат (S, M, L) = (0, 0, 0) будет представлять чёрный цвет. Белый цвет не будет иметь чёткой позиции в данном определении диаграммы всевозможных цветов, а будет определяться, например, через цветовую температуру , определённый баланс белого или каким-либо иным способом. Полное цветовое пространство человека имеет вид конуса в форме подковы (см. рисунок справа). Принципиально данное представление позволяет моделировать цвета любой интенсивности - начиная с нуля (чёрного цвета) до бесконечности. Однако, на практике, человеческие рецепторы могут перенасытиться или даже быть повреждены излучением с экстремальной интенсивностью, поэтому данная модель не применима для описания цвета в условиях чрезвычайно высоких интенсивностей излучений и также не рассматривает описание цвета в условиях очень низких интенсивностей (поскольку у человека задействуется иной механизм восприятия через палочки).

Являясь линейным пространством, пространство цветовых стимулов имеет свойство аддитивного смешивания - сумма двух цветовых векторов будет соответствовать цвету, равному получаемому смешением этих двух цветов (см. также: Закон Грассмана). Таким образом, можно описывать любые цвета (вектора цветового пространства) через линейную комбинацию цветов, выбранных в качестве базиса . Такие цвета называют основными (англ. primary colors ). Чаще всего в качестве основных цветов выбирают красный, зелёный и синий (модель RGB), однако возможны другие варианты базиса основых цветов. Выбор красного, зелёного и синего оптимален по ряду причин, например потому что при этом минимизируется количество точек цветового пространства, для представления которых используются отрицательные координаты, что имеет практическое значения для цветовоспроизведения (нельзя воспроизводить цвет излучением с отрицательной интенсивностью). Этот факт следует из того что пики чувствительностей L,M и S колбочек приходятся на красный, зелёный и синий части видимого спектра.

Некоторые цветовые модели используются для цветовоспроизведения , например воспроизведения цвета на экранах телевизоров и компьютеров, или цветной печати на принтерах. Используя явление метамерии, устройства цветовоспроизведения не воспроизводят оригинальный спектр изображения, а лишь имитируют стимульную составляющую этого спектра, что в идеале позволяет получить картину неотличимую человеком от оригинальной сцены.

Цветовое пространство CIE XYZ

Цветовое пространство XYZ - это эталонная цветовая модель, заданная в строгом математическом смысле организацией CIE (International Commission on Illumination - Международная комиссия по освещению) в 1931 году. Модель XYZ является мастер-моделью практически всех остальных цветовых моделей, используемых в технических областях.

Функции цветового соответствия

Являясь трихроматом, человек имеет три типа светочувствительных детекторов или, другими словами, зрение человека трёхкомпонентно . Каждый тип детекторов (колбочек) имеет различающуюся чувствительность к разным длинам волн спектра, что описывается функцией спектральной чувствительности (которая напрямую определяется видом конкретных молекул фотопсинов , используемых данным типом колбочек). Можно сказать, что глаз, как детектор, выдает три вида сигнала (нервные импульсы). С математической точки зрения, из спектра (описываемого бесконечномерным вектором) путём умножения на функции спектральной чувствительности колбочек получается трёхкомпонентный вектор, описывающий детектируемый глазом цвет. В колориметрии данные функции принято называть функциями цветового соответствия (англ. color matching functions ).

Эксперименты, проведённые Дэвидом Райтом (англ. David Wright ) и Джоном Гилдом (англ. John Guild ) в конце 1920-х и начале 1930-х годов, послужили основой для определения функций цветового соответствия. Изначально функции цветового соответствия были определены для 2-градусного поля зрения (использовался соответствующий колориметр). В 1964 году комитет CIE опубликовал дополнительные данные для 10-градусного поля зрения.

При этом в определении кривых модели XYZ заложен фактор своевольности - форма каждой кривой может быть измерена с достаточной точностью, однако кривая суммарной интенсивности (или сумма всех трёх кривых) заключает в своём определении субъективный момент, при котором реципиента просят определить, имеют ли два источника света одинаковую яркость, даже если эти источники абсолютно разного цвета. Также, имеется произвольность относительной нормировки кривых X, Y и Z, поскольку можно предложить альтернативную работающую модель, в которой кривая чувствительности X имеет двукратно усиленную амплитуду. При этом цветовое пространство будет иметь иную форму. Кривые X, Y и Z в модели CIE XYZ 1931 и 1964 были выбраны таким образом, чтобы площади поверхности под каждой кривой были равны между собой.

Хроматические координаты Yxy

На рисунке справа представлена классическая хроматическая диаграмма модели XYZ с длинами волн цветов. Значения x и y в ней соответствуют X, Y и Z согласно следующим формулам:

x = X/ (X + Y + Z ), y = Y/ (X + Y + Z ).

В математическом смысле данную хроматическую диаграмму можно представить как подобласть действительной проективной плоскости , при этом x и y будут являться проективными координатами цветов. Данное представление позволяет задавать значение цвета через светлоту Y (англ. luminance ) и две координаты x , y . Однако светлота Y в модели XYZ и Yxy - это не то же самое, что яркость Y в модели YUV или YCbCr .

Обычно диаграмма Yxy используется для иллюстрации характеристик гамутов различных устройств воспроизведения цвета - дисплеев и принтеров. Конкретный гамут обычно имеет вид треугольника, углы которого образованы точками основных , или первичных , цветов. Внутренняя область гамута описывает все цвета, которые способно воспроизвести данное устройство.

Особенности цветного зрения

Значения X , Y и Z получаются путём умножения физического спектра излучения на функции цветового соответствия. Синяя и красная часть спектра оказывают меньшее влияние на воспринимаемую яркость, что может быть продемонстрировано на примере:

red
КРАСНЫЙ
green
ЗЕЛЁНЫЙ
blue
СИНИЙ
yellow
КРАСНЫЙ
+ЗЕЛЁНЫЙ
aqua/cyan
ЗЕЛЁНЫЙ
+СИНИЙ
fuchsia/magenta
КРАСНЫЙ
+СИНИЙ
black
ЧЁРНЫЙ
white
КРАСНЫЙ
+ЗЕЛЁНЫЙ
+СИНИЙ

Для среднестатистического человека, имеющего нормальное цветовое зрение, зелёный будет восприниматься ярче синего. В то же время, хотя чистый синий цвет воспринимается как очень неяркий (если рассматривать надпись синего цвета с большого расстояния, то её цвет будет трудно отличить от чёрного), в смеси с зелёным или красным воспринимаемая яркость значительно повышается.

При определённых формах дальтонизма зелёный цвет может восприниматься эквивалентно-ярким синему, а красный как очень тёмный, либо вообще как неразличимый. Люди с дихромией - нарушением восприятия красного, например, не способны видеть красный сигнал светофора при ярком солнечном дневном свете. При дейтеранопии - нарушении восприятия зелёного, в ночных условиях зелёный сигнал светофора становится неотличимым от света уличных фонарей.

Классификация

Цветовые модели можно классифицировать по их целевой направленности:

  1. XYZ - описание восприятия; L*a*b* - то же пространство в других координатах.
  2. Аддитивные модели - рецепты получения цвета на мониторе (например, RGB).
  3. Полиграфические модели - получение цвета при использовании разных систем красок и полиграфического оборудования (например, CMYK).
  4. Модели, не связанные с физикой оборудования, являющиеся стандартом передачи информации.
  5. Математические модели, полезные для каких-либо способов цветокоррекции, но не связанные с оборудованием, например HSV .

Распространённые цветовые модели

См. также

Примечания

Ссылки

  • Алексей Шадрин, Андрей Френкель. Color Management System (CMS) в логике цветовых координатных систем. Часть I , Часть 2 , Часть 3