Tcp является. Чем отличается протокол TCP от UDP, простым языком

Транспортный протокол TCP и модель ТСР/IР

За время развития вычислительных сетей было предложено и реализовано много протоколов обмена данными, самыми удачными из которых явились семейство протоколов TCP/IP (Transmission Control Protocol/Internet Protocol – протокол управления передачей/межсетевой протокол).

ТСР/IР – это набор протоколов, состоящий из следующих компонентов:

· межсетевой протокол (Internet Protocol) , обеспечивающий адресацию в сетях (IP-адресацию);

· межсетевой протокол управления сообщениями (Internet Control Message Protocol – ICMP) , который обеспечивает низкоуровневую поддержку протокола IP, включая такие функции, как сообщения об ошибках, квитанции, содействие в маршрутизации и т. п.;

· протокол разрешения адресов (Address Resolution Protocol – ARP) , выполняющий преобразование логических сетевых адресов в аппаратные, а также обратный ему RARP (Reverse ARP);

· протокол пользовательских датаграмм (User Datagramm Protocol – UDP) ;

· протокол управления передачей (Transmission Control Protocol – TCP) .

Протокол UDP обеспечивает передачу пакетов без проверки доставки, в то время как протокол TCP требует установления виртуального канала и соответственно подтверждения доставки пакета с повтором в случае ошибки.

Этот набор протоколов образует самую распространенную модель сетевого обмена данными, получившую название – TCP/IP. Модель TCP/IP иерархическая и включает четыре уровня.

Прикладной уровень определяет способ общения пользовательских приложений. В системах "клиент-сервер" приложение-клиент должно знать, как посылать запрос, а приложение-сервер должно знать, как ответить на запрос. Этот уровень обеспечивает такие протоколы, как HTTP, FTP, Telnet.

Транспортный уровень позволяет сетевым приложениям получать сообщения по строго определенным каналам с конкретными параметрами.

На сетевом уровне определяются адреса включенных в сеть компьютеров, выделяются логические сети и подсети, реализуется маршрутизация между ними.

На канальном уровне определяется адресация физических интерфейсов сетевых устройств, например, сетевых плат. К этому уровню относятся программы управления физическими сетевыми устройствами, так называемые, драйверы.

Как уже отмечалось ранее, в сетях с коммутацией пакетов, а модель TCP/IP относится к таким, для передачи по сети сообщение (сформированное на прикладном уровне) разбивается на пакеты или датаграммы. Пакет или датаграмма – это часть сообщения с добавленным заголовком пакета или датаграммы.

На транспортном уровне к полезной информации добавляется заголовок – служебная информация. Для сетевого уровня полезной информацией является уже пакет или датаграмма транспортного уровня. К ним добавляется заголовок сетевого уровня.

Полученный блок данных называется IP-пакетом. Полезной нагрузкой для канального уровня является уже IP-пакет. Здесь перед передачей по каналу к нему добавляются собственный заголовок и еще завершитель. Получившийся блок называется кадром. Он и передается по сети.

Переданный по сети кадр в пункте назначения преобразуется в обратном порядке, проходя по уровням модели снизу вверх.

Выводы по теме

1. Протокол сетевого обмена информацией – это перечень форматов передаваемых блоков данных, а также правил их обработки и соответствующих действий.

2. Протокол обмена данными – это подробная инструкция о том, какого типа информация передается по сети, в каком порядке обрабатываются данные, а также набор правил обработки этих данных.

3. В настоящее время почти все сети в мире являются сетями коммутации пакетов.

4. Существуют два принципа организации обмена данными: установление виртуального соединения с подтверждением приема каждого пакета и передача датаграмм.

5. При виртуальном соединении пункт приема информации уведомляет отправителя о правильном или неправильном приеме каждого пакета. Виртуальным его называют потому, что в отличие от телефонного коммутированного канала обмен информацией может идти по различным физическим путям даже в процессе передачи одного сообщения.

6. При передаче датаграммы короткие пакеты пересылаются адресату без подтверждения получения каждой из них, а о получении всего сообщения целиком должна уведомить целевая программа.

7. ТСР/IР – это набор протоколов, состоящий из следующих компонентов: межсетевой протокол (IP), межсетевой протокол управления сообщениями (ICMP), протокол разрешения адресов (ARP), протокол пользовательских датаграмм (UDP) и протокол управления передачей (TCP).

Вопросы для самоконтроля

1. Что понимается под протоколом передачи данных?

2. Охарактеризуйте сети с коммутацией сообщений и коммутацией пакетов.

3. Чем отличается соединение по виртуальному каналу от передачи датаграмм?

4. Какие протоколы образуют модель TCP/IP?

5. Какие уровни входят в сетевую модель TCP/IP?

6. Дайте характеристику всех уровней модели TCP/IP и укажите соответствующие этим уровням протоколы.

7. Соотнесите по уровням модели TCP/IP понятия "пакет" и "кадр". Чем они отличаются?

8. Какой протокол обеспечивает преобразование логических сетевых адресов в аппаратные?

Протокол TCP/IP впервые был создан в начале 1970-х годов и использовался для создания сети ARPANET. Технология разрабатывалась в рамках исследовательского проекта, который был нацелен на изучение потенциальной возможности объединения компьютеров в рамках одной локальной или виртуальной сети internetwork.

Установка соединения в TCP осуществляется при помощи специальной программы-клиента, например браузера, почтовой программы или клиента для обмена сообщениями.

Структура TCP

Структура TCP/IP позволяет формировать доступ к удаленным компьютерам, а также объединять отдельные устройства для создания локальных сетей, работающих отдельно от общих. TCP является надежным протоколом передачи данных. Таким образом, вся информация, которая будет отправлена в сети, гарантировано будет получена адресатом, т.е. пользователем, которому данные предоставлялись.

Альтернативой для TCP является UDP. Важными отличиями между данными сетями является то, что TCP необходимо предварительно установить доверительное соединение между отправителем и получателем информации. После установки соединения проходит передача данных, а затем начинается процедура завершения соединения. UDP сразу же устанавливает передачу нужных пакетов информации пользователю без предварительного создания канала.

Отправка данных по TCP

После установки соединения TCP отправляет данные по созданным маршрутам в соответствии с IP-адресами отправителя и получателя информации. IP-адрес является уникальным идентификатором каждого сетевого устройства в интернете, а потому отправленный по созданному туннелю пакет не может быть потерян или ошибочно послан другому пользователю.

На физическом уровне передачи данных информация имеет вид частот, амплитуд и других форм сигнала, которые уже обрабатываются сетевой картой адресата.

За обработку информации компьютером и ее передачу другим составляющим отвечают канальные протоколы, среди которых можно упомянуть Ethernet, ATM, SLIP, IEEE 802.11. Данные каналы обеспечивают не только передачу данных, но и форму доставки адресату. Так, в сетях IEEE 802.11 передача информации осуществляется при помощи беспроводного радиосигнала. При этом сигнал подается с сетевой карты компьютера, также имеющей собственный код MAC. В случае с Ethernet вся передача данных осуществляется при помощи кабельного соединения.

Видео по теме

В современных условиях деятельность общества и цивилизации невозможна без применения средств быстрого обмена информацией. Данную проблему призваны решать глобальные компьютерные сети.

Глобальная сеть (ГКС) - это сеть, которая состоит из компьютеров, охватывающих огромные территории при неограниченном количестве включенных в данную сеть компьютерных систем. Главным условием функционирования подобных сетей является моментальная передача информации по сети независимо от удаленности передающего и принимающего компьютера.

Глобальная сеть отличается от локальной, во-первых, более низкими скоростями передачи данных. Работают глобальные сети через протоколы TCP/IP, MPLS, ATM и некоторые других. Наиболее известным из указанных является протокол TCP/IP, который включает в себя подпротоколы разных уровней: прикладной, транспортный, сетевой, физический и канальный.

На прикладном уровне работает большинство программ, обладающих собственными протоколами, которые широко известны обычным пользователям ПК (HTTP, WWW, FTP и т.д.). Данные протоколы обеспечивают визуализацию и отображение необходимой пользователю информации.

Транспортный протокол ответственен за доставку данных именно тому приложению, которое способно их обработать. Он носит название TCP.

Сетевой уровень является, фактически, принимающим при передаче информации и отправляющей запросы на более низкие уровни для получения всей информации. Носит название протокола IP.

Физический и канальный уровни ответственны за определение условий и методов передачи информации.

Наиболее известной глобальной сетью является WWW (World Wide Web), которая представляет из себя совокупность серверов, где хранится необходимая для пользователей информация, и компьютеров, которые могут как принимать с серверов информацию, так и загружать ее на них. WWW отличается удобством и простотой использования, а также низкими требованиями к скорости передачи данных. Это позволило развиться данной сети за период чуть больший, чем десятилетие.

Видео по теме

Принято именовать символьное обозначение, заменяющее числовую адресацию, основанную на IP-адресах, в сети интернет. Числовая адресация, применяемая при обработке таблиц маршрутов, идеально подходит для компьютерного использования, но представляет значительные трудности при запоминании пользователем. На помощь приходят мнемонически осмысленные доменные имена.

Установка соединений в сети интернет происходит по числовым группам в 4 значения, разделенных символом «.» и именуемым IP-адресами. Символьные имена комплекса доменных имен представляют собой службу, призванную облегчить нахождение необходимого IP-адреса в сети.Техническим показателем доменного имени выступает символ «.» в электронном адресе пользователя. Так, в адресе google.com доменным именем будет com.Само доменное имя не способно предоставить доступ к требуемому интернет-ресурсу. Процедура использования мнемонического имени состоит из двух этапов:- IP-адреса по имени в файле hosts, содержащем таблицы соответствия IP-адреса и имени компьютера;- установка соединения с удаленным веб-ресурсом по определенному IP-адресу.Главной задачей сервиса DNS является получение IP-адреса для установки соединения, что делает эту службу вспомогательной по отношению к протоколу TCP/IP.Символ "." является разделителем составляющих доменного имени, хотя для практических целей обычно принимается в качестве обозначения корневого домена, не имеющего собственного обозначения. Корень - все множество хостов интернета - подразделяется на:- первого уровня - gov, edu, com,net;- национальные домены - uk, jp, ch и т.д.;- региональные домены - msk;- корпоративные домены - домены организаций.Сохранение привычной древовидной структуры доменных имен обусловило использование устоявшейся терминологии - корень, узлы дерева, лист. Термин «хост» в данной иерархии присвоен листу, не имеющему под собой ни одного узла. Полным именем хоста становится последовательное перечисление всех промежуточных узлов между корнем и листом, разделяемых символом "." слева направо:ivan.net.abcd.ru, где ru - корень дерева, abcd - название организации, ivan - лист дерева (хост).

Видео по теме

Источники:

  • Система доменных имен Internet в 2018

В стеке протоколов TCP/IP протокол TCP (Transmission Control Protocol) работает на транспортном уровне, обеспечивая надежную транспортировку данных между прикладными процессами путем установления логического соединения.

К функциям TCP относят:

    Получение и передача потока данных от вышестоящего уровня IP-модулю;

    Обеспечение полнодуплексной передачи данных;

    Обеспечение защиты от повреждения, потери, дублирования;

    Обеспечение работы нескольких соединений;

    Управление потоком данных (с помощью механизмов окна)

Формат сообщений TCP

Единицей данных протокола TCP является сегмент. Информация, поступающая к протоколу TCP в рамках логического соединения от протоколов более высокого уровня, рассматривается протоколом TCP как неструктурированный поток байт. Поступающие данные буферизуются средствами TCP. Для передачи на сетевой уровень из буфера "вырезается" некоторая непрерывная часть данных, называемая сегментом, состоящая из заголовка и блока данных. Заголовок сегмента имеет следующие поля:

Порт источника (Source Port) и порт назначения (Destination Port) занимают 16 бит. Протокол TCP обеспечивает работу одновременно несколько соединений. Каждый прикладной процесс идентифицируется IP-адресом и номером порта.

Destination Port

Sequence number (SN)

Acknowledgment number (ASK SN)

Urgent Pointer

Порядковый номер (Sequence number) занимает 32 бита, указывает номер байта, который определяет смещение сегмента относительно потока отправляемых данных;

Подтвержденный номер (Acknowledgment number) занимает 32 бита, содержит максимальный номер байта в полученном сегменте, увеличенный на единицу; т.е все предыдущие байты были получены именно это значение используется в качестве квитанции;

Длина заголовка (Data Offset) занимает 4 бита, указывает длину заголовка сегмента TCP, измеренную в 32-битовых словах. Длина заголовка не фиксирована и может изменяться в зависимости от значений, устанавливаемых в поле Опции. Служит указателем на начало пол данных;

Резерв (Reserved) занимает 6 битов, поле зарезервировано для последующего использования. Заполняется нулями;

Кодовые биты (Control bits) занимают 6 битов, содержат служебную информацию о типе данного сегмента, задаваемую установкой в единицу соответствующих бит этого поля:

URG - срочное сообщение, используется если приложение обращается с запросом о срочной передаче данных. В этом случае протокол TCP, не ожидая заполнения буфера до уровня размера сегмента, немедленно передает указанные данные в сеть. Полученные из сети данные минуя буфер передаются процессу или приложению. Данная технология используется для передачи видео и аудио- данных;

ACK - квитанция на принятый сегмент;

PSH - запрос на отправку сообщения без ожидания заполнения буфера;

RST – сброс текущего соединения (при получении соединение ликвидируется, недопоставленные данные уничтожаются);

SYN - запрос на установление соединения;

FIN - признак достижения передающей стороной последнего байта в потоке передаваемых данных.

Окно (Windows) занимает 16 бит, содержит объявляемое значение размера окна в байтах;

Контрольная сумма (Checksum) занимает 16 бит, определяется для блока данных, состоящего из псевдозаголовка и самого сегмента данных. 96 –битный псевдозаголовок предшествует заголовку TCP и содержит IP-адрес отправителя, получателя, идентификатор протокола и сегмента.

Указатель срочности (Urgent Pointer) занимает 16 бит, используется совместно с кодовым битом URG и указывает на конец данных, которые необходимо срочно принять, несмотря на переполнение буфера;

Опции (Options) - это поле имеет переменную длину и может вообще отсутствовать, используется для решения вспомогательных задач, например, при выборе максимального размера сегмента, или передачи дайджеста MD5;

Заполнитель (Padding) может иметь переменную длину, представляет собой фиктивное поле, используемое для доведения размера заголовка до целого числа 32-битовых слов.

Порты и установление TCP-соединений

Для организации надежной передачи данных предусматривается установление логического соединения между двумя прикладными процессами. В рамках соединения осуществляется обязательное подтверждение правильности приема для всех переданных сообщений, и при необходимости выполняется повторная передача. Соединение в TCP позволяет вести передачу данных одновременно в обе стороны, то есть полнодуплексную передачу.

Соединение в протоколе TCP идентифицируется парой полных адресов обоих взаимодействующих процессов включающих IP-адрес (номер сети и номер компьютера) и номер порта. Портам присваиваются стандартные, зарезервированные номера (например, номер 21 закреплен за сервисом FTP, 23 - за TELNET), или произвольно выбранными локальными номерами.

Установление соединения выполняется в следующей последовательности:

1. Узел А посылает узлу В запрос на открытие порта, а также запрос процессу, с которым требуется установить соединение (active open).

2. Узел В открывает порт для приема данных (passive open) и возвращает квитанцию, подтверждающую прием запроса.

3. Получив квитанцию, узел А открывает порт для передачи (active port) и передает запрос к противоположной стороне.

Соединение по протоколу TCP

Предположим, что узел А устанавливает соединение с узлом В. Для этого:

    Узел A в сообщении TCP, посылаемому узлу B устанавливает флаг SYN и начальный порядковый номер ISN с которого будут нумероваться отправляемые данные.

    Для подтверждения приема сообщения, узел B откликается посылкой TCP сегмента с установленным флагом ACK. Но вследствие того, что протокол TCP обеспечивает полнодуплексную передачу, узел B может в свою очередь запросить соединение на передачу данных с узлом А посылкой флага SYN и начального порядкового номера своих сообщений ISN.

    Узел А, подтверждает получение сообщение от узла В. Так как сеанс связи можно считать установившимся, то узел А может включить свои данные, нумерация которых начинается с ISN (A)+1 в это сообщения.

    Происходит передача данных между узлами А и В.

    Сеанс обмена данными заканчивается процедурой закрытия, которая в заголовке последнего сегмента использует флаг FIN. Аварийный разрыв соединения происходит посылкой сообщение с битом RST, при этом все недопоставленные данные уничтожаются.

Концепция квитирования

В рамках соединения правильность передачи каждого сегмента должна подтверждаться квитанцией получателя. Квитирование - это один из традиционных методов обеспечения надежной связи. Идея квитирования состоит в следующем.

Для организации повторной передачи искаженных данных отправитель нумерует отправляемые кадры и ожидает от приемника положительную квитанцию - служебное сообщение, извещающее о том, что исходный кадр был получен и данные в нем оказались корректными. Существуют два подхода к организации процесса обмена квитанциями: с простоями и с организацией "окна".

Метод с простоями требует, чтобы узел, посылал очередной кадр, после получения квитанции (положительной или отрицательной) от получателя. Производительность обмена данными в этом методе незначительна, так как передающий узел и мог бы послать следующий кадр сразу же после отправки предыдущего, однако он обязан ждать прихода квитанции, что особенно заметно на низкоскоростных каналах связи, то есть в территориальных сетях.

В методе с организацией "окна" отправителю разрешается передать некоторое количество кадров в непрерывном режиме, без получения на эти кадры ответных квитанций. Количество кадров, которые возможно передать таким образом, называется размером окна W. При отправке кадра с номером 1 отправителю разрешается передать еще (W-1) кадров до получения квитанции на первый кадр. Если квитанция на кадр 1 не получена, то процесс передачи приостанавливается, и по истечению некоторого тайм-аута кадр 1 считается утерянным и передача его осуществляется снова. Выбор времени ожидания (тайм-аута) очередной квитанции является важной задачей, при которой необходимо учитывать скорость и надежность линий связи, их протяженность и т.д. В протоколе TCP при каждой передаче засекается время от момента отправки сегмента до прихода квитанции о его приеме. Получаемые значения усредняются с весовыми коэффициентами, возрастающими от предыдущего замера к последующему. В качестве тайм-аута выбирается среднее время оборота, умноженное на некоторый коэффициент.

Описанный алгоритм называется алгоритмом скользящего окна (при каждом получении квитанции окно перемещается (скользит), захватывая новые данные, которые разрешается передавать без подтверждения).

В протоколе TCP квитанцией (ASK SN) подтверждается правильный прием данных, отсутствие квитанции говорит о приеме искаженного сегмента, потере сегмента или квитанции. В качестве квитанции получатель отсылает сообщение (сегмент), в которое помещает число, на единицу превышающее максимальный номер байта в полученном сегменте. Если размер окна равен W, а последняя квитанция содержала значение n, то отправитель может посылать новые сегменты до тех пор, пока в очередной сегмент не попадет байт с номером n+W. Этот сегмент выходит за рамки окна, и передачу в таком случае необходимо приостановить до прихода следующей квитанции.

Изменяя величину окна, возможно, повлиять на загрузку сети. Чем больше окно, тем большую порцию неподтвержденных данных можно послать в сеть. Если сеть не справляется с нагрузкой, то протокол TCP, отправляя квитанцию, помещает в нее новый, уменьшенный размер окна. Если узел совсем отказывается от приема, то в квитанции указывается окно нулевого размера. После приема квитанции с нулевым значением окна отправитель время от времени делает контрольные попытки продолжить обмен данными. Если протокол-приемник уже готов принимать информацию, то в ответ на контрольный запрос он посылает квитанцию с указанием ненулевого размера окна.

Всем привет сегодня расскажу чем отличается протокол TCP от UDP. Протоколы транспортного уровня, следующие в иерархии за IP, используются для передачи данных между прикладными процессами, реализующимися в сетевых узлах. Пакет данных, поступивший от одного компьютера другому через Интернет, должен быть передан процессу-обработчику, и именно по конкретному назначению. Транспортный уровень принимает на себя ответственность за это. На этом уровне два основных протокола – TCP и UDP.

Что означают TCP и UDP

TCP – транспортный протокол передачи данных в сетях TCP/IP, предварительно устанавливающий соединение с сетью.

UDP – транспортный протокол, передающий сообщения-датаграммы без необходимости установки соединения в IP-сети.

Напоминаю, что оба протокола работают на транспортном уровне модели OSI или TCP/IP, и понимание того чем они отличаются очень важно.

Разница между протоколами TCP и UDP

Разница между протоколами TCP и UDP – в так называемой “гарантии доставки”. TCP требует отклика от клиента, которому доставлен пакет данных, подтверждения доставки, и для этого ему необходимо установленное заранее соединение. Также протокол TCP считается надежным, тогда как UDP получил даже именование “протокол ненадежных датаграмм. TCP исключает потери данных, дублирование и перемешивание пакетов, задержки. UDP все это допускает, и соединение для работы ему не требуется. Процессы, которым данные передаются по UDP, должны обходиться полученным, даже и с потерями. TCP контролирует загруженность соединения, UDP не контролирует ничего, кроме целостности полученных датаграмм.

С другой стороны, благодаря такой не избирательности и бесконтрольности, UDP доставляет пакеты данных (датаграммы) гораздо быстрее, потому для приложений, которые рассчитаны на широкую пропускную способность и быстрый обмен, UDP можно считать оптимальным протоколом. К таковым относятся сетевые и браузерные игры, а также программы просмотра потокового видео и приложения для видеосвязи (или голосовой): от потери пакета, полной или частичной, ничего не меняется, повторять запрос не обязательно, зато загрузка происходит намного быстрее. Протокол TCP, как более надежный, с успехом применяется даже в почтовых программах, позволяя контролировать не только трафик, но и длину сообщения и скорость обмена трафиком.

Давайте рассмотрим основные отличия tcp от udp.

  1. TCP гарантирует доставку пакетов данных в неизменных виде, последовательности и без потерь, UDP ничего не гарантирует.
  2. TCP нумерует пакеты при передаче, а UDP нет
  3. TCP работает в дуплексном режиме, в одном пакете можно отправлять информацию и подтверждать получение предыдущего пакета.
  4. TCP требует заранее установленного соединения, UDP соединения не требует, у него это просто поток данных.
  5. UDP обеспечивает более высокую скорость передачи данных.
  6. TCP надежнее и осуществляет контроль над процессом обмена данными.
  7. UDP предпочтительнее для программ, воспроизводящих потоковое видео, видеофонии и телефонии, сетевых игр.
  8. UPD не содержит функций восстановления данных

Примерами UDP приложений, например можно привести, передачу DNS зон, в Active Directory, там не требуется надежность. Очень часто такие вопросы любят спрашивать на собеседованиях, так, что очень важно знать tcp и udp отличия.

Заголовки TCP и UDP

Давайте рассмотрим как выглядят заголовки двух транспортных протоколов, так как и тут отличия кардинальные.

Заголовок UDP

  • 16 битный порт источника > Указание порта источника для UDP необязательно. Если это поле используется, получатель может отправить ответ этому порту.
  • 16 битный порт назначения > Номер порта назначения
  • 16 битная длина UDP > Длина сообщения, включая заголовок и данные.
  • 16 битная контрольная сумма > Контрольная сумма заголовка и данных для проверки

Заголовок TCP

  • 16 битный порт источника > Номер порта источника
  • 16 битный порт назначения > Номер порта назначения
  • 32 битный последовательный номер > Последовательный номер генерируется источником и используется назначением, чтобы переупорядочить пакеты для создания исходного сообщения и отправить подтверждение источнику.
  • 32 битный номер подтверждения > Если установлен бит АСК поля "Управление", в данном поле содержит следующий ожидаемый последовательный номер.
  • 4 бита длина заголовка > Информация о начале пакета данных.
  • резерв > Резервируются для будущего использования.
  • 16 битная контрольная сумма > Контрольная сумма заголовка и данных; по ней определяется, был ли искажен пакет.
  • 16 битный указатель срочности > В этом поле целевое устройство получает информацию о срочности данных.
  • Параметры > Необязательные значения, которые указываются при необходимости.

Размер окна позволяет экономить трафик, рассмотрим когда его значение равно 1, тут на каждый отправленный ответ, отправитель ждет подтверждения, не совсем рационально.

При размере окна 3, отправитель отправляет уже по 3 кадра, и ждет от 4, который подразумевает, что все три кадра у него есть, +1.

Надеюсь у вас теперь есть представления об отличиях tcp udp протоколов.

Протокол TCP

TCP или Transmission Control Protocol, используется как надежный протокол, обеспечивающий взаимодействие через взаимосвязанную сеть компьютеров. TCP проверяет, что данные доставляются по назначению и правильно.

TCP - это ориентированный на соединения протокол, предназначенный для обеспечения надежной передачи данных между процессами, выполняемыми или на одном и том же компьютере или на разных компьютерах. Термин "ориентированный на соединения" означает, что два процесса или приложения прежде чем обмениваться какими-либо данными должны установить TCP-соединение. В этом TCP отличается от протокола UDP, являющегося протоколом "без организации соединения", позволяющим выполнять широковещательную передачу данных неопределенному числу клиентов.

Когда приложение отправляет данные, используя TCP, они перемещаются вниз по стеку протоколов. Данные проходят по всем уровням и в конце концов передаются через сеть как поток битов. Каждый уровень в наборе протоколов TCP/IP добавляет к данным некоторую информацию в форме заголовков.

Когда пакет прибывает на конечный узел в сети, он снова проходит через все уровни снизу доверху. Каждый уровень проверяет данные, отделяя от пакета свою информацию в заголовке и наконец данные достигают серверного приложения в той же самой форме, в какой они покинули приложение-клиент:

Прежде чем рассматривать, как TCP устанавливает соединение с другим хостом TCP, приведем несколько терминов, которые необходимо определить:

Сегмент

Порция данных, которую TCP отправляет IP, называется сегментом TCP.

Дейтаграмма

Порция данных, которую IP отправляет уровню сетевого интерфейса, называется дейтаграммой IP.

Порядковый номер

Каждый сегмент TCP, отправленный через соединение, имеет назначенное ему число, которое называется "порядковым номером" (sequence number). Оно используется, чтобы гарантировать прибытие данных в правильном порядке.

Чтобы понять, как работает TCP, вкратце рассмотрим структуру заголовка TCP:

Порядковые номера и номера подтверждений используются TCP, чтобы гарантировать, что все данные прибывают в правильном порядке, а биты управления содержат разнообразные флаги, указывающие статус данных. Таких битов управления (обычно представляемых трехбуквенными сокращениями) всего шесть:

    URG - указывает, что сегмент содержит срочные данные.

    ACK - указывает, что сегмент содержит номер подтверждения.

    PSH - указывает, что данные нужно протолкнуть к получающему пользователю.

    RST - сбрасывает соединение.

    SYN - используется для синхронизации порядковых номеров.

    FIN - указывает конец данных.

Для установления соединения TCP использует процесс, называемый "трехфазным квитированием" (Three-Phase Handshake) . Как следует из названия, этот процесс включает три шага:

    Клиент инициирует взаимодействие с сервером, посылая сегмент с установленным битом SYN. Этот сегмент содержит начальный порядковый номер клиента.

    Сервер отвечает отправкой сегмента с установленными битами SYN и ACK. Этот сегмент содержит начальный порядковый номер сервера (не связанный с порядковым номером клиента) и номер подтверждения, на единицу больший порядкового номера клиента (т.е. равный следующему порядковому номеру, ожидаемому от клиента).

    Клиент должен подтвердить этот сегмент отправкой обратно сегмента с установленным битом ACK. Номер подтверждения будет на единицу больше порядкового номера сервера, а порядковый номер будет равен номеру подтверждения сервера (т. е. на единицу больше начального порядкового номера клиента).

Теперь, узнав в общих чертах, как TCP устанавливает соединения, рассмотрим немного подробнее несколько операций TCP, чтобы понять, как TCP передает данные.

TCP передает данные порциями, которые называются сегментами. Чтобы гарантировать правильное и в должном порядке получение сегментов, каждому из них назначается порядковый номер. Получатель отправляет подтверждение получения сегмента. Если подтверждение не получено до истечения интервала - тайм-аута, данные отправляются еще раз. Каждому октету (восьми битам) данных назначается порядковый номер. Порядковый номер сегмента равен порядковому номеру первого октета данных в сегменте и это число отправляется в заголовке TCP данного сегмента.

TCP использует порядковые номера, чтобы гарантировать, что дублирующие данные получающему приложению переданы не будут и данные будут доставлены в правильном порядке. Заголовок TCP содержит контрольную сумму, чтобы гарантировать корректность данных при доставке. Если получен сегмент с неверной контрольной суммой, он просто отбрасывается, и подтверждение не отправляется. Это означает, что, когда значение тайм-аута истечет, отправитель повторит передачу сегмента.

TCP управляет объемом направляемых ему данных, возвращая с каждым подтверждением "размер окна". "Окно" - это объем данных, который может принять получатель. Между прикладной программой и потоком данных в сети располагается буфер данных. "Размер окна" фактически представляет собой разность между размером буфера и объемом сохраненных в нем данных. Это число отправляется в заголовке, чтобы информировать удаленный хост о текущем размере окна. Такой прием называется "скользящим окном" ("Sliding Window") .