Схемы включения человека в сеть. Возможные схемы включения человека в электрическую сеть. Сущность шагового напряжения. Выравнивание потенциалов. Схемы включения человека в электрическую цепь

Схемы включения в цепь тока могут быть различными. Однако наиболее характерными являются схемы включения: между двумя фазами и между одной фазой и землей (рис.1). Разумеется, во втором случае предполагается наличие электрической связи между сетью и землей.

Первая схема соответствует двухфазному прикосновению, а вторая - однофазному.

Напряжение между двумя проводящими частями или между проводящей частью и землёй при одновременном прикосновении к ним человека или животного называется напряжением прикосновения (U пр ).

Двухфазное прикосновение, при прочих равных условиях, более опасно, поскольку к телу человека прикладывается наибольшее в данной сети напряжение - линейное, а ток через человека, оказываясь независимым oт схемы сети, режима нейтрали и других факторов, имеет наибольшее значение:

где
- линейное напряжение, т.e. напряжение между фазными проводами сети, В;

U ф - фазное напряжение, т.е. напряжение между началом и концом одной обмотки источника тока (трансформатора или генератора) или между фазным и нулевым проводами сети, В;

R h - сопротивление тела человека, Ом.

Рис. 6.1. Случаи прикосновения человека к токоведущим частям, находящимся под напряжением: а - двухфазное включение: б и в- однофазные включения

Случаи двухфазного прикосновения происходят очень редко и не могут служить основанием для оценки сетей по условиям безопасности. Они бывают обычно в установках до 1000 В в результате работы под напряжением, применения неисправных защитных средств, а также эксплуатации оборудования с неогражденными голыми токоведущими частями (открытые рубильники, незащищенные зажимы сварочных трансформаторов и т.п.).

Однофазное прикосновение, при прочих равных условиях, является менее опасным, чем двухфазное, поскольку ток, проходящий через человека, ограничивается влиянием многих факторов. Однако однофазное прикосновение возникает значительно чаще и является основной схемой, при которой происходит поражение людей током в сетях любого напряжения. Поэтому ниже анализируются лишь случаи однофазного прикосновения. При этом рассматриваются обе разрешенные к применению сети трехфазного тока напряжением до 1000 В: четырехпроводная с глухозаземленной нейтралью и трехпроводная с изолированной нейтралью.

6.2.4. Трехфазные сети с глухозаземленной нейтралью

В трехфазной четырехпроводной сети с глухозаземоенной нейтралью вычисление напряжения прикосновения U пр , и тока I h проходящего через человека, в случае прикосновения к одной из фаз (рис. 6.2) проще всего выполнить символическим (комплексным) методом.

Рассмотрим наиболее общий случай, когда сопротивления изоляции проводов, так же как и емкости проводов относительно земли не равны между собой, т.е.

r 1 r 2 r 3 r н ; С 1 С 2 С 3 С н ≠ 0,

где r 1 , r 2 , r 3 , r н - сопротивление изоляции фазных L и нулевого (совмещённого) PEN проводов, Ом;

C 1 , C 2 , C 3 , C н - рассредоточенные емкости фазных L и нулевого (совмещённого) PEN проводов относительно земли, Ф.

Тогда полные проводимости фазных и нулевого проводов относительно земли в комплексной форме будут:

;
;
;

где w - угловая частота, рад/с;

j - мнимая единица, равная (
).

Рис. 6.2. Прикосновение человека к фазному проводу трехфазной четырехпроводной сети с заземленной нейтралью при нормальном режиме работы: а - схема сети; б - эквивалентная схема; L 1, L 2, L 3, - фазные проводники; PEN - нулевой (совмещённый) провод.

Полные проводимости заземления нейтрали и тела человека равны соответственно

;
,

где r 0 - сопротивление заземления нейтрали, Ом.

Емкостной составляющей проводимости человека можно пренебречь ввиду ее малой величины.

При прикосновении человека к одной из фаз, например к фазному проводнику L1, напряжение, под которым он окажется, определится выражением

, (6.1)

Ток найдётся по формуле

где - комплексное напряжение фазы 1 (фазное напряжение), В;

- комплексное напряжение между нейтралью источника тока и землей (между точками 00" на эквивалентной схеме).

Пользуясь известным методом двух узлов, можно выразить следующим образом:

Имея в виду, что для симметричной трехфазной системы

;
;
,

где U ф - фазное напряжение источника (модуль), В;

а - фазовый оператор, учитывающий сдвиг фаз, где

,

будем иметь равенство

.

Подставив это значение в (6.1), получим искомое уравнение напряжения прикосновения в комплексной форме, воздействующего на человека, прикоснувшегося к фазному проводнику L1 трехфазной четырехпроводной сети с заземленной нейтралью:

. (6.2)

Ток, проходящий через человека, получим, если умножим это выражение на Y h :

. (6.3)

При нормальном режиме работы сети проводимость фазных и нулевого проводов относительно земли по сравнению с проводимостью заземления нейтрали имеет весьма малые значения и с некоторым допущением может быть приравнена к нулю, т.е.

Y 1 = Y 2 = Y 3 = Y н = 0

В этом случае уравнения (6.2) и (6.3) значительно упростятся. Так, напряжение прикосновения будет равно

,

или (в действительной форме)

, (6.4)

а ток равен

(6.5)

Согласно требованиям ПУЭ значение сопротивления r 0 не должно превышать 8 Ом, сопротивление же тела человека R h , не опускается ниже нескольких сотен ом. Следовательно, без большой ошибки в уравнениях (6.4) и (6.5), можно пренебречь значением r 0 и считать, что при прикосновении к одной из фаз трехфазной четырехпроводной сети с заземленной нейтралью человек оказывается практически под фазным напряжением U ф , и ток, проходящий через него, равен частному от деления U ф на R h .

Из уравнения (6.5) вытекает еще один вывод: ток, проходящий через человека, прикоснувшегося к фазе трехфазной четырехпроводной сети с заземленной нейтралью в период нормальной ее работы, практически не изменяется с изменением сопротивления изоляции и емкости проводов относительно земли, если сохраняется условие, что полные проводимости проводов относительно земли весьма малы по сравнению с проводимостью заземления нейтрали сети.

В этом случае существенно повышают безопасность сопротивления обуви, грунта (пола) и другие сопротивления в электрической цепи человека.

Глухое замыкание на землю в сети с глухозаземленной нейтралью мало изменяет напряжение фаз относительно земли.

При аварийном режиме, когда одна из фаз сети, например фазный проводник L3 (рис.6.3, а), замкнута на землю через относительно малое активное сопротивление r зм , а человек прикасается к фазному проводнику L1, уравнение (6.2) примет следующий вид:

.

Здесь также принимаем, что Y 1 , Y 2 и Y н малы по сравнению с Y 0 , т.е. приравнены к нулю.

Произведя соответствующие преобразования и учитывая, что

,
и
,

получим напряжение прикосновения в действительной форме

.

Для упрощения этого выражения допустим, что

.

В результате получим окончательно, что напряжение U пр равно

. (6.6)

Ток, проходящий через человека, определяется по формуле

. (6.7)

Рис. 6.3. Прикосновение человека к фазному проводу трехфазной четырехпроводной сети с заземленной нейтралью при аварийном режиме: а - схема сети; б - векторная диаграмма напряжений.

Рассмотрим два характерных случая.

    Если сопротивление замыкания проводов на землю r зм считать равным нулю, то уравнение (6.6) примет вид

.

Следовательно, в данном случае человек окажется под воздействием линейного напряжения сети.

2. Если принять равным нулю сопротивление заземления нейтрали r 0 , то из уравнения (6.6) получим, что U np = U ф , т.е. напряжение, под которым окажется человек, будет равно фазному напряжению.

Однако в практических условиях сопротивления r зм и r 0 всегда больше нуля, поэтому напряжение, под которым оказывается человек, прикоснувшийся в период аварийного режима к исправному фазному проводу трехфазной сети с заземленной нейтралью, всегда меньше линейного, но больше фазного, т.е.

> U пр > U ф . (6.8)

Это положение иллюстрируется векторной диаграммой, приведенной на рис. 6.3, б и соответствующей рассматриваемому случаю. Следует отметить, что этот вывод вытекает также из уравнения (6.6). Так, при небольших значениях r зм и r 0 по сравнению с R h , первым слагаемым в знаменателе можно пренебречь. Тогда дробь при любых соотношениях r зм и r 0 будет всегда больше единицы, но меньше
, т.е. получим выражение (6.8).

Все случаи поражения человека током в результате электрического удара - следствие прикосновения не менее чем к двум точкам электрической цепи, между которыми существует разность потенциалов. Опасность такого прикосновения во многом зависит от особенностей электрической сети и схемы включения в нее человека. Определив силу тока /ч, проходящего через человека с учетом этих факторов, можно выбрать соответствующие защитные меры для снижения опасности поражения.

Двухфазное включение человека в цепь тока (рис. 8.1, а). Оно происходит довольно редко, но более опасно по сравнению с однофазным, так как к телу прикладывается наибольшее в данной сети напряжение - линейное, а сила тока, А, проходящего через человека, не зависит от схемы сети, режима ее нейтрали и других факторов, т. е.

I = Uл/Rч = √ 3Uф/Rч,

где Uл и Uф -линейное и фазное напряжение, В; Rч - сопротивление тела человека, Ом (согласно Правилам устройства электроустановок в расчетах Rч принимают равным 1000 Ом).

Случаи двухфазного прикосновения могут произойти при работе с электрооборудованием без снятия напряжения, например, при замене сгоревшего предохранителя на вводе в здание, применении диэлектрических перчаток с разрывами резины, присоединении кабеля к незащищенным зажимам сварочного трансформатора и т. п.

Однофазное включение. На ток, проходящий через человека, влияют различные факторы, что снижает опасность поражения по сравнению с двухфазным прикосновением.

Рис. 8.1. Схемы возможного включения человека в сеть трехфазного тока:

а - двухфазное прикосновение; б- однофазное прикосновение в сети с заземленной нейтралью; в - однофазное прикосновение в сети с изолированной нейтралью

В однофазной двухпроводной сети, изолированной от земли, силу тока, А, проходящего через человека, при равенстве сопротивления изоляции проводов относительно земли r1 = r2 = r, определяют по формуле

Iч = U/(2Rч + r),

где U- напряжение сети, В; r - сопротивление изоляции, Ом.

В трехпроводной сети с изолированной нейтралью при r1 = r2 = r3 = rток пойдет от места контакта через тело человека, обувь, пол и несовершенную изоляцию к другим фазам (рис. 8.1, б). Тогда

Iч = Uф/(Ro + r/3),

где Rо - общее сопротивление, Ом; RO = Rч + Rоп + Rп; Rоб - сопротивление обуви, см: для резиновой обуви Rоб ≥ 50 000 Ом; Rn - сопротивление пола, Ом: для сухого деревянного пола, Rп = 60 000 Ом; г - сопротивление изоляции проводов, Ом (согласно ПУЭ должно быть не менее 0,5 МОм на фазу участка сети напряжением до 1000 В).

В трехфазных четырехпроводных сетях ток пойдет через человека, его обувь, пол, заземление нейтрали источника и нулевой провод (рис. 8.1, в). Сила тока, А, проходящего через человека,

Iч=Uф(Rо + Rн),

где RH - сопротивление заземления нейтрали, Ом. Пренебрегая сопротивлением RH, получим:

На предприятиях сельского хозяйства в основном применяют четырехпроводные электрические сети с глухозаземленной нейтралью напряжением до 1000 В. Их преимущество состоит в том, что посредством их можно получить два рабочих напряжения: линейное Uл = 380 В и фазное Uф = 220 В. К таким сетям не предъявляют высоких требований к качеству изоляции проводов и их применяют при большой разветвленности сети. Несколько реже используют трехпроводную сеть с изолированной нейтралью при напряжении до 1000В -более безопасную, если сопротивление изоляции проводов поддерживается на высоком уровне.

Напряжение прикосновения. Оно возникает в результате касания находящихся под напряжением электроустановок или металлических частей оборудования.

Шаговое напряжение. Это напряжение Uш на теле человека при положении ног в точках поля растекания тока с заземлителя или от упавшего на землю провода, где находятся ступни, когда человек идет в направлении заземлителя (провода) или от него (рис. 8.2).

Если одна нога находится на расстоянии х от центра заземлителя, то другая - на расстоянии х + а, где а - длина шага. Обычно в расчетах принимают а = 0,8 м.

Максимальное напряжение в этом случае возникает в точке замыкания тока на землю, а по мере удаления от нее оно снижается по закону гиперболы. Считают, что на расстоянии 20 м от места замыкания потенциал земли равен нулю.

Шаговое напряжение, В,

Рис. 8.2. Схема возникновения шагового напряжения

Даже при небольшом шаговом напряжении (50...80 В) может возникнуть непроизвольное судорожное сокращение мышц ног и, как следствие этого - падение человека на землю. При этом он одновременно касается земли руками и ногами, расстояние между которыми больше, чем длина шага, поэтому действующее напряжение увеличивается. Кроме того, в таком положении человека образуется новый путь прохождения тока, затрагивающий жизненно важные органы. При этом создается реальная угроза смертельного поражения. При уменьшении длины шага шаговое напряжение снижается. Поэтому, для того чтобы выбраться из зоны действия шагового напряжения, следует передвигаться прыжками на одной ноге или на двух сомкнутых ногах или как можно более короткими шагами (в последнем случае допустимым считают напряжение не более 40 В).

Прохождение тока через человека, является следствием его прикосновения не менее, чем к двум точкам электрической цепи, между которыми есть некоторая разность потенциалов (напряжение).

Опасность такого прикосновения неоднозначна и зависит от ряда факторов:

    схемы включения человека в электрическую цепь;

    напряжения сети;

    схемы самой сети;

    режима нейтрали сети;

    степени изоляции токоведущих частей от земли;

    ёмкости токоведущих частей относительно земли.

Классификация сетей напряжением до 1000 В

Однофазные сети

Однофазные сети разделятся на двухпроводные и однопроводные.

Двухпроводные

Двухпроводные сети делятся на изолированные от земли и с заземлённым проводом.

Изолированные от земли
С заземлённым проводом

Данные сети широко используются в народном хозяйстве, начиная с питания малым напряжением переносного инструмента и заканчивая питанием мощных однофазных потребителей.

Однопроводные

В случае однопроводной сети, роль второго провода выполняет земля, рельс и т.д.

Однофазная сеть. Однопроводная

Основное применение данные сети получили в электрифицированном транспорте (электровозы, трамваи, метро и т.д.).

Трёхфазные сети

В зависимости от режима нейтрали источника тока и наличия нейтрального или нулевого проводника могут быть выполнены по четырём схемам.

Нейтральная точка источника тока - точка, напряжения на которой относительно всех фаз одинаковы по абсолютному значению.

Нулевая точка источника тока - заземлённая нейтральная точка.

Проводник,присоединённый к нейтральной точке, называется нейтральным проводником (нейтралью), а к нулевой точке - нулевым проводником.

1. Трехпроводная сеть с изолированной нейтралью

2. Трёхпроводная сесть с заземлённой нейтралью

3. Четырёх проводная сеть с изолированной нейтралью

4. Четырёх проводная сеть с заземлённой нейтралью

При напряжении до 1000В в нашей стране используются схемы «1» и «4».

Схемы включения человека в электрическую цепь

    Двухфазное прикосновение - между двумя фазами электрической сети. Как правило, наиболее опасное т.к., имеет место быть линейное напряжение. Однако данные случаи довольно редки.

    Однофазное прикосновение - между фазой и землёй. При этом предполагается наличие электрической связи между сетью и землёй.

Подробнее о схемах включения человека в цепь см. Долин П.А. Основы техники безопасности в электроустановках.

Однофазные сети

Изолированная от земли

    Нормальный режим

Чем лучше изоляция проводов относительно земли, тем меньше опасность однофазного прикосновения к проводу.
Прикосновение человека к проводу с большим электрическим сопротивлением изоляции более опасно.

    Аварийный режим

При замыкании провода на землю, человек прикоснувшийся к исправному проводу, оказывается под напряжением, равным почти полному напряжению линии, независимо от сопротивления изоляции проводов.

С заземлённым проводом

    Прикосновение к незаземлённому проводу

В данном случае, человек оказывается практически под полным напряжением сети.

    Прикосновение к заземлённому проводу

В нормальных условиях прикосновение к заземлённому проводу практически не опасно.

    Прикосновение к заземлённому проводу. Аварийный режим работы

При коротком замыкании напряжение на заземлённом проводе может достигать опасных значений.

Трёхфазные сети

С изолированной нейтралью

    Нормальный режим

Опасность прикосновения определяется полным электрическим сопротивлением проводов относительно земли, с увеличением сопротивления, опасность прикосновения уменьшается.

    Аварийный режим

Напряжение прикосновения практически равно линейному напряжению сети. Наиболее опасный случай.

С заземлённой нейтралью

    Нормальный режим

Человек в данном случае оказывается практически под фазным напряжением сети.

    Аварийный режим

Величина напряжения прикосновения лежит между линейным и фазным напряжением, зависит от соотношения между сопротивлением замыкания на землю и сопротивлением заземления .

Меры обеспечения электробезопасности

    Исключение контакта человека с токоведущими частями.
    Релаизуется посредством расположения токоведущих частей в недосягаемых местах (на высоте, в кабельных каналах, коробах, трубах и т.д.)

    Использование малых напряжений (12, 24, 36 В).
    Например, для питания ручного инструмента в помещениях с повышенной опасностью поражения электрическим током.

    Использование двойной изоляции.
    Например, выполнение корпуса электроустановки из диэлектрика.

    Применение средств индивидуальной защиты.
    Перед применением СИЗ необходимо обязательно убедиться в их исправности, целостности, а также проверить сроки предыдущей и последующей поверки инструмента.

Основные защитные средства обеспечивают непосредственную защиту от поражения электрическим током.
Дополнительные защитные средства не могут самостоятельно обеспечить безопасность, но могут помочь при использовании основных средств.

    Контроль изоляции оборудования и сетей.
    - Выходной контроль.
    - Плановый.
    - Внеочередной и т.д.

    Защитное разделение сетей.
    Позволяет уменьшить ёмкость линий вблизи потребителей электрической энергии.

    Защитное заземление - преднамеренное электрическое соединение металлических нетоковедущих частей, могущих оказаться под напряжением, с землёй или её эквивалентом (популярно о заземлении на geektimes.ru).

В сетях до 1000 В защитное заземление применяется в сетях с изолированной нейтралью.
Принцип действия заключается в уменьшении до безопасного значения напряжения прикосновения.

Когда заземление невозможно, в целях защиты выравнивают потенциал основания на котором стоит человек и оборудования, путём повышения. Например, соединение ремонтной корзины с фазным проводником ЛЭП.

Заземлители делятся на:
a. Искусственные, предназначенные для целей заземления непосредственно.
b. Естественные, находящиеся в земле металлические предметы иного назначения, которые могут быть использованы в качестве заземлителей. Исключения по критерию взырвопожароопасности (газопроводы и т.д.).

Сопротивление заземления должно быть не более нескольких Ом. При этом со временем в результате коррозии сопротивление заземлителя возрастает. Поэтому его величина должна периодически контролироваться (зима/лето).

    Защитное зануление - преднамеренное соединение металлических нетоковедущих частей, могущих оказаться под напряжением, с многократно заземлённым нулевым защитным проводником.

Область применения - электроустановки с заземлённой нейтралью с напряжением до 1000В.

Принцип действия - превращение замыкания на корпус оборудования в однофазное короткое замыкание, с последующим отключением оборудования по превышению максимально допустимой силы тока.

Токовая защита реализуется либо с помощью автоматических выключателей, либо плавких предохранителей. Особое внимание необходимо уделить выбору толщины нулевого защитного провода, достаточной для проведения тока короткого замыкания.

    Применение УЗО (устройств защитного отключения).

Данный вид защиты срабатывает, когда токи входящий и выходящий в отслеживаемом контуре не совпадают по величине т.е., когда имеет место быть утечка тока. Например, при прикосновении человека к фазному проводу, часть тока уходит мимо основного контура в землю, что и вызывает отключение питания оборудования в контролируемом контуре. Подробнее, .

Все случаи поражения человека током в результате электрического удара — следствие прикосновения не менее чем к двум точкам электрической цепи, между которыми существует разность потенциалов. Опасность такого прикосновения во многом зависит от особенностей электрической сети и схемы включения в нее человека. Определив силу тока /ч, проходящего через человека с учетом этих факторов, можно выбрать соответствующие защитные меры для снижения опасности поражения.

Двухфазное включение человека в цепь тока (рис. 8.1, а). Оно происходит довольно редко, но более опасно по сравнению с однофазным, так как к телу прикладывается наибольшее в данной сети напряжение — линейное, а сила тока, А, проходящего через человека, не зависит от схемы сети, режима ее нейтрали и других факторов, т. е.

I = Uл/Rч = √ 3Uф/Rч,

где Uл и Uф —линейное и фазное напряжение, В; Rч — сопротивление тела человека, Ом (согласно Правилам устройства электроустановок в расчетах Rч принимают равным 1000 Ом).

Случаи двухфазного прикосновения могут произойти при работе с электрооборудованием без снятия напряжения, например, при замене сгоревшего предохранителя на вводе в здание, применении диэлектрических перчаток с разрывами резины, присоединении кабеля к незащищенным зажимам сварочного трансформатора и т. п.

Однофазное включение. На ток, проходящий через человека, влияют различные факторы, что снижает опасность поражения по сравнению с двухфазным прикосновением.


Рис. 8.1. Схемы возможного включения человека в сеть трехфазного тока:

а — двухфазное прикосновение; б— однофазное прикосновение в сети с заземленной нейтралью; в — однофазное прикосновение в сети с изолированной нейтралью

В однофазной двухпроводной сети, изолированной от земли, силу тока, А, проходящего через человека, при равенстве сопротивления изоляции проводов относительно земли r1 = r2 = r, определяют по формуле

Iч = U/(2Rч + r),

где U— напряжение сети, В; r — сопротивление изоляции, Ом.

В трехпроводной сети с изолированной нейтралью при r1 = r2 = r3 = rток пойдет от места контакта через тело человека, обувь, пол и несовершенную изоляцию к другим фазам (рис. 8.1, б). Тогда

Iч = Uф/(Ro + r/3),

где Rо — общее сопротивление, Ом; RO = Rч + Rоп + Rп; Rоб — сопротивление обуви, см: для резиновой обуви Rоб ≥ 50 000 Ом; Rn — сопротивление пола, Ом: для сухого деревянного пола, Rп = 60 000 Ом; г — сопротивление изоляции проводов, Ом (согласно ПУЭ должно быть не менее 0,5 МОм на фазу участка сети напряжением до 1000 В).

В трехфазных четырехпроводных сетях ток пойдет через человека, его обувь, пол, заземление нейтрали источника и нулевой провод (рис. 8.1, в). Сила тока, А, проходящего через человека,

Iч=Uф(Rо + Rн),

где RH — сопротивление заземления нейтрали, Ом. Пренебрегая сопротивлением RH, получим:

На предприятиях сельского хозяйства в основном применяют четырехпроводные электрические сети с глухозаземленной нейтралью напряжением до 1000 В. Их преимущество состоит в том, что посредством их можно получить два рабочих напряжения: линейное Uл = 380 В и фазное Uф = 220 В. К таким сетям не предъявляют высоких требований к качеству изоляции проводов и их применяют при большой разветвленности сети. Несколько реже используют трехпроводную сеть с изолированной нейтралью при напряжении до 1000В —более безопасную, если сопротивление изоляции проводов поддерживается на высоком уровне.

Напряжение прикосновения. Оно возникает в результате касания находящихся под напряжением электроустановок или металлических частей оборудования.

Если электрический ток течет через стержневой заземлитель, погруженный в землю так, что его верхний конец расположен на уровне земли, то напряжение прикосновения, В,


где I3 — сила тока замыкания на землю, А; ρ — удельное сопротивление основания (грунта, пола и т. д.), на котором находится человек, Ом*м; l и d — длина и диаметр заземлителя, м; х — расстояние от человека до центра заземлителя, м; а — коэффициент напряжения прикосновения.

α = Rч/(Rч + Rоб + Rn) = Rч/Rо.

Пренебрегая сопротивлением обуви (когда она мокрая или при ее отсутствии), можно записать для следующих случаев:

ступни ног удалены одна относительно другой на расстоянии шага

α=1/(1 + 1,5ρ/Rч);

ступни ног находятся рядом

α=1/(1 + 2ρ/Rч).

Шаговое напряжение. Это напряжение Uш на теле человека при положении ног в точках поля растекания тока с заземлителя или от упавшего на землю провода, где находятся ступни, когда человек идет в направлении заземлителя (провода) или от него (рис. 8.2).

Если одна нога находится на расстоянии х от центра заземлителя, то другая — на расстоянии х + а, где а — длина шага. Обычно в расчетах принимают а = 0,8 м.

Максимальное напряжение в этом случае возникает в точке замыкания тока на землю, а по мере удаления от нее оно снижается по закону гиперболы. Считают, что на расстоянии 20 м от места замыкания потенциал земли равен нулю.

Анализ условий электробезопасности

Анализ условий электробезопасности заключается в определении величины тока через тело человека (I h) для конкретного случая.

Сравнивая полученные расчетным путем величины тока через тело человека с величиной условно безопасного тока (10мА) делают вывод об опасности данного случая. Если величина тока через тело человека превышает величину условно-безопасного тока - случай считают опасным. Если нет - не опасным. Так как человек в большинстве случаев пользуется сетью до 1000В, а эти сети, как правило, имеют небольшую протяженность, емкостью фазных проводов относительно земли можно пренебречь, считая, что сопротивление изоляции проводов (R из) относительно земли чисто активным.

Определить величину тока через тело человека можно так:

I h = U пр / R h

Сложность расчета заключается в нахождении напряжения прикосновения (U пр). Для нахождения этой величины прибегают к такому приему: определяют путь тока через тело человека, из которого и находят источник напряжения и сопротивления, через которые протекает ток.

Наиболее характерным бывают две схемы включения: между двумя проводами и между одним проводом и землей.

Применительно к сетям переменного тока первую схему обычно называют двухфазным включением, а вторую однофазным.

9.1.1. Двухфазное включение

Двухфазное включение, как правило, более опасно, поскольку к телу человека прикладывается наибольшее в данной сети напряжение – линейное, и поэтому через тело человека пойдет большой ток (рисунок. 9.1.).

Рисунок 9.1. Двухфазное включение человека в сеть.

где, I h – ток через тело человека

U пр - напряжение прикосновения

Для сети 380/220

Ток опасный для жизни человека

9.1.2. Однофазное включение.

Однофазное включение происходит значительно чаще, но является менее опасным, т.к. напряжение под которым оказывается человек не превышает фазного. Кроме того, на значение тока через тело человека влияет также режим нейтрали источника тока, сопротивление изоляции проводов относительно земли, сопротивление пола, на котором стоит человек, сопротивление обуви человека и другие факторы.

9.1.2.1. Однофазная сеть.

Рисунок 9.3. Схема включения

Рисунок 9.4. Схема замещения

Ток через тело человека можно найти как:

Из выражения можно сделать выводы:



1. Чем больше сопротивление изоляции относительно земли, тем меньше опасность однофазного прикосновения к проводу

2. Прикосновение человека к проводу с большим сопротивлением изоляции более опасно, т.к. напряжение прикосновение будет больше.

9.1 1.2. Трехфазная трехпроводная сеть с изолированной нейтралью:

Рассмотрим два режима сети:

а) Нормальный режим работы (сопротивление изоляции имеют большое (нормированное) значение.

Рисунок 9.5. Однофазное включение в 3 х фазную сеть

с изолированной нейтралью

При равенстве сопротивлений изоляцииR из1 =R из2 =R из3 , величина тока через тело человека определяется выражением

В таких сетях опасность для человека, прикоснувшегося к проводу, при нормальном состоянии сети, зависит от сопротивления изоляции. Чем оно больше, тем меньше опасность. Поэтому, очень важно в таких сетях обеспечивать высокое сопротивление изоляции и контролировать ее состояние для своевременного выявления и устранения возникших неисправностей.

Согласно ПЭУ сопротивление изоляции проводов относительно земли в установках до 1000В не должно быть менее 500к.

б) При аварийном режиме - замыкание одной из фаз на землю через малое сопротивление замыкания - R зм.(рисунок 9.6.)

Рисунок 9.6 Аварийный режим в сети

Обычно R зм лежит в пределах от 50 до 200Ом.

Ток через тело человека, как и в нормальном режиме будет протекать и через сопротивления изоляции проводов относительно земли, но его величина будет значительно меньше, чем ток, протекающий через малое сопротивление замыкания. Поэтому величиной тока, протекающего через сопротивление изоляции, можно пренебречь и считать, что ток протекает только через сопротивление замыкания и тело человека.

Это очень опасно.

9.1.2.3. Трехфазная трехпроводная сеть с глухозаземленной нейтралью:

Глухозаземленной называется нейтраль трансформатора или генератора присоединенная к заземляющему устройству непосредственно или через малое сопротивление (например, трансформатор тока).

а) Нормальный режим работы

Рисунок 9.7.

Сопротивление заземления нейтрали R о нормируется в зависимости от максимального напряжения сети.

При U л =660В, R о =2Ом, при U л =380В, R о =4Ом, при U л =220В, R о =8Ом

Током, протекающим через тело человека и сопротивлением изоляции проводов можно пренебречь, по сравнению с током, протекающим через тело человека и малое сопротивление заземления нейтрали. Величина этого тока определяется из выражения:

Из выражения видно, что в сети с глухозаземленной нейтралью в период нормальной работы сети прикосновение к одному из проводов более опасно, чем прикосновение к проводу нормально работающей сети с изолированной нетралью.

б) При аварийном режиме работы - когда одна из фаз сети замкнута на землю через малое сопротивление R зм (рисунок 9.8.).

Рисунок 9.8.

Если провести анализ этого случая, то можно сделать следующие выводы:

2. Если принять R о равным 0, то человек окажется под фазным напряжением.

В реальных условиях R зм и R о всегда больше нуля, следовательно, человек, касаясь провода в аварийном режиме сети, попадает под напряжение меньше линейного, но больше фазного.