Решение систем с помощью симплекс методом. Двойственный симплексный метод

Необходимо решить задачу линейного программирования.

Целевая функция:

2x 1 +5x 2 +3x 3 +8x 4 →min

Ограничивающие условия:

3x 1 +6x 2 -4x 3 +x 4 ≤12
4x 1 -13x 2 +10x 3 +5x 4 ≥6
3x 1 +7x 2 +x 3 ≥1

Приведем систему ограничений к каноническому виду, для этого необходимо перейти от неравенств к равенствам, с добавлением дополнительных переменных.

Так как наша задача - задача минимизации, то нам необходимо преобразовать ее к задаче на поиск максимума. Для этого изменим знаки коэффициентов целевой функции на противоположные. Элементы первого неравенства записываем без изменений, добавив в него дополнительную переменную x 5 и изменив знак "≤" на "=". Т. к. второе и третье неравенства имеют знаки "≥" необходимо поменять знаки их коэффициентов на противоположные и внести в них дополнительные переменные x 6 и x 7 соответственно. В результате получем эквивалентную задачу:

3x 1 +6x 2 -4x 3 +x 4 +x 5 =12
-4x 1 +13x 2 -10x 3 -5x 4 +x 6 =-6
-3x 1 -7x 2 -x 3 +x 7 =-1

Переходим к формированию исходной симплекс таблицы. В строку F таблицы заносятся коэффициенты целевой функции с противоположным знаком.

Своб член

F
X5
X6
X7

В составленой нами таблице имеются отрицательные элементы в столбце свободных членов, находим среди них максимальный по модулю - это элемент: -6, он задает ведущую строку - X6. В этой строке так же находим максимальный по модулю отрицательный элемент: -10 он находится в столбце X3 который будет ведущим столбцом. Переменная в ведущей строке исключается из базиса, а переменная соответсвующая ведущему столцу включается в базис. Пересчитаем симплекс-таблицу:
X1 X2 X6 X4 Своб член
F 0.8 8.9 0.3 6.5 -1.8
X5 4.6 0.8 -0.4 3 14.4
X3 0.4 -1.3 -0.1 0.5 0.6
X7 -2.6 -8.3 -0.1 0.5 -0.4

В составленой нами таблице имеются отрицательные элементы в столбце свободных членов, находим среди них максимальный по модулю - это элемент: -0.4, он задает ведущую строку - X7. В этой строке так же находим максимальный по модулю отрицательный элемент: -8.3 он находится в столбце X2 который будет ведущим столбцом. Переменная в ведущей строке исключается из базиса, а переменная соответсвующая ведущему столцу включается в базис. Пересчитаем симплекс-таблицу:
X1 X7 X6 X4 Своб член
F -1.988 1.072 0.193 7.036 -2.229
X5 4.349 0.096 -0.41 3.048 14.361
X3 0.807 -0.157 -0.084 0.422 0.663
X2 0.313 -0.12 0.012 -0.06 0.048

Так как в столбце свободных членов нет отрицательных элементов, то найдено допустимое решение.В строке F имеются отрицательные элементы, это означает что полученое решение не оптимально. Определим ведущий столбец. Для этого найдем в строке F максимальный по модулю отрицательный элемент - это -1.988 Ведущей строкой будет та для которой отношение свободного члена к соответствующему элементу ведущего столбца минимально. Ведущей строкой является X2, а ведущий элемент: 0.313.

X2 X7 X6 X4 Своб член
F 6.351 0.31 0.269 6.655 -1.924
X5 -13.895 1.763 -0.577 3.882 13.694
X3 -2.578 0.152 -0.115 0.577 0.539
X1 3.195 -0.383 0.038 -0.192 0.153

Так как в строке F нет отрицательных элементов, то найдено оптимальное решение. Так как исходной задачей был поиск минимума, то оптимальным решением будет свободный член строки F, взятый с противоположным знаком. F=1.924
при значениях переменных равных: x 3 =0.539, x 1 =0.153. Переменные x 2 и x 4 не входят в базис, поэтому x 2 =0 x 4 =0.

Если в условии задачи есть ограничения со знаком ≥, то их можно привести к виду ∑a ji b j , умножив обе части неравенства на -1. Введем m дополнительных переменных x n+j ≥0(j =1,m ) и преобразуем ограничения к виду равенств

(2)

Предположим, что все исходные переменные задачи x 1 , x 2 ,..., x n – небазисные. Тогда дополнительные переменные будут базисными, и частное решение системы ограничений имеет вид

x 1 = x 2 = ... = x n = 0, x n+ j = b j , j =1,m . (3)

Так как при этом значение функции цели F 0 = 0 , можно представить F(x) следующим образом:

F(x)=∑c i x i +F 0 =0 (4)

Начальная симплекс-таблица (симплекс-табл. 1) составляется на основании уравнений (2) и (4). Если перед дополнительными переменными x n+j стоит знак «+», как в (2), то все коэффициенты перед переменными x i и свободный член b j заносятся в симплекс-таблицу без изменения. Коэффициенты функции цели при ее максимизации заносятся в нижнюю строку симплекс-таблицы с противоположными знаками. Свободные члены в симплекс-таблице определяют решение задачи.

Алгоритм решения задачи следующий:

1-й шаг. Просматриваются элементы столбца свободных членов. Если все они положительные, то допустимое базисное решение найдено и следует перейти к шагу 5 алгоритма, соответствующему нахождению оптимального решения. Если в начальной симплекс-таблице есть отрицательные свободные члены, то решение не является допустимым и следует перейти к шагу 2.

2-й шаг. Для нахождения допустимого решения осуществляется , при этом нужно решать, какую из небазисных переменных включить в базис и какую переменную вывести из базиса.

Таблица 1.

x n
базисные переменные Свободные члены в ограничениях Небазисные переменные
x 1 x 2 ... x l ...
x n+1 b 1 a 11 a 12 ... a 1l ... a 1n
x n+2 b 2 a 21 a 22 ... a 2l ... a 2n
. . . . . . . .
. . . . . . . .
. . . . . . . .
x n+r b2 a r1 a r2 ... a rl ... a rn
. . . . . . . .
. . . . . . . .
. . . . . . . .
x n+m b m a m1 a m2 ... a ml ... a mn
F(x) max F 0 -c 1 -c 2 ... -c 1 ... -c n

Для этого выбирают любой из отрицательных элементов столбца свободных членов (пусть это будет b 2 ведущим, или разрешающим. Если в строке с отрицательным свободным членом нет отрицательных элементов, то система ограничений несовместна и задача не имеет решения.

Одновременно из БП исключается та переменная, которая первой изменит знак при увеличении выбранной НП x l . Это будет x n+r , индекс r которой определяется из условия

т.е. та переменная, которой соответствует наименьшее отношение свободного члена к элементу выбранного ведущего столбца. Это отношение называется симплексным отношением. Следует рассматривать только положительные симплексные отношения.

Строка, соответствующая переменной x n+r , называется ведущей, или разрешающей. Элемент симплекс-таблицы a rl , стоящий на пересечении ведущей строки и ведущего столбца, называется ведущим, или разрешающим элементом. Нахождением ведущего элемента заканчивается работа с каждой очередной симплекс-таблицей.

3-й шаг. Рассчитывается новая симплекс-таблица, элементы которой пересчитываются из элементов симплекс-таблицы предыдущего шага и помечаются штрихом, т.е. b" j , a" ji , c" i , F" 0 . Пересчет элементов производится по следующим формулам:

Сначала в новой симплекс-таблице заполнятся строка и столбец, которые в предыдущей симплекс-таблице были ведущими. Выражение (5) означает, что элемент a" rl на месте ведущего равен обратной величине элемента предыдущей симплекс-таблицы. Элементы строки a ri делятся на ведущий элемент, а элементы столбца a jl также делятся на ведущий элемент, но берутся с противоположным знаком. Элементы b" r и c" l рассчитываются по тому же принципу.

Остальные формулы легко записать с помощью .

Прямоугольник строится по старой симплекс-таблице таким образом, что одну из его диагоналей образует пересчитываемый (a ji) и ведущий (a rl) элементы (рис. 1). Вторая диагональ определяется однозначно. Для нахождения нового элемента a" ji из элемента a ji вычитается (на это указывает знак « – » у клетки) произведение элементов противоположной диагонали, деленное на ведущий элемент. Аналогично пересчитываются элементы b" j , (j≠r) и c" i , (i≠l).

4-й шаг. Анализ новой симплекс-таблицы начинается с 1-го шага алгоритма. Действие продолжается, пока не будет найдено допустимое базисное решение, т.е. все элементы столбца свободных членов должны быть положительными.

5-й шаг. Считаем, что допустимое базисное решение найдено. Просматриваем коэффициенты строки функции цели F(x) . Признаком оптимальности симплекс-таблицы является неотрицательность коэффициентов при небазисных переменных в F-строке.

Рис. 1. Правило прямоугольника

Если среди коэффициентов F-строки имеются отрицательные (за исключением свободного члена), то нужно переходить к другому базисному решению. При максимизации функции цели в базис включается та из небазисных переменных (например x l), столбцу которой соответствует максимальное абсолютное значение отрицательного коэффициента c l в нижней строке симплекс-таблицы. Это позволяет выбрать ту переменную, увеличение которой приводит к улучшению функции цели. Столбец, соответствующий переменной x l , называется ведущим. Одновременно из базиса исключается та переменная x n+r , индекс r которой определяется минимальным симплексным отношением:

Строка, соответствующая x n+r , называется ведущей , а элемент симплекс-таблицы a rl , стоящий на пересечении ведущей строки и ведущего столбца, называется ведущим элементом.

6-й шаг. по правилам, изложенным на 3-м шаге. Процедура продолжается до тех пор, пока не будет найдено оптимальное решение или сделан вывод, что оно не существует.

Если в процессе оптимизации решения в ведущем столбце все элементы неположительные, то ведущую строку выбрать невозможно. В этом случае функция в области допустимых решений задачи не ограничена сверху и F max ->&∞.

Если же на очередном шаге поиска экстремума одна из базисных переменных становится равной нулю, то соответствующее базисное решение называется вырожденным. При этом возникает так называемое зацикливание, характеризующееся тем, что с определенной частотой начинает повторяться одинаковая комбинация БП (значение функции F при этом сохраняется) и невозможно перейти к новому допустимому базисному решению. Зацикливание является одним из основных недостатков симплекс-метода, но встречается сравнительно редко. На практике в таких случаях обычно отказываются от ввода в базис той переменной, столбцу которой соответствует максимальное абсолютное значение отрицательного коэффициента в функции цели, и производят случайный выбор нового базисного решения.

Пример 1. Решить задачу

max{F(x) = -2x 1 + 5x 2 | 2x 1 + x 2 ≤7; x 1 + 4x 2 ≥8; x 2 ≤4; x 1,2 ≥0}

Симплексным методом и дать геометрическую интерпретацию процесса решения.

Графическая интерпретация решения задачи представлена на рис. 2. Максимальное значение функции цели достигается в вершине ОДЗП с координатами . Решим задачу с помощью симплекс-таблиц. Умножим второе ограничение на (-1) и введём дополнительные переменные, чтобы неравенства привести к виду равенств, тогда

Исходные переменные x 1 и x 2 принимаем в качестве небазисных, а дополнительные x 3 , x 4 и x 5 считаем базисными и составляем симплекс-таблицу(симплекс-табл. 2). Решение, соответствующее симплекс-табл. 2, не является допустимым; ведущий элемент обведен контуром и выбран в соответствии с шагом 2 приведенного ранее алгоритма. Следующая симплекс-табл. 3 определяет допустимое базисное решение, ему соответствует вершина ОДЗП на рис. 2 Ведущий элемент обведен контуром и выбран в соответствии с 5-м шагом алгоритма решения задачи. Табл. 4 соответствует оптимальному решению задачи, следовательно: x 1 = x 5 = 0; x 2 = 4; x 3 = 3; x 4 = 8; F max = 20.

Рис. 2. Графическое решение задачи


. Алгоритм симплекс-метода

Пример 5.1. Решить следующую задачу линейного программирования симплекс-методом:

Решение:

I итерация:

х3 , х4 , х5 , х6 х1 ,х2 . Выразим базисные переменные через свободные:

Приведем целевую функциюк следующему виду:

На основе полученной задачи сформируем исходную симплекс-таблицу:

Таблица 5.3

Исходная симплекс-таблица

Оценочные отношения

Согласно определению базисного решения свободные переменные равны нулю, а значения базисных переменных – соответствующим значениям свободных чисел, т.е.:

3 этап: проверка совместности системы ограничений ЗЛП.

На данной итерации (в таблице 5.3) признак несовместности системы ограничений (признак 1) не выявлен (т.е. нет строки с отрицательным свободным числом (кроме строки целевой функции), в которой не было бы хотя бы одного отрицательного элемента (т.е. отрицательного коэффициента при свободной переменной)).

На данной итерации (в таблице 5.3) признак неограниченности целевой функции (признак 2) не выявлен (т.е. нет колонки с отрицательным элементом в строке целевой функции (кроме колонки свободных чисел), в которой не было бы хотя бы одного положительного элемента).

Так как найденное базисное решение не содержит отрицательных компонент, то оно является допустимым.

6 этап: проверка оптимальности.

Найденное базисное решение не является оптимальным, так как согласно признаку оптимальности (признак 4) в строке целевой функции не должно быть отрицательных элементов (свободное число данной строки при рассмотрении данного признака не учитывается). Следовательно, согласно алгоритму симплекс-метода переходим к 8 этапу.

Так как найденное базисное решение допустимое, то поиск разрешающей колонки будем производить по следующей схеме: определяем колонки с отрицательными элементами в строке целевой функции (кроме колонки свободных чисел). Согласно таблице 5.3, таких колонок две: колонка «х1 » и колонка «х2 ». Из таких колонок выбирается та, которая содержит наименьший элемент в строке целевой функции. Она и будет разрешающей. Колонка «х2 » содержит наименьший элемент (–3) в сравнении с колонкой «х1

Для определения разрешающей строки находим положительные оценочные отношения свободных чисел к элементам разрешающей колонки, строка, которой соответствует наименьшее положительное оценочное отношение, принимается в качестве разрешенной.

Таблица 5.4

Исходная симплекс-таблица

В таблице 5.4 наименьшее положительное оценочное отношение соответствует строке «х5 », следовательно, она будет разрешающей.

Элемент, расположенный на пересечение разрешающей колонки и разрешающей строки, принимается в качестве разрешающего. В нашем примере – это элемент , который расположен на пересечении строки «х5 » и колонки «х2 ».

Разрешающий элемент показывает одну базисную и одну свободную переменные, которые необходимо поменять местами в симплекс-таблице, для перехода к новому «улучшенному» базисному решению. В данном случае это переменные х5 и х2 , в новой симплекс-таблице (таблице 5.5) их меняем местами.

9.1. Преобразование разрешающего элемента.

Разрешающий элемент таблицы 5.4 преобразовывается следующим образом:

Полученный результат вписываем в аналогичную клетку таблицы 5.5.

9.2. Преобразование разрешающей строки.

Элементы разрешающей строки таблицы 5.4 делим на разрешающий элемент данной симплекс-таблицы, результаты вписываются в аналогичные ячейки новой симплекс-таблицы (таблицы 5.5). Преобразования элементов разрешающей строки приведены в таблице 5.5.

9.3. Преобразование разрешающей колонки.

Элементы разрешающей колонки таблицы 5.4 делим на разрешающий элемент данной симплекс-таблицы, а результат берется с обратным знаком. Полученные результаты вписываются в аналогичные ячейки новой симплекс-таблицы (таблицы 5.5). Преобразования элементов разрешающей колонки приведены в таблице 5.5.

9.4. Преобразование остальных элементов симплекс-таблицы.

Преобразование остальных элементов симплекс-таблицы (т.е. элементов не расположенных в разрешающей строке и разрешающей колонке) осуществляется по правилу «прямоугольника».

К примеру, рассмотрим преобразование элемента, расположенного на пересечении строки «х3 » и колонки «», условно обозначим его «х3 ». В таблице 5.4 мысленно вычерчиваем прямоугольник, одна вершина которого располагается в клетке, значение которой преобразуем (т.е. в клетке «х3 »), а другая (диагональная вершина) – в клетке с разрешающим элементом. Две другие вершины (второй диагонали) определяются однозначно. Тогда преобразованное значение клетки «х3 » будет равно прежнему значению данной клетки минус дробь, в знаменателе которой разрешающий элемент (из таблицы 5.4), а в числителе произведение двух других неиспользованных вершин, т.е.:

«х3 »: .

Аналогично преобразуются значения других клеток:

«х3 х1 »: ;

«х4 »: ;

«х4 х1 »: ;

«х6 »: ;

«х6 х1 »: ;

«»: ;

«х1 »: .

В результате данных преобразований получили новую симплекс- таблицу (таблица 5.5).

II итерация:

1 этап: составление симплекс-таблицы.

Таблица 5.5

Симплекс-таблица II итерации

Оценочные

отношения

2 этап: определение базисного решения.

В результате проведенных симплекс-преобразований получили новое базисное решение (таблица 5.5):

Как видно, при данном базисном решении значение целевой функции =15, что больше чем при предыдущем базисном решении.

Не совместность системы ограничений в соответствии с признаком 1 в таблице 5.5 не выявлена.

4 этап: проверка ограниченности целевой функции.

Неограниченность целевой функции в соответствии с признаком 2 в таблице 5.5 не выявлена.

5 этап: проверка допустимости найденного базисного решения.

Найденное базисное решение в соответствии с признаком 4 не оптимальное, так как в строке целевой функции симплекс-таблицы (таблица 5.5) содержится отрицательный элемент: –2 (свободное число данной строки при рассмотрении данного признака не учитывается). Следовательно, переходим к 8 этапу.

8 этап: определение разрешающего элемента.

8.1. Определение разрешающей колонки.

Найденное базисное решение допустимое, определяем колонки с отрицательными элементами в строке целевой функции (кроме колонки свободных чисел). Согласно таблице 5.5, такой колонкой является только одна колонка: «х1 ». Следовательно, ее принимаем в качестве разрешенной.

8.2. Определение разрешающей строки.

Согласно полученным значениям положительных оценочных отношений в таблице 5.6, минимальным является отношение, соответствующее строке «х3 ». Следовательно, ее принимаем в качестве разрешенной.

Таблица 5.6

Симплекс-таблица II итерации

Оценочные

отношения

3/1=3 – min

9 этап: преобразование симплекс-таблицы.

Преобразования симплекс-таблицы (таблицы 5.6) выполняются аналогично, как и в предыдущей итерации. Результаты преобразований элементов симплекс-таблицы приведены в таблице 5.7.

III итерация

По результатам симплекс-преобразований предыдущей итерации составляем новую симплекс-таблицу:

Таблица 5.7

Симплекс-таблица III итерации

Оценочные

отношения

2 этап: определение базисного решения.

В результате проведенных симплекс-преобразований получили новое базисное решение (таблица 5.7):

3 этап: проверка совместности системы ограничений.

Не совместность системы ограничений в соответствии с признаком 1 в таблице 5.7 не выявлена.

4 этап: проверка ограниченности целевой функции.

Неограниченность целевой функции в соответствии с признаком 2 в таблице 5.7 не выявлена.

5 этап: проверка допустимости найденного базисного решения.

Найденное базисное решение в соответствии с признаком 3 допустимое, так как не содержит отрицательных компонент.

6 этап: проверка оптимальности найденного базисного решения.

Найденное базисное решение в соответствии с признаком 4 не оптимальное, так как в строке целевой функции симплекс-таблицы (таблица 5.7) содержится отрицательный элемент: –3 (свободное число данной строки при рассмотрении данного признака не учитывается). Следовательно, переходим к 8 этапу.

8 этап: определение разрешающего элемента.

8.1. Определение разрешающей колонки.

Найденное базисное решение допустимое, определяем колонки с отрицательными элементами в строке целевой функции (кроме колонки свободных чисел). Согласно таблице 5.7, такой колонкой является только одна колонка: «х5 ». Следовательно, ее принимаем в качестве разрешенной.

8.2. Определение разрешающей строки.

Согласно полученным значениям положительных оценочных отношений в таблице 5.8, минимальным является отношение, соответствующее строке «х4 ». Следовательно, ее принимаем в качестве разрешенной.

Таблица 5.8

Симплекс-таблица III итерации

Оценочные

отношения

5/5=1 – min

9 этап: преобразование симплекс-таблицы.

Преобразования симплекс-таблицы (таблицы 5.8) выполняются аналогично, как и в предыдущей итерации. Результаты преобразований элементов симплекс-таблицы приведены в таблице 5.9.

IV итерация

1 этап: построение новой симплекс-таблицы.

По результатам симплекс-преобразований предыдущей итерации составляем новую симплекс-таблицу:

Таблица 5.9

Симплекс-таблица IV итерации

Оценочные

отношения

–(–3/5)=3/5

–(1/5)=–1/5

–(9/5)=–9/5

–(–3/5)=3/5

2 этап: определение базисного решения.

В результате проведенных симплекс-преобразований получили новое базисное решение, согласно таблице 5.9 решение следующее:

3 этап: проверка совместности системы ограничений.

Не совместность системы ограничений в соответствии с признаком 1 в таблице 5.9 не выявлена.

4 этап: проверка ограниченности целевой функции.

Неограниченность целевой функции в соответствии с признаком 2 в таблице 5.9 не выявлена.

5 этап: проверка допустимости найденного базисного решения.

Найденное базисное решение в соответствии с признаком 3 допустимое, так как не содержит отрицательных компонент.

6 этап: проверка оптимальности найденного базисного решения.

Найденное базисное решение в соответствии с признаком 4 оптимальное, так как в строке целевой функции симплекс-таблицы (таблица 5.9) нет отрицательных элементов (свободное число данной строки при рассмотрении данного признака не учитывается).

7 этап: проверка альтернативности решения.

Найденное решение является единственным, так как в строке целевой функции (таблица 5.9) нет нулевых элементов (свободное число данной строки при рассмотрении данного признака не учитывается).

Ответ: оптимальное значение целевой функции рассматриваемой задачи =24, которое достигается при.

Пример 5.2. Решить вышеприведенную задачу линейного программирования при условии, что целевая функция минимизируется:

Решение:

I итерация:

1 этап: формирование исходной симплекс-таблицы.

Исходная задача линейного программирования задана в стандартной форме. Приведем ее к каноническому виду путем введения в каждое из ограничений-неравенств дополнительной неотрицательной переменной, т.е.

В полученной системе уравнений примем в качестве разрешенных (базисных) переменные х3 , х4 , х5 , х6 , тогда свободными переменными будут х1 ,х2 . Выразим базисные переменные через свободные.

Рассмотрим симплекс -метод для решения задач линейного программирования (ЛП). Он основан на переходе от одного опорного плана к другому, при котором значение целевой функции возрастает.

Алгоритм симплекс-метода следующий:

  1. Исходную задачу переводим в канонический вид путем введения дополнительных переменных. Для неравенства вида ≤ дополнительные переменные вводят со знаком (+ ), если же вида ≥ то со знаком (— ). В целевую функцию дополнительные переменные вводят с соответствующими знаками с коэффициентом, равным 0 , т.к. целевая функция не должна при этом менять свой экономический смысл.
  2. Выписываются вектора P i из коэффициентов при переменных и столбца свободных членов. Этим действием определяется количество единичных векторов. Правило – единичных векторов должно быть столько, сколько неравенств в системе ограничений.
  3. После этого исходные данные вводятся в симплекс-таблицу. В базис вносятся единичные вектора, и исключая их из базиса, находят оптимальное решение . Коэффициенты целевой функции записывают с противоположным знаком.
  4. Признак оптимальности для задачи ЛП – решение оптимально, если в f – строке все коэффициенты положительны. Правило нахождения разрешающего столбца – просматривается f – строка и среди ее отрицательных элементов выбирается наименьшее. Вектор P i его содержащий становится разрешающим. Правило выбора разрешающего элемента – составляются отношения положительных элементов разрешающего столбца к элементам вектора Р 0 и то число, которое дает наименьшее отношение становится разрешающим элементом, относительно которого будет произведен пересчет симплекс-таблицы. Строка, содержащая этот элемент называется разрешающей строкой. Если в разрешающем столбце нет положительных элементов, то задача не имеет решения. После определения разрешающего элемента переходят к пересчету новой симплекс – таблицы.
  5. Правила заполнения новой симплекс – таблицы. На месте разрешающего элемента проставляют единицу, а другие элементы полагают равными 0 . Разрешающий вектор вносят в базис, из которого исключают соответствующий нулевой вектор, а остальные базисные вектора записывают без изменений. Элементы разрешающей строки делят на разрешающий элемент, а остальные элементы пересчитывают по правилу прямоугольников.
  6. Так поступают до тех пор, пока в f – строке все элементы не станут положительными.

Рассмотрим решение задачи с использованием рассмотренного выше алгоритма.
Дано:

Приводим задачу к каноническому виду:

Составляем вектора:

Заполняем симплекс – таблицу:

:
Пересчитаем первый элемент вектора Р 0 , для чего составляем прямоугольник из чисел: и получаем: .

Аналогичные расчеты выполним для всех остальных элементов симплекс – таблицы:

В полученном плане f – строка содержит один отрицательный элемент – (-5/3), вектора P 1 . Он содержит в своем столбце единственный положительный элемент, который и будет разрешающим элементом. Сделаем пересчет таблицы относительно этого элемента:

Отсутствие отрицательных элементов в f – строке означает, что найден оптимальный план :
F* = 36/5, Х = (12/5, 14/5, 8, 0, 0).

  • Ашманов С. А. Линейное программирование, М: Наука, 1998г.,
  • Вентцель Е.С. Исследование операций, М: Советское радио, 2001г.,
  • Кузнецов Ю.Н., Кузубов В.И., Волошенко А.Б. Математическое программирование, М: Высшая школа, 1986г.

Решение линейного программирования на заказ

Заказать любые задания по этой дисциплине можно у нас на сайте. Прикрепить файлы и указать сроки можно на

Для изготовления трех видов рубашек используются нитки, пуговицы и ткань. Запасы ниток, пуговиц и ткани, нормы их расхода на пошив одной рубашки указаны в таблице. Найти максимальную прибыль и оптимальный план выпуска изделий ее обеспечивающий (найти ).

рубашка 1 рубашка 2 рубашка 3 Запасы нитки (м.) 1 9 3 96 пуговицы (шт.) 20 10 30 640 ткань ( 1 2 2 44 Прибыль (р.) 2 5 4

Решение задачи

Построение модели

Через и количество рубашек 1-го, 2-го и 3-го вида, предназначенных к выпуску.

Тогда ограничения на ресурсы будут иметь следующий вид:

Кроме того, по смыслу задачи

Целевая функция, выражающая получаемую прибыль:

Получаем следующую задачу линейного программирования:

Приведение задачи линейного программирования к каноническому виду

Приведем задачу к каноническому виду. Введем дополнительные переменные. В целевую функцию все дополнительные переменные введем с коэффициентом, равным нулю. Дополнительные переменные прибавим к левым частям ограничений, не имеющих предпочтительного вида, и получим равенства.

Решение задачи симплекс-методом

Заполняем симплексную таблицу:

Так как мы решаем задачу на максимум – наличие в индексной строке отрицательных чисел при решении задачи на максимум свидетельствует о том, что нами оптимальное решение не получено и что от таблицы 0-й итерации необходимо перейти к следующей.

Переход к следующей итерации осуществляем следующим образом:

ведущий столбец соответствует

Ключевая строка определяется по минимуму соотношений свободных членов и членов ведущего столбца (симплексных отношений):

На пересечении ключевого столбца и ключевой строки находим разрешающий элемент, т.е. 9.

Теперь приступаем к составлению 1-й итерации: Вместо единичного вектора вводим вектор .

В новой таблице на месте разрешающего элемента пишем 1, все остальные элементы ключевого столбца –нули. Элементы ключевой строки делятся на разрешающий элемент. Все остальные элементы таблицы вычисляются по правилу прямоугольника.

Ключевой столбец для 1-й итерации соответствует

Разрешающим элементов является число 4/3. Вектор выводим из базиса и вводим вместо него вектор . Получаем таблицу 2-й итерации.

Ключевой столбец для 2-й итерации соответствует

Находим ключевую строку, для этого определяем:

Разрешающим элементов является число 10/3. Вектор выводим из базиса и вводим вместо него вектор . Получаем таблицу 3-й итерации.

БП c Б A o x 1 x 2 x 3 x 4 x 5 x 6 Симплексные 2 5 4 0 0 0 отношения 0 x 4 0 96 1 9 3 1 0 0 32/3 x 5 0 640 20 10 30 0 1 0 64 x 6 0 44 1 2 2 0 0 1 22 F j - c j 0 -2 -5 -4 0 0 0 1 x 2 5 32/3 1/9 1 1/3 1/9 0 0 32 x 5 0 1600/3 170/9 0 80/3 -10/9 1 0 20 x 6 0 68/3 7/9 0 4/3 -2/9 0 1 17 F j - c j 160/3 -13/9 0 -7/3 5/9 0 0 2 x 2 5 5 -1/12 1 0 1/6 0 -1/4 -- x 5 0 80 10/3 0 0 10/3 1 -20 24 x 3 4 17 7/12 0 1 -1/6 0 3/4 204/7 F j - c j 93 -1/12 0 0 1/6 0 7/4 3 x 2 5 7 0 1 0 1/4 1/40 -3/4 x 1 2 24 1 0 0 1 3/10 -6 x 3 4 3 0 0 1 -3/4 -7/40 17/4 F j - c j 95 0 0 0 1/4 1/40 5/4

В индексной строке все члены неотрицательные, поэтому получен следующее решение задачи линейного программирования (выписываем из столбца свободных членов):

Необходимо шить 24 рубашки 1-го вида, 7 рубашек 2-го вида и 3 рубашки 3-го вида. При этом получаемая прибыль будет максимальна и составит 95 руб.

Помощь в решении ваших задач по этому предмету вы можете найти, отправив сообщение в ВКонтакте , на Viber или заполнив форму . Стоимость решения домашней работы начинается от 7 бел.руб. за задачу (200 рос.руб.), но не менее 10 бел.руб. (300 рос.руб.) за весь заказ. Подробное оформление. Стоимость помощи на экзамене онлайн (в этом случае необходима 100% предоплата) - от 30 бел.руб. (1000 рос.руб.) за решение билета.