Предел последовательности. Теорема Штольца и ее применение. Пределы функций. Примеры решений

Зарождение и создание теории действительного числа

3 Становление теории предела

Строгая математическое построение понятия вещественного числа стала возможной благодаря теории предела.

Человек, получивший современное математическое образование с трудом представляет себе дифференциальное и интегральное исчисление без аппарата теории предела. Однако, исторически производная появилась раньше предела. Причины такого явления в объясняются насущной потребностью естествознания в XVII веке методах дифференциального и интегрального исчисления.

В XVII идеи связанные с инфинитезимальными методами начали бурно развиваться. Здесь стоит отметить таких математиков как Декарт, Ферма, Паскаль, Торричелли, Кавальери, Роберваль, Барроу. Метод квадратур, разработанный в античности, нашел широкое применение и развитие. Исследовался вопрос касательных -- было дано определение, более общее чем античное, были построены методы отыскания касательных. Были сделаны попытки ввести производную. Было даже установлено, что задача о нахождении касательной обратна к задаче о квадратуре.

Несмотря на отсутствие строгости «...математики достигали все большего мастерства в обращении с понятиями, лежащими в основе исчисления бесконечно малых».

Методы бесконечно малых завоевывают популярность у математиков и все больше используются и совершенствуются. Интегральное и дифференциальное исчисление постепенно оформляется и обобщается трудами таких ученых как Ньютон(1643-1727) и Лейбниц(1646-1716). Так, Ньютон установил связь между производной и интегралом, предложил новый метод решения уравнений при помощи производной. Он разработал метод флюксий, который связал производную с мгновенной скоростью и ускорением. При помощи этого метода он разрабатывал интегральное и дифференциальное исчисление. Также Ньютон предложил алгоритм для нахождения производной функции, основанный на ранней форме теории пределов. Основой и мощным средством метода флюксий было разложение функций в ряды, правда без должного обоснования их сходимости.

Лейбницу мы обязаны большим количеством удобных и красивых обозначений в интегральном и дифференциальном исчислении. К своим результатам Лейбниц пришел независимо от Ньютона. Пользуясь знаниями из комбинаторики он разработал формальный метод вычисления интегралов. Лейбниц ввел понятие дифференциала определив его через касательные, нашел некоторые правила нахождения дифференциала сложной функции, а также ввёл дифференциалы высших порядков. Также Лейбницем были разработаны методы поиска точек экстремума и точек перегиба. Сильной стороной теории Лейбница, с точки зрения практических вычислений, была алгоритмичность и формальность.

И Ньютон, и Лейбниц решили множество практически важных задач, пользуюясь понятиями бесконечно малых величин, их точки зрения на производную и интеграл отличались друг от друга. Так Ньютон для решения дифференциальных задач использует метод флюксий, а Лейбниц дифференциалы. Ньютон рассматривает интегрирование как задачу обратную дифференцированию(в наших понятиях, отыскание первообразной), а Лейбниц рассматривает интеграл как сумму площадей бесконечно малых прямоугольников. Вполне естесственно, что две эти концепции были конкурирующими друг другу.

Ньютон и Лейбниц, используя в своих выкладках бесконечно малые, не могли объяснить их природу, потому что не представляли себе малой величины и конечной и отличной от 0. Оба ученные близко подошли к понятию предела, но «..узкая концепция числа, не допускавшая отождествления некоторых отношений с числами, была отчасти причиной того, что ни в ньютоновской, ни в лейбницевой теориях не могло "прорезаться" понятие предела». Математики пользовались интуитивными и геометрическими соображениями. Функции понимались как кривые, полученные некоторым движением(так же как их рассматривали древние греки). «Первые создатели анализа и их последователи принимали как нечто само собой разумеющееся справедливость двух основным представлений о пространстве и механическом движени». Вероятно по этой причине связь между непрерывность и дифференцируемость долгое время считались почти синонимами.

Однако метод бесконечно малых доказал свою плодотворность и нужность математике, от этого проблема фундамента для интегрального и дифференциального исчисления становилась еще более острой. Споры были не только среди математиков; жестким нападкам подвергалась вся математика, например, со стороны богослова Д. Беркли. Это состояние математики XVII-XVII получило название второго кризиса математики.

Вслед за Ньютоном и Лейбницем попытки определить понятие бесконечно малой предпринимались Эйлером, Даламбером и Лагранжем. Эти попытки нельзя назвать бесполезными, этими работами укрепилось в матетике понятие функций, что сыграло свою роль дальнейшие поиски теории предела. Однако построить связанную и логически обоснованую теорию не получилось.

Таким образом к XIX веку в математике сложилась парадоксальная ситуация. Налицо были несомненные успехи математических наук в естествознании, разработана методика обращения с рядами, дифференцирования и интегрирования, решены многие важные задачи, но понимния на чем основан математический анализ не было. Необходимость разобраться с фундаметом новой математики стала всеобщей и насущной.

Построением стройной и строгой теории бесконечно малых мы обязаны Огюстену Луи Коши(1789-1857). Следует признать, что Коши был не первым математиком, кто пришел к этой идее, но, исторически, его работы сыграли в развитии математического анализа ключевую роль. Коши дал общее определение предела в описательной форме: «Если значения, последовательно приписываемые одной и той же переменной, неограниченно приближаются к фиксированному значению, так что в конце концов отличаются от него сколь угодно мало, то последнее называют пределом всех остальных»Цитата взята из . С точки зрения этого определения стало понтным что такое бесконечно малая величина -- это всего лишь величина, имеющая предел равный 0, затем Коши определил понятие производной и показал связь этого определения с дифференциалами Лейбница. Также он построил первую строгую теорию интегрирования и доказал связь интегрирования и дифференцирования.

Переоценить вклад Коши в математику трудно. Его работами открывалась новая эпоха в математике, «...начинается так называемая "арифметизация" всей математики». Благодаря работам Коши математический анализ прочно и заслуженно занял в математике одно из главных мест. Методы Коши получили всеобщее распрастранение, применялись оттачивались весь XIX век. Идеи и методы Коши плодотворно пользуются и обобщаются современными математиками и сегодня.

Аксиоматический метод

Исторический процесс развития взглядов на существо математики как науки привел к формированию фундаментальной концепции аксиоматического метода и понятия аксиоматической теории. Суть их состоит в следующем...

Дифференциальные свойства гиперболических функций

Теорема 1. Если существуют причем для всех из некоторой проколотой окрестности точки выполняется условие, то в точке существует предел сложной функции и справедливо Согласно определению предела, функции и определены соответственно в и...

Жизнь и научная деятельность Андрея Николаевича Колмогорова

Когда в 1920 году Андрей Колмогоров стал думать о поступлении в институт, перед ним возник вечный вопрос: чему себя посвятить, какому делу? Время было голодное и тревожное. Юноше хотелось получить не только знания, но и профессию, ремесло...

Линейное программирование

Каждый человек ежедневно, не всегда осознавая это, решает проблему получения наибольшего эффекта, при затрате ограниченных средств. К сожалению, наши средства и ресурсы всегда ограничены, приходится действовать очень обдуманно, ответственно...

Математика в современном мире

Создание дедуктивного или аксиоматического метода построения науки является одним из величайших достижений математической мысли. Оно потребовало работы многих поколений ученых...

Математические методы и модели в решении задач по экономике

Найти решение игры заданной матрицей: Нижняя цена игры: Верхняя цена игры: Матрица игры имеет седловую точку V = 4. Из систем уравнений: Таким образом...

Понятие предела - фундаментальное понятие математического анализа. Геометрический смысл понятия предела: известно, что неравенство < е задает часть числовой оси, лежащую между точками a - е и a + е...

Предел последовательности. Теорема Штольца и ее применение

Теорема 1. Сходящаяся последовательность имеет единственный предел. Доказательство. Пусть последовательность xn сходится. Предположим, что её предел не является единственным, то есть что одновременно верны равенства: xn = b иxn = c, где bc...

Предел последовательности. Теорема Штольца и ее применение

Предел последовательности. Теорема Штольца и ее применение

числовой последовательность предел штольц Пример 1. Доказать, что = . Решение. Рассмотрим последовательность an = -. Имеем an = =. Поскольку an = - бесконечно малая последовательность. Это означает, что = . Ответ: = . Пример 2. Вычислить предел. Решение...

Предел последовательности. Теорема Штольца и ее применение

Нам знакомы приложения теории пределов в геометрии. Например, площадь круга, объем цилиндра, конуса и шара были определены, а затем и вычислены как соответствующие пределы. Укажем другой способ использования понятия предела в решении задач...

Применение методов дискретной математики в экономике

Различные определения интеграла Римана и их сравнения

Разбиением множества Mпринято называть совокупность его подмножествсо свойствами: 1) ; 2) . В дальнейшем роль множества Mу нас будет играть промежуток, а разбиения мы будем рассматривать только некоторого специального типа. А именно...

Теория вероятности

Суммой двух событий А и В называется событие АВ (А+В), заключающееся в том, что произойдет хотя бы одно из событий А или В (либо событие А, либо событие В либо А и В одновременно)...

Теория нумераций

Представляется желательным, чтобы все исследования в теории алгоритмов и ее приложениях проводились на основе «общего знаменателя» - класса всех частично рекурсивных функций...

Энциклопедичный YouTube

  • 1 / 5

    Интуитивное понятие о предельном переходе использовалось еще учеными Древней Греции при вычислении площадей и объемов раз­личных геометрических фигур. Методы решения таких задач в основном были развиты Архимедом .

    При создании дифференциального и инте­грального исчислений математики XVII века (и, прежде всего, Нью­тон) также явно или неявно использовали понятие предельного перехода. Впервые определение понятия предела было введено в работе Валлиса «Арифметика бесконечных величин» (XVII век), однако истори­чески это понятие не лежало в основе дифференциального и интеграль­ного исчислений.

    С помощью теории пределов во второй половине XIX века было, в частности, обосновано использование в анализе бесконеч­ных рядов, которые явились удобным аппаратом для построения новых функций.

    Предел последовательности

    Основная статья: Предел последовательности

    Число a {\displaystyle a} называется пределом последовательности a n = { x 1 , x 2 , . . . , x n } {\displaystyle a_{n}=\{x_{1},x_{2},...,x_{n}\}} , если ϵ > 0 {\displaystyle \epsilon >0} , ∃ {\displaystyle \exists } N (ϵ) {\displaystyle N(\epsilon)} , ∀ {\displaystyle \forall } n > N (ϵ) {\displaystyle n>N(\epsilon)} : | a n − a | < ϵ {\displaystyle |a_{n}-a|<\epsilon } . Предел последовательности обозначается lim n → + ∞ a n {\displaystyle \lim _{n\to +\infty }a_{n}} . Куда именно стремится n {\displaystyle n} , можно не указывать, поскольку n {\displaystyle n} ∈ N {\displaystyle \in \mathbb {N} } , оно может стремиться только к + ∞ {\displaystyle +\infty } .

    Свойства:

    • Если предел последовательности существует, то он единственный.
    • lim c = c {\displaystyle \lim c=c} , c − c o n s t {\displaystyle ,c-const}
    • lim (x n + y n) = lim x n + lim y n {\displaystyle \lim(x_{n}+y_{n})=\lim x_{n}+\lim y_{n}}
    • lim (q x n) = q lim x n {\displaystyle \lim(qx_{n})=q\lim x_{n}} , q − c o n s t {\displaystyle ,q-const}
    • lim (x n y n) = lim x n lim y n {\displaystyle \lim(x_{n}y_{n})=\lim x_{n}\lim y_{n}} (если оба предела существуют)
    • lim (x n / y n) = lim x n / lim y n {\displaystyle \lim(x_{n}/y_{n})=\lim x_{n}/\lim y_{n}} (если оба предела существуют и знаменатель правой части не ноль)
    • Если a n > x n > b n ∀ n {\displaystyle a_{n}>x_{n}>b_{n}\forall n} и lim a n = lim b n {\displaystyle \lim a_{n}=\lim b_{n}} , то lim x n = lim a n = lim b n {\displaystyle \lim x_{n}=\lim a_{n}=\lim b_{n}} (теорема «о зажатой последовательности», также известная, как «теорема о двух милиционерах»)

    Предел функции

    Основная статья: Предел функции

    Число b называется пределом функции f(x) в точке a, если ∀ ϵ > 0 {\displaystyle \forall \epsilon >0} существует δ > 0 {\displaystyle \delta >0} , такое что ∀ x , 0 < | x − a | < δ {\displaystyle \forall x,0<|x-a|<\delta } выполняется | f (x) − b | < ϵ {\displaystyle |f(x)-b|<\epsilon } .

    Для пределов функций справедливы аналогичные свойства, как и для пределов последовательностей, например, lim x → x 0 (f (x) + g (x)) = lim x → x 0 f (x) + lim x → x 0 g (x) {\displaystyle \lim _{x\to x_{0}}(f(x)+g(x))=\lim _{x\to x_{0}}f(x)+\lim _{x\to x_{0}}g(x)} , если все члены существуют.

    Обобщенное понятие предела последовательности

    Пусть X {\displaystyle X} - некоторое множество, в котором определено понятие окрестности U {\displaystyle U} (например, метрическое пространство). Пусть x i ∈ X {\displaystyle x_{i}\in X} - последовательность точек (элементов) этого пространства. Говорят, что x ∈ X {\displaystyle x\in X} есть предел этой последовательности, если в любой окрестности точки x {\displaystyle x} лежат почти все члены последовательности то есть ∀ U (x) ∃ n ∀ i > n x i ∈ U (x) {\displaystyle \forall U(x)\exists n\forall i>nx_{i}\in U(x)}

    Теория пределов - один из разделов математического анализа, который одним под силу освоить, другие с трудом вычисляют пределы. Вопрос нахождения пределов является достаточно общим, поскольку существуют десятки приемов решения пределов различных видов. Одни и те же предела можно найти как по правилу Лопиталя, так и без него. Бывает, что расписание в ряд бесконечно малых функций позволяет быстро получить нужный результат. Существуют набор приемов и хитростей, позволяющих найти предел функции любой сложности. В данной статье попробуем разобраться в основных типах пределов, которые наиболее часто встречаются на практике. Теорию и определение предела мы здесь давать не будем, в интернете множество ресурсов где это разжевано. Поэтому займемся практическим вычислениям, именно здесь у Вас и начинается "не знаю! Не умею! Нас не учили!"

    Вычисление пределов методом подстановки

    Пример 1. Найти предел функции
    Lim((x^2-3*x)/(2*x+5),x=3).

    Решение: Такого сорта примеры по теории вычисляют обычной подстановкой

    Предел равен 18/11.
    Ничего сложного и мудрого в таких пределах нет - подставили значение, вычислили, записали предел в ответ. Однако на базе таких пределов всех приучают, что прежде всего нужно подставить значение в функцию. Далее пределы усложняют, вводят понятие бесконечности, неопределенности и тому подобные.

    Предел с неопределенностью типа бесконечность разделить на бесконечность. Методы раскрытия неопределенности

    Пример 2. Найти предел функции
    Lim((x^2+2x)/(4x^2+3x-4),x=infinity).
    Решение: Задан предел вида полином разделить на полином, причем переменная стремится к бесконечности

    Простая подстановка значения к которому следует переменная найти пределов не поможет, получаем неопределенность вида бесконечность разделить на бесконечность.
    Пот теории пределов алгоритм вычисления предела заключается в нахождении наибольшего степени "икс" в числителе или знаменателе. Далее на него упрощают числитель и знаменатель и находят предел функции

    Поскольку значение стремятся к нулю при переменной к бесконечности то ими пренебрегают, или записывают в конечный выражение в виде нулей

    Сразу из практики можно получить два вывода которые являются подсказкой в вычислениях. Если переменная стремится к бесконечности и степень числителя больше от степени знаменателя то предел равен бесконечности. В противном случае, если полином в знаменателе старшего порядка чем в числителе предел равен нулю.
    Формулами предел можно записать так

    Если имеем функцию вида обычный поленом без дробей то ее предел равен бесконечности

    Следующий тип пределов касается поведения функций возле нуля.

    Пример 3. Найти предел функции
    Lim((x^2+3x-5)/(x^2+x+2), x=0).
    Решение: Здесь уже выносить старший множитель полинома не требуется. С точностью до наоборот, необходимо найти наименьший степень числителя и знаменателя и вычислить предел

    Значение x^2; x стремятся к нулю когда переменная стремится к нулю Поэтому ими пренебрегают, таким образом получим

    что предел равен 2,5.

    Теперь Вы знаете как найти предел функции вида полином разделить на полином если переменная стремится к бесконечности или 0. Но это лишь небольшая и легкая часть примеров. Из следующего материала Вы научитесь как раскрывать неопределенности пределов функции .

    Предел с неопределенностью типа 0/0 и методы его вычислений

    Сразу все вспоминают правило согласно которому делить на ноль нельзя. Однако теория пределов в этом контексте подразумеваем бесконечно малые функции.
    Рассмотрим для наглядности несколько примеров.

    Пример 4. Найти предел функции
    Lim((3x^2+10x+7)/(x+1), x=-1).

    Решение: При подстановке в знаменатель значения переменной x = -1 получим ноль, то же самое получим в числителе. Итак имеем неопределенность вида 0/0.
    Бороться с такой неопределенностью просто: нужно разложить полином на множители, а точнее выделить множитель, который превращает функцию в ноль.

    После разложения предел функции можно записать в виде

    Вот и вся методика вычисления предела функции. Так же поступаем если есть предел вида многочлен разделить на многочлен.

    Пример 5. Найти предел функции
    Lim((2x^2-7x+6)/(3x^2-x-10), x=2).

    Решение: Прямая подстановка показывает
    2*4-7*2+6=0;
    3*4-2-10=0

    что имеем неопределенность типа 0/0 .
    Разделим полиномы на множитель которій вносит особенность


    Есть преподаватели которые учат, что полиномы 2 порядка то есть вида "квадратные уравнения" следует решать через дискриминант. Но реальная практика показывает что это дольше и запутаннее, поэтому избавляйтесь особенности в пределах по указанному алгоритму. Таким образом записываем функцию в виде простых множителей и вічисляем в предел

    Как видите, ничего сложного в исчислении таких пределов нет. Делить многочлены Вы на момент изучения пределов умеете, по крайней мере согласно программе должны уже пройти.
    Среди задач на неопределенность типа 0/0 встречаются такие в которых нужно применять формулы сокращенного умножения. Но если Вы их не знаете, то делением многочлена на одночлен можно получить нужную формулу.

    Пример 6. Найти предел функции
    Lim((x^2-9)/(x-3), x=3).
    Решение: Имеем неопределенность типа 0/0 . В числителе применяем формулу сокращенного умножения

    и вычисляем нужній предел

    Метод раскрытия неопределенности умножением на сопряженное

    Метод применяют к пределам в которіхнеопределенность порождают иррациональные функции. Числитель или знаменатель превращается в точке вычисления в ноль и неизвестно как найти границу.

    Пример 7. Найти предел функции
    Lim((sqrt(x+2)-sqrt(7x-10))/(3x-6), x=2).
    Решение:
    Представим переменную в формулу предела

    При подстановки получим неопределенность типа 0/0.
    Согласно теории пределов схема обхода данной особенности заключается в умножении иррационального выражения на сопряженное. Чтобы выражение не изменилось знаменатель нужно разделить на такое же значение

    По правилу разности квадратов упрощаем числитель и вычисляем предел функции

    Упрощаем слагаемые, создающие особенность в пределе и выполняем подстановку

    Пример 8. Найти предел функции
    Lim((sqrt(x-2)-sqrt(2x-5))/(3-x), x=3).
    Решение: Прямая подстановка показывает что предел имеет особенность вида 0/0.

    Для раскрытия умножаем и делим на сопряженное к числителю

    Записываем разницу квадратов

    Упрощаем слагаемые которые вносят особенность и находим предел функции

    Пример 9. Найти предел функции
    Lim((x^2+x-6)/(sqrt(3x-2)-2), x=2).
    Решение: Подставим двойку в формулу

    Получим неопределенность 0/0 .
    Знаменатель нужно умножить на сопряженный выражение, а в числителе решить квадратное уравнение или разложить на множители, учитывая особенность. Поскольку известно, что 2 является корнем, то второй корень находим по теореме Виета

    Таким образом числитель запишем в виде

    и подставим в предел

    Сведя разницу квадратов избавляемся особенности в числителе и знаменателе

    Приведенным образом можно избавиться особенности во многих примерах, а применение надо замечать везде где заданная разница корней превращается в ноль при подстановке. Другие типы пределов касаются показательных функций, бесконечно малых функций, логарифмов, особых пределов и других методик. Но об этом Вы сможете прочитать в перечисленных ниже статьях о пределах.

    В этой главе изучается операция предельного перехода - основная операция математического анализа. Сначала рассмотрим предел функции натурального аргумента, поскольку все основные результаты теории пределов отчетливо видны в этой простой ситуации. Затем рассмотрим предел в точке функции действительной переменной.

    2.1 Предел последовательности

    2.1.1 Определение и примеры

    Определение 2.1. Функцияf: N → X , областью определения которой является множество натуральных чисел, называется последовательностью.

    Значения f(n), n N, называются членами последовательности. Их принято обозначать символом элемента того множества, в которое происходит отображение, снабжая символ соответствующим индексом (аргументом функции f): xn = f(n). Элемент xn называется n-м членом последовательности. В связи с этим последовательность часто обозначают символом {xn } или {xn }+ n=1 ∞ , а также записывают в виде x1 , x2 , . . . , xn , . . . .

    В дальнейшем в этой главе будем рассматривать только последовательность f: N → R действительных чисел.

    Определение 2.2. Интервал, содержащий точкуa R, называют окрестностью этой точки. Интервал(a − δ, a + δ) ,δ > 0 , называют δ -окрестностью точкиa и обозначаютU a (δ) илиV a (δ) (часто пишут короче:U a илиV a ).

    Определение 2.3. Числоa R называют пределом числовой последовательности{x n } , если для любой окрестности точкиa существует номерN N такой, что все элементыx n последовательности, номера которых большеN, содержатся вU a . При этом пишут

    n lim→∞ xn = aили lim xn = aили xn → aпри n → ∞.

    В логической символике определение 2.3 имеет вид:

    a R. a = lim xn Ua N = N(Ua ) N: n > N xn Ua .

    Поскольку Ua (ε) = (a − ε, a + ε) = {x R: |x − a| < ε}, то часто употребляют следующую равносильную формулировку определения2.3

    Определение 2.4. Числоa называют пределом числовой последовательности{x n } , если для любого положительного числаε найдется номерN = N(ε) такой, что все члены последовательности с номерамиn > N удовлетворяют неравенству|x n − a| < ε .

    Соответственно, в логической символике это определение имеет вид: a R, a = lim xn ε > 0 N = N(ε) N: n > N |xn − a| < ε

    Замечание. Первые члены последовательности не влияют на существование и величину предела в случае его существования.

    Иногда полезна следующая геометрическая интерпретация определения 2.3 предела последовательности:

    Число a называется пределом последовательности{x n } , если вне любой окрестности точкиa находится не более конечного числа членов последовательности{x n } .

    Ясно, что если вне некоторой окрестности точки a находится бесконечное число членов {xn }, то a не является пределом {xn }.

    Рассмотрим несколько примеров.

    Пример 2.1. Если {xn } : xn = c, то lim xn = c, так как все члены последовательности, начиная с первого, принадлежат любой окрестности

    Пример 2.2. Покажем, что последовательность {xn } : xn =

    имеет предел и lim xn = 0.

    Зафиксируем ε > 0. Так как

    ≤ n

    < ε для n >

    То, полагая N = max{1, }, получим:

    |xn | ≤

    Следовательно, ε > 0 N = max{1, } N: n > N |xn | < ε.

    Замечание. Одновременно мы доказали, что lim

    Пример 2.3. Покажем, что lim

    0, если q > 1.

    Поскольку q > 1, то q = 1 + α, где α > 0. Поэтому n > 1 по формуле бинома Ньютона

    qn = 1 + nα +n(n − 1) α2 + · · · + αn > nα.

    Отсюда следует, что

    N > 1. Зафиксируем ε > 0, положим

    N = max{1, } и получим, что

    Итак, ε > 0 N = max{1, } N: n > N |1/qn | < ε.

    Пример 2.4. Покажем, что последовательность {xn } : xn = (−1)n , не имеет предела.

    Для любого числа a укажем такую окрестность, вне которой расположено бесконечное множество членов данной последовательности. Для этого зафиксируем точку a R и рассмотрим ee единичную окрестность Ua (1) = (a − 1, a + 1). Поскольку x2k = 1, x2k+1 = −1, k N, и хотя бы одно из чисел +1 или −1 не принадлежит Ua (1), то вне Ua (1) находится бесконечное множество членов последовательности {xn }. Следовательно, число a не является её пределом. В силу произвольности числа a заключаем, что @ lim xn .

    Определение 2.5. Числовая последовательность, имеющая пределом число, называется сходящейся. Все остальные последовательности называются расходящимися.

    В логической символике определение 2.5 имеет вид: {xn } сходится a R: lim xn = a.

    дящимися, а последовательность {(−1)n } - расходящейся.

    2.1.2 Свойства сходящихся последовательностей

    Теорема 2.1. Последовательность не может иметь двух различных пределов.

    Пусть числовая последовательность {xn } имеет два различных предела a и b. Для определенности будем считать, что a < b. Положим

    ε = b − 2 a . По определению2.4 предела последовательности найдем N1 и

    n −

    такие, что

    n > N , то есть

    | n −

    Тогда n > N = max{N1 , N2 }

    < xn <

    Чего быть не может.

    Определение 2.6. Числовая последовательность {x n } называется ограниченной сверху (соответственно, снизу или ограниченной), если множество X = {x n | n N} является ограниченным сверху (снизу или ограниченным). Если X - неограниченное множество, то {x n } называется неограниченной последовательностью.

    C учетом определений 2.1 и2.2 имеем:

    {xn } ограничена сверху M R: n N xn ≤ M, {xn } ограничена снизу M R: n N xn ≥ M, {xn } ограничена M > 0: n N |xn | ≤ M,

    {xn } не ограничена M > 0 n N: |xn | > M.

    Теорема 2.2. Сходящаяся последовательность ограничена.

    Пусть последовательность {xn } сходится и lim xn = d. Полагая в определении2.4 ε = 1, найдем номер N такой, что |xn − d| < 1, n > N, то есть d − 1 < xn < d + 1, n > N. Введем обозначения:

    a = min{x1 , x2 , . . . , xN , d − 1}, b = max{x1 , x2 , . . . , xN , d + 1}.

    Тогда a ≤ xn ≤ b, n N.

    Замечание. Ограниченность последовательности - необходимое, но недостаточное условие сходимости (см.пример 4) .

    Теорема 2.3. Если числовая последовательность {x n } сходится и lim x n = a , то последовательность {|x n |} сходится и lim |x n | = |a|.

    Так как a = lim xn , то ε > 0 N = N(ε) N: n > N |xn − a| < ε.

    Отсюда следует, что n > N ||xn | − |a|| ≤ |xn − a| < ε.

    Замечание 1. Из теоремы2.3 и примера3 следует, что при |q| > 1

    lim q n = 0.

    Замечание 2. Обратное утверждение к теореме2.3 не имеет места.