Оптические сканеры отпечатков пальцев. Обзор датчика R308. Сканер отпечатков пальцев на смартфоне: настройка и использование

Сканер отпечатков пальцев стал очень продвинутой фишкой большинства смартфонов. Некоторым пользователям он не нужен, другие же хотят, чтобы такой сканер был встроен в их телефон, так как это стало очень модно.

Но как работает такой сканер? Есть ли у него альтернативы? Откуда он вообще взялся? На этот и другие вопросы мы попытаемся дать вам ответ.

Предыстория

Как многие знают, Apple была первой компанией, которая вставила сканер отпечатков в свой IPhone. На самом деле нет. Первым телефоном, который получил такое дополнение был представлен ещё в 2004 году, который назывался Pantech GI100.

И тут компания Apple представляет новый iPhone 5S, у которого в кнопку “Home” встроен сканер отпечатков пальцев. И тут мир цифровых технологий взорвался. Apple подтолкнула многих производителей вставлять такую функцию в свои смартфоны, и сейчас сканер можно встретить в большинстве , не говоря о среднем ценовом сегменте и флагманах.

Как работают сканеры в современных смартфонах?

Существует несколько типов сканеров:

  • Оптические
  • Полупроводниковые
  • Радиочастотные
  • Ультразвуковые
  • Термосканеры
  • Сканер использующий метод давления

О всех типах рассказывать мы не станем, а расскажем только о тех, которые используются в смартфонах.

Самые простые и дешёвые в реализации – оптические сканеры. Если описать принцип его работы в двух словах, то он просто фотографирует узоры вашего пальца. В таких сканерах в основном стоят КМОП и ПЗС матрицы, которые и фиксируют изображения. Лучшие образцы таких сканеров обладают разрешением 1200 dpi. Но даже оно не спасает от частых ошибок.

На работу оптических сканеров сильно влияют такие факторы, как загрязнённость пальца или поверхность сканера. Не малую роль играют и повреждения кожи. Кроме этого, оптические сканеры легче всего обмануть.

На смену оптическим сканерам потихоньку приходят ультразвуковые. Они сканируют поверхность пальца звуковыми волнами, и могут похвастаться очень большой скоростью и точностью распознавания. Таким сканерам не страшны ни грязь, ни влага, ни повреждённая кожа. И что не мало важно – их практически невозможно взломать. Благодаря хорошей проницательной способности звуковых волн, сканер можно разместить даже под поверхностью экрана или под крышкой смартфона.

Но это всё пока в теории. На данный момент такие сканеры ещё сырые и особо не обкатаны производителем. На конец 2016 года ультразвуковыми сканерами было оснащено всего лишь 3 смартфона, один из которых Xiaomi Mi 5S версии 4/128.

Как взломать сканер отпечатков пальца?

Раз мы начали говорить про безопасность, давайте поговорим о том, как же можно взломать сканер отпечатков.

Первый, и самый банальный способ – это сделать фотографию и напечатать её на струйном принтере, а затем приложить к сканеру. Правда этот способ работает только с первым поколением оптических сканеров. Для обхода более новых потребуется дополнительный этап – создание слепка из силикона. Данный метод позволяет обойти 99% сканеров. Перед ним не устоял даже хвалебный IPhone.

Хакеры из немецкой ассоциации House Computer Club уже давно описали процесс взлома посредством создания силиконового слепка. Но стоит отметить, что таким способом пока не удастся обмануть ультразвуковой сканер, так как он во время сканирования ещё и считывает пульс владельца и может отличить живой палец от силиконовой имитации.

Ну и в конце концов, можно просто взять ваш палец и приложить его к сканеру, пока вы спите. От такого типа взлома не застрахованы даже ультразвуковые датчики.

Где стоят самые быстрые и точные сканеры?

Производители часто хвастаются на своих презентациях тем, что их устройства распознают отпечаток за считанные доли секунды и что их устройство быстрее всех на рынке. Но зачастую это бывает не всегда так.

Есть три действительно хороших смартфона, в котором сканеры отпечатков показали себя достойно.

Zuk Z1. В своё время, работа его сканера поражала своей молниеносностью. Порой он даже уделывал второе поколение Touch ID от Apple, чем повергал в шок владельцев айфонов 6S и 6S+.

Ещё очень крутой сканер стоит в Xiaomi Mi5. Он срабатывает ещё быстрее, чем в предыдущем смартфоне, да и процент удачных распознаваний гораздо выше.

Но самый быстрый и самый чёткий сканер пока у . Устройство считывает палец и разблокирует его просто мгновенно. Срабатывает сканер просто невероятно – 10 из 10. Да и реагирует он на прикосновения прямо из коробки отлично, без всяких .

Есть ли замена сканерам отпечатков пальцев?

Хорошей альтернативой сканерам отпечатков пальцев является иридосканер. Иными словами – сканер радужки глаза. Хорош он тем, что вам не обязательно иметь непосредственный контакт с гаджетом.

Допустим ваши руки чем-то заняты, или чем-то сильно испачканы, да так сильно, что даже ультразвуковой сканер не может распознать ваши отпечатки. В таком случае, как нельзя лучше, подойдёт иридосканер. Он просто считает узор с вашей радужной оболочки глаза на расстоянии и всё.

Смартфоны с таким биометрическим датчиком начали появляться на азиатском рынке ещё в 2015 году. Японцы и китайцы в лице ZTE, Viewsonic и Vivo уже опробовали эту технологию на своих внутренних рынках. На мировой арене, технология должна была дебютировать в Samsung Galaxy Note 7, но все мы прекрасно знаем, где он сейчас находится. Хотя сама по себе реализация иридосканера в Note 7 была близка к идеалу. Благодаря инфракрасной подсветке он срабатывал даже в темноте. А обмануть его подсунув фотографию глаза владельца было невозможно, так как датчик считывал не только узор радужки глаза, но и мониторил температуру пользователя.

Заключение

Напоследок хочется посоветовать небольшой лайфхак: чтобы сканер лучше распознавал отпечаток, задайте в систему один и тот же отпечаток два раза. Тогда процент попаданий увеличится.

Ну и помимо обычных сканеров отпечатков пальца будем ждать, когда в смартфоны начнут массово вставлять иридосканеры, ведь это ещё больший прорыв в мобильной индустрии. Хотя маловероятно, что такая функция будет в от 70 долларов, но возможно следующие флагманы от Samsung получат такое дополнение.

Углубляясь все больше в системы, связанные с охраной и контролем, многие из нас в конце концов обратят внимание на биометрические методы идентификации личности для тех или иных потребностей.

Биометрия – это методы автоматической идентификации человека и подтверждения личности человека, основанные на физиологических или поведенческих характеристиках. Примерами физиологических характеристик являются отпечатки пальцев, форма руки, характеристика лица, радужная оболочка глаза, характеристика голоса, особенности подчерка. В процессе развития технологий появляется все большее количество способов идентифицировать человеческую личность.

Наиболее популярным методом биометрической идентификации является распознавание отпечатков пальцев. Думаю, это так, потому что это относительно дешевый и простой способ, проверенный временем. Способов получить отпечаток пальца человека с помощью электроники существует несколько: оптические методы получения изображения отпечатка пальца – на отражение, на просвет, бесконтактный способы, емкостные датчики отпечатков пальцев (полупроводниковые), радиочастотные сканеры, сканеры, использующие метод давления, термосканеры, ультразвуковой метод. Каждый способ получения отпечатка пальца имеет свои достоинства и недостатки, однако главным образом баланс выбора способа сканирования является цена – надежность (здесь выделяется не только эффективная защита, но и устойчивость к воздействию внешних факторов).

Рассматриваемый сканер отпечатков пальцев R308 (ссылка в магазин) является оптическим (метод на отражение). Данный метод использует эффект нарушенного полного внутреннего отражения (Frusted Total Internal Reflection). Эффект заключается в том, что при падении света на границу раздела двух сред световая энергия делится на две части - одна отражается от границы, другая проникает через границу во вторую среду. Доля отраженной энергии зависит от угла падения светового потока. Начиная с некоторой величины данного угла, вся световая энергия отражается от границы раздела. Это явление называется полным внутренним отражением. В случае контакта более плотной оптической среды (поверхности пальца) с менее плотной в точке полного внутреннего отражения пучок света проходит через эту границу. Таким образом, от границы отразятся лишь пучки света, попавшие в определенные точки полного внутреннего отражения, к которым не был приложен папиллярный узор пальца. Для захвата полученной световой картинки поверхности пальца используется специальный датчик изображения (КМОП или ПЗС, в зависимости от реализации сканера).

Для данного метода можно отметить следующее:

  • Одни из самых дешевых сканеров отпечатков пальцев при относительно большой площади сканирования пальца
  • Чувствительность к загрязнению рабочей поверхности датчика
  • Малая защита от муляжей
  • Относительно крупные размеры модуля

Итак сканер отпечатков пальцев R308 имеет следующий вид:

Хотелось бы разобрать и посмотреть на модуль изнутри, но конструкция сделана таким образом, что аккуратно открутить винтики и снять плату с элементами не получится, так как держит ее что-то изнутри и без применения паяльника это сделать проблематично, поэтому не стоит пытаться нарушить целостность модуля, что может привести к выводу его из строя.

Данный оптический сканер отпечатков пальцев использует высокоскоростной цифровой сигнальный процессор в качестве своей основы. Этот модуль может получить изображение отпечатка пальца, обработать изображение для сохранения или поиска, сохранить данные об отпечатке пальца в собственной памяти и делать поиск на совпадение полученного отпечатка с сохраненными. Для подключения к СКУД (системам контроля и управления доступом) модуль имеет интерфейс UART, посредством которого модуль принимает команды и посылает ответы о результатах операций. Кроме того, модуль может передать на другое устройство изображение отпечатка пальца, полученное при помощи него. Сканер отпечатков пальцев построен таким образом, что все вычислительные и аналитические операции выполняет он сам, но этими процессами необходимо управлять для получения практической ценности модуля. Таким образом, на основе ответов о результатах выполнения команд внешний микроконтроллер может выстраивать любую необходимую логику работы СКУД с применением сканера отпечатков пальцев.

Характеристики сканера отпечатков пальцев R308:

  • Напряжение питания – 4,5-5 вольт
  • Рабочий ток – 40 мА
  • Интерфейс – UART (TTL logical level)
  • Baud rate – 9600*n, n=1~12, по умолчанию 57600 bps
  • Время сканирования отпечатка пальца –до 0,5 сек
  • Размер шаблона отпечатка – 512 байт
  • Коэффициент ложного пропуска FAR (False Acceptance Rate) – менее 0,001 %
  • Коэффициент ложного отказа в доступе FRR (False Rejection Rate) – менее 0,5 %
  • Уровень безопасности – 5
  • Время среднего поиска – менее 1 сек
  • Размер окна считывания отпечатка пальца – 18х22 мм
  • Размер модуля – 55,5х21х20,5 мм
  • Диапазон рабочих температур – -20-+40 градусов Цельсия

Для подключения к другим устройствам R308 имеет 6-контактный разъем:

  1. Vt – плюс питания детектора пальца
  2. Vin – плюс питания модуля
  3. Touch – выход сигнала детектора пальца

В документации указываются цвета шлейфа в комплекте с модулем, но в моем случае цвета не совпали, поэтому надежнее всего определять назначение контактов по нумерации, указанной на плате возле разъема модуля.

Структура пакета данных, передаваемых и принимаемых модулем:

  1. Header – заголовок, фиксированное значение 0xEF01 (2 байта)
  2. Adder – адрес сканера отпечатков пальцев, фиксированное значение 0xFFFFFFFF (4 байта)
  3. Package identifier – идентификатор пакета данных, 01H – пакет команды, 02H – пакет данных, 07H – пакет ответа, 08H – пакет окончания данных (1 байт)
  4. Package length – количество байт пакета информации (включает сумму байт данных пунктов 5 - 6), максимальное количество 256 байт (2 байта)
  5. Package contents – полезные данные
  6. Checksum – контрольная сумма, арифметическая сумма пунктов 3-6 (2 байта)

Сканер отпечатков пальцев имеет 8 основных инструкций для его управления:

  1. Сканирование отпечатка пальца и сохранение его в буфере. Возвращает код подтверждения об успешности операции.
  2. Создание файла символов отпечатка пальца из оригинального отпечатка и сохраняет его в CharBuffer1 (2). Возвращает код подтверждения об успешности операции.
  3. Поиск на совпадение отпечатка пальца в библиотеке модуля который соответствует хранимому в CharBuffer1 или CharBuffer2. Возвращает код подтверждения об успешности операции и ID отпечатка пальца в библиотеке модуля.
  4. Создание шаблона модели отпечатка пальца. Информация в CharBuffer1 и CharBuffer2 объединяется и комбинируется для получения более достоверных данных об отпечатке пальца (отпечаток в этих буферах должен принадлежать одному пальцу). После операции данные сохраняются обратно в CharBuffer1 и CharBuffer2. Возвращает код подтверждения об успешности операции.
  5. Сохранение шаблона отпечатка пальца из Buffer1/Buffer2 во флэш память библиотеки модуля. Возвращает код подтверждения об успешности операции.
  6. Удаление шаблона из флэш памяти модуля. Возвращает код подтверждения об успешности операции.
  7. Очистка памяти библиотеки отпечатков пальцев модуля. Возвращает код подтверждения об успешности операции.
  8. Проверка пароля модуля. Возвращает код подтверждения об успешности операции.

Для того чтобы искать совпадение отпечатка пальца в библиотеке модуля необходимо сканировать отпечаток пальца и сохранить его в буфере, сгенерировать символьный файл и поместить его в CharBuffer и прописать команду на поиск совпадений отпечатков пальце (инструкции 1, 2, 3).

Для того чтобы внести отпечаток пальца в память модуля необходимо получить изображение отпечатка пальца, сохранить его в буфере и сгенерировать символьный файл, сохраняемый в CharBuffer (операции повторяем минимум 2 раза и сохраняем все в CharBuffer1 и CharBuffer2), далее комбинируем данные в буферах 1 и 2 для получения более точного результата и запускаем командой сохранение в указанное место памяти информацию об отпечатке пальца (инструкции 1, 2, 4, 5).

По ходу выполнения инструкций модулем необходимо следить за корректностью и успешностью выполнения посредством ответов, следующих после посылки команд. Это может улучшить качество выполнения программы и точность заданных манипуляций со сканером отпечатков пальцев R308.

Для оценки работы модуля к статье прилагается демонстрационная прошивка для микроконтроллера STM32, соответствующая схеме:

На LCD дисплее отображаются необходимые данные для работы со сканером отпечатков пальцев, при включении схемы без замкнутых перемычек Jmp1 и Jmp2 запускается основной цикл программы, когда микроконтроллер ждет получения отпечатка пальца от сканера и запускает поиск в памяти модуля при его появлении. При включении с замкнутой перемычкой Jmp1 запускается полное стирание памяти библиотеки отпечатков пальцев. При включении с замкнутой перемычкой Jmp2 запускается добавление 5 новых отпечатков пальцев в память модуля. Для добавления отпечатка пальца необходимо дважды приложить палец к сканеру для его сохранения в случае отсутствия ошибок при сканировании отпечатков.

Кроме того к статье прилагается программа SFGDemo. С ее помощью можно получить изображение своего отпечатка пальца помимо стандартных операций добавления отпечатка в память, поиска совпадений, удаления отпечатка из памяти (для подключения к компьютеру используется переходник USB-UART).

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 МК STM32

STM32F103C8

1 В блокнот
VR1 Линейный регулятор

LM7805

1 В блокнот
VR2 Линейный регулятор

AMS1117-3.3

1 В блокнот
FP1 Датчик отпечатков пальцев R308 1 В блокнот
HG1 LCD-дисплей 2004a 1 В блокнот
C1, C2 Конденсатор 22 пФ 2 В блокнот
C3 470 мкФ 1 В блокнот
C4-C7, C9, C10, C12 Конденсатор 100 нФ 7 В блокнот
C8 Электролитический конденсатор 220 мкФ 1 В блокнот
C11 Электролитический конденсатор 100 мкФ 1 В блокнот
R1 Резистор

22 Ом

1 В блокнот
R2 Резистор

100 Ом

1 В блокнот
R3 Подстроечный резистор 10 кОм 1

Датчики отпечатков пальцев на сегодняшний день вышли за пределы премиум-сегмента смартфонов, технология дополнительной аппаратной защиты может внедряться даже в относительно недорогие аппараты среднего ценового диапазона. Со времени выхода на рынок технология претерпела значительные эволюционные изменения, поэтому вашему вниманию предлагается обзор имеющихся на рынке дактилоскопических сенсоров с указанием различий между ними.

Оптические сканеры

Старейший способ захвата и сравнения отпечатков пальцев. Как и предполагает название, технология основывается на оптическом изображении, по сути – фотографии, и использует особые алгоритмы для определения уникальных последовательностей на поверхности, например, бугорков или уникальных отметин, анализируя самые светлые и самые темные области на изображении.

По аналогии с камерами в смартфонах подобные датчики имеют конкретное разрешение, чем оно выше, тем более мелкие детали будут доступны для обработки сканером, что повысит уровень защиты. Однако подобные датчики получают более контрастные изображения, нежели обычная камера. Обычно в них включено большое количество диодов на дюйм для более четкого отображения деталей вблизи. В момент сканирования пальца сканер находится в темноте, поэтому оптические сканеры также имеют «на борту» светодиоды, действующие как вспышка во время сканирования. Подобное внутреннее устройство придаст смартфону дополнительные миллиметры толщины и негативно отразится на конечном форм-факторе.

Главным недостатком оптических сканеров является их ненадёжность. С их помощью получается лишь двумерное изображение, «обмануть» такой сканер можно другим изображением хорошего качества или искусственно созданным отпечатком с него. Не стоит доверять подобному типу сканеров, он недостаточно безопасен для защиты самой важной информации.

Сегодня датчики отпечатка пальца в смартфонах имеют различные формы и размеры, но оптических сканеров в них нет. По аналогии с началом распространения резистивных сенсорных экранов, оптические сканеры на сегодняшний день можно встретить разве что в самых недорогих аппаратных решениях. Необходимость в усилении безопасности обусловила единогласный переход смартфонов на конденсаторные сканеры.

Конденсаторные сканеры

Самый распространенный тип датчиков отпечатка пальца. И снова название выдаёт главный компонент, если вы, конечно, немного разбираетесь в электронике – конденсатор. Вместо создания традиционного изображения отпечатка, конденсаторные сканеры используют для сбора информации об отпечатке массивы крошечных конденсаторов. Если подключить способные сохранять электрический заряд конденсаторы к проводящей плате, то это позволит использовать их для считывания деталей отпечатка. Заряд в конденсаторах будет незначительно меняться во время прикосновения пальца к плате и в то же время воздушная прослойка оставит заряд относительно без изменения. Для отслеживания изменений используется интеграционная цепь операционного усилителя, впоследствии изменения можно записать конвертером сигнала из аналогового в цифровой.

После сканирования цифровая информация может быть проанализирована на предмет отличительных и уникальных параметров отпечатка, которые могут быть сохранены для последующего сравнения. Подобный датчик намного сложнее «обмануть», чем оптический. Результаты невозможно воспроизвести на изображении и очень сложно подделать каким-либо искусственным отпечатком: разные материалы вызовут разные изменения в заряде конденсатора. Единственный риск для безопасности может исходить от возможности взлома программного или аппаратного обеспечения.

Благодаря созданию достаточно большого массива таких конденсаторов (сотни, если не тысячи конденсаторов в одном сканере) есть возможность получить изображение бугорков и желобков отпечатка пальца с высокой детализацией путем использования лишь электрических сигналов. По аналогии с оптическими датчиками, большее количество конденсаторов даст более высокое разрешение сканера и до определенного уровня повысит защиту.

Из-за большего количества компонентов в цепи конденсаторные сканеры могут стоить дороже. В некоторых ранних вариантах осуществлялись попытки урезать количество необходимых конденсаторов путем использования сканеров «свайпа», которые получали информацию от меньшего количества конденсаторных элементов быстрым обновлением результатов по мере проведения пальцем по сенсору. Метод был довольно изощренным и зачастую требовалось несколько попыток для успешного сканирования. К счастью, сегодня распространена более простая схема работы датчика: достаточно простого нажатия и удержания.

Ультразвуковые сканеры

Новейшая дактилоскопическая технология, впервые представленная в составе смартфона Le Max Pro. Немаловажную роль в ней сыграла Qualcomm и технология Sense ID. Для фактического сбора деталей об отпечатке в состав аппаратной платформы входят ультразвуковые передатчик и приёмник. Через помещенный на сканер палец передаётся ультразвуковой импульс. Он частично поглощается, частично передаётся обратно на сенсор в зависимости от бугорков, пор и других уникальных для каждого отпечатка деталей.

Никакого микрофона, считывающего возвращающийся сигнал, не предусмотрено, вместо этого используется сенсор, который может считывать механическое напряжение для подсчета интенсивности вернувшегося сигнала на разных участках датчика. Сканирование на протяжении более долгого периода времени позволяет считать дополнительную информацию, что в свою очередь может предоставить детализированную трехмерную модель сканированного отпечатка. Трехмерная природа технологии делает её еще более безопасной альтернативой конденсаторным сканерам.

Алгоритмы и криптография

Большинство дактилоскопических сенсоров основаны на весьма сходных принципах, но дополнительные компоненты и программного обеспечения могут играть главную роль в дифференциации продуктов по производительности и функциональности, доступной потребителям.

Физический сканер сопровождает выделенная микросхема, интерпретирующая отсканированную информацию и передающая её в необходимом формате в процессор смартфона. Разные производители используют слегка отличающиеся друг от друга по скорости и точности алгоритмы идентификации ключевых характеристик отпечатка.

Обычно эти алгоритмы «ищут» место, где заканчиваются бугорки и линии или где бугорок разделяется на два. Собирательно эти и другие отличительные особенности называются шаблоном отпечатка или детальным протоколом ввода отпечатка. Если в отсканированном отпечатке совпадают несколько таких особенностей, то отпечаток будет засчитан как совпавший. Вместо того, чтобы сравнивать каждый раз целый отпечаток, сравнение особенностей шаблона уменьшает количество необходимой для идентификации отпечатка вычислительной мощности, помогает избежать ошибок при смазывании отпечатка и также позволяет сканировать помещенный не по центру палец или вообще лишь часть отпечатка.

Несомненно, подобная информация должна надежно храниться на устройстве и сохраняться подальше от кода, который может скомпрометировать её. Вместо загрузки информации пользователя в сеть, процессоры ARM могут надежно хранить её в выделенной физической микросхеме с использованием своей технологии Trusted Execution Environment (TEE) на базе TrustZone. Это безопасное хранилище также используется для других криптографических процессов и напрямую сообщается с защищенными аппаратными компонентами, такими, как датчик отпечатка, чтобы предотвратить любые попытки перехвата посредством ПО. Доступ к утвержденной информация не личного характера, например, паролю могут получить только приложения, использующие API клиентов TEE.

Подобное решение от Qualcomm встроено в архитектуру Secure MSM, Apple называет подобный проект «Secure Enclave», но все они основаны на одном и том же принципе – хранении информации на отдельной части процессора, к которой не могут получить доступ приложения, работающие в обычной среде операционной системы. В рамках альянса FIDO (Fast Identity Online) были разработаны надежные криптографические протоколы, позволяющие использовать эти аппаратно защищенные зоны для аутентификации между «железом» и сервисами без пароля. Поэтому можно входить на сайт или онлайн-магазин, используя отпечаток пальца, а ваша персональная информация при этом не покинет пределы смартфона. Это достигается путем передачи на сервер цифровых ключей, а не биометрической информации.

Датчики отпечатка пальца стали довольно безопасной альтернативой тому, чтобы запоминать бесчисленные пароли и имена пользователей и дальнейшее развитие безопасных мобильных платежных систем означает, что эти сканеры станут более распространенными и важнейшими инструментами по сохранению безопасности в будущем.

На сегодняшний день цифровые технологии проникли практически во все сферы нашей жизни: мы в пару кликов совершаем покупки в интернете, кладем и снимаем наличные на банковскую карту, делаем различные операции с виртуальными счетами, а также храним свои фотографии и прочие данные в облачных хранилищах. При всей глобализации цифровых технологий вопрос касаемо защиты персональных данных по-прежнему остается актуальным.

Ни для кого не секрет, что современные продвинутые злоумышленники уже не пользуются ломом и отмычками, а виртуозно используют те же самые цифровые технологии и ПО для своих корыстных целей. Смартфоны по-прежнему остаются уязвимыми, поскольку с его помощью пользователь часто авторизуется в различных онлайн-сервисах. И, если еще вчера защита данных на смартфоне происходила посредством графического ключа или паролей, то в последние годы многие производители начали внедрять разные виды биометрической защиты, которые основаны на уникальности строения определенных частей тела человека. В частности, мы говорим об отпечатках пальцев, геометрии лица, сетчатке глаза, идентификация голоса. Биометрическая аутентификация – это довольно надежный и удобный способ защиты. А главное, такой «пароль» не забудешь, не подсмотришь, к тому же он всегда так сказать под рукой. Сегодня мы поговорим о дактилоскопическом сканере в смартфоне или, иными словами, сканере отпечатков пальцев. Интересно узнать, что из себя представляет это устройство, каких видов бывает сканер, а также как он работает.

Следует отметить, что процесс идентификации с помощью отпечатков пальцев стоит в одном ряду с самыми надежными способами, с помощью которых можно подтвердить личность пользователя. По точности аутентификации сканирование отпечатков пальцев уступает только методу, а рамках которого осуществляется сканирование сетчатки глаза, а также анализу ДНК. Отпечатки человеческих пальцев представлены папиллярными узорами на коже, которые у каждого человека уникальные, причем появляются они внутриутробно, на двенадцатой неделе синхронно с нервной системой. Интересно, что на папиллярные узоры могут повлиять различные факторы, например, это касается генетического кода ребёнка и прочего. Другими словами, папиллярными узорами являются выступы и борозды на коже, которые формируют уникальный и неповторимый рисунок. Даже незначительная травма или повреждение покровов кожи не могут «стереть» отпечаток, поскольку он со временем восстановится, если конечно в результате травмы не снесло пол пальца.

Как работает сканер отпечатка пальцев в современном смартфоне

В сканерах отпечатков пальцев имеются две основные функции. При помощи первой из них сканер считывает изображение отпечатка, в то время как вторая функция проверяет совпадение отпечатка с существующими в базе данных. Практически во всех современных смартфонах применяются оптические сканеры. Принцип их работы схож с цифровыми фотоаппаратами. Снимок делается с помощью микросхемы, куда входят светочувствительные фотодиоды, а также автономный источник освещения в виде матрицы светодиодов, с помощью которой узоры на пальце подсвечиваются.

Когда свет попадает на считываемый папиллярный рисунок, с помощью фотодиодов появляется электрический заряд, в результате чего отдельно взятый пиксель запечатлевается на будущем снимке. С помощью пикселей различной интенсивности на сканере образуется снимок отпечатка пальца. Кроме того, перед тем как сверить отпечаток с базой данных, сканер осуществляет проверку качества снимка.

После получения снимка отпечатка его анализирует специальное программное обеспечение с помощью сложных алгоритмов. К слову, происходит анализ трёх типов узоров отпечатка: дугового, петлевого и завиткового. После того, как ПО определило тип узора, происходит идентификация окончаний линий узоров (разрывы или раздвоения, которые называются минуциями), ведь именно они являются неповторимыми и с их помощью можно осуществить идентификацию владельца устройства. Дальше идет довольно сложный анализ, в рамках которого сканер анализирует положение минуций по отношению друг к другу, с разбитием отпечатка на микроблоки. Примечательно, что в процессе сопоставления сканер не анализирует отдельно взятую линию узора. Сканер определяет совпадение в отдельных блоках и по ним определяет сходство.

Каких типов бывают дактилоскопические сканеры

Оптические сканеры бывают двух основных видов. Что касается первого из них, то он снимает нужную область пальца при посредстве его прикосновения непосредственно к сканеру. Такой тип применяется в «яблочных» смартфонах, начиная с iPhone 5s. В отношении второго типа отметим, что в этом случае пользователь проводит пальцем по оптическому сканеру. В результате получается серия снимков, которые программным обеспечением объединяются в один. Этот тип какое-то время использовала в своих продуктах компания Samsung, однако, со временем она перешла на первый тип, поскольку он более удобен, хотя и более дорогостоящий. Основной недостаток оптического дактилоскопического сканера является уязвимость к царапинам и загрязнению. Также его можно «обвести вокруг пальца» при помощи слепка фаланги пальца.

Стоит также отметить о полупроводниковом типе сканера отпечатка пальца, который в смартфонах не применяется по целому ряду причин. Его невозможно обмануть с помощью слепка пальца. Еще одним типом дактилоскопических сканеров является ультразвуковой сканер. Он отличается большой перспективой развития, а действует он по принципу медицинского УЗИ. Обмануть его практически нереально, так как он способен проникнуть в эпидермальный слой кожи, которые уникален.

Следует отметить, что сканеры могут быть размещены в разных частях смартфона. Многие производители устанавливают сканер отпечатков пальцев на тыльной панели, недавно пошла мода на боковую грань, а компания HMD подготавливает свой новый флагман с интегрированным сканером в дисплей.

Сейчас сканер отпечатков пальцев есть во многих флагманских смартфонах, различие только в размещении датчика и его типе. Что немаловажно – это реальный инструмент защиты не только доступа к самому устройству, но и отдельным его приложениям. И многим пользователям мобильных устройств может потребоваться помощь, если не работает отпечаток пальца.

Почему не работает отпечаток пальца?

Если вы недавно меняли сканер или телефон был в сервисном центе, советуем отвезти его обратно для исправления причин.

В других случаях, основные причины, из-за которых не работает отпечаток пальца:

  • после сильного удара разбился дисплей и, как следствие, повредился шлейф кнопки с сенсором
  • шлейф сенсора повреждён при самостоятельном вскрытии устройства
  • сбои в программном обеспечении смартфона
  • грязь или вода препятствуют считыванию
  • погодные условия, которые в холодном климате высушивают кожу, она грубеет, и отпечаток перестаёт распознаваться устройством
  • механические повреждения кожи

Что делать, если не работает сканер отпечатков пальцев?

В случае, когда не работает отпечаток пальца есть несколько решений проблемы.

Обновление ПО для работы сканера отпечатков пальца

Проверьте программное обеспечение вашего смартфона, если не работает датчик отпечатков пальцев, возможно, оно требует обновления. Необходимо обновлять ваше устройство, чтобы корректно работали все программы, поэтому постарайтесь,чтобы ваше ПО было всегда актуальным.

После обновления не работает отпечаток пальца

Если же вы обновили ПО, и поняли, что после обновления не работает отпечаток пальца. Вероятно, проблема именно в ошибках пришедшего обновления или несоответствии устройства требованиям нового обновления. Тогда придётся вернуть старую версию прошивки.

Как это сделать вы узнаете в нашей статье или скачайте с официального сайта производителя предыдущую версию ПО.

Обновление отпечатков пальцев

Попытайтесь обновить отпечатки пальцев, сохранённые в системе, или можете добавить дополнительные, когда основные перестанут работать. Чтобы попасть в меню, где хранятся ваши отпечатки, необходимо ввести пароль. Инструкцию как настроить сканер отпечатков пальцев найдёте .

Сброс до заводских настроек

Сбросьте устройство до заводских настроек. Только помните, что выполняя откат, следует с сохранением всей ценной для вас информации (видео и фотоматериалы, сообщения, настройки аккаунтов и приложений). Напоминаем, .

Грязь и вода

Причиной отказа сканера могли стать грязь или вода. Не пытайтесь прикладывать к сканеру мокрые пальцы. Датчик не сможет их распознать. Это же касается грязи, пыли или жира, которые могут находиться на ваших руках. Решение проблемы, как вы уже догадались, элементарное — вымойте и высушите руки.

Замена сканера отпечатков пальцев

Обратитесь в сервисный центр и доверьте ремонт профессионалам. Если вы не можете самостоятельно определить, почему не работает отпечаток пальца, воспользуйтесь услугами сервисного центра, где специалисты подберут и установят соответствующую деталь, устранят причину быстро с минимальными затратами для вас и вашего устройства.

Надеемся, что советы, приведенные в статье, помогут вам справиться, если вы столкнулись с отказом в работе сенсора отпечатка пальца, а если возникли вопросы — пишите в комментарии ниже.

Ответы на вопросы

Сканер отпечатков пальцев перестал работать после замены в сервисе. Каковы причины?

Если замену сканера осуществляли в сервисном центре, обратитесь к ним вновь. При условии того, что после ремонта вы устройство не роняли и не повреждали экран смартфона. Если замену осуществили неоригинальными деталями, в этом случае работа датчика под большим вопросом.