Нейронные сети — математический аппарат. Нейронные сети: виды, принцип работы и области применения

Еще одна область исследований в области искусственного интеллекта — это нейронные сети. Они были разработаны по подобию естественных нейронных сетей нервной системы человека.

Искусственные нейронные сети

Изобретатель первого нейрокомпьютера, доктор Роберт Хехт-Нильсен, дал следующее понятие нейронной сети: «Нейронная сеть — это вычислительная система, состоящая из ряда простых, сильно взаимосвязанных элементов обработки, которые обрабатывают информацию путем их динамического реагирования на внешние воздействия».

Базовая структура искусственных нейронных сетей (ИНС)

Идея ИНС базируется на убеждении, что можно имитировать работу мозга человека, создав нужные связи с помощью кремния и проводов таких как у живых нейронов и дендритов.

Человеческий мозг состоит из 100 миллиардов нервных клеток, называемых нейронами. Они связаны с другими тысячами клеток Аксонами. Раздражители из внешней среды или сигналы от органов чувств принимаются дендритами. Эти входные сигналы создают электрические импульсы, которые быстро перемещаются через нейросеть. Затем нейрон может посылать сообщения на другие нейроны, которые могут отправить это сообщение дальше или могут вообще ее не отправлять.


Искусственные нейронные сети состоят из нескольких узлов, которые имитируют биологические нейроны человеческого мозга. Нейроны соединены между собой и взаимодействуют друг с другом. Узлы могут принимать входные данные и выполнять простейшие операции над данными. В результате этих операций данные передаются другим нейронам. Выходные данные для каждого узла называются его активацией.

Каждое звено связано с весом. ИНС способны к обучению, которое осуществляется путем изменения значения веса. На следующем рисунке показана простая ИНС:

Типы искусственных нейронных сетей

Есть два типа искусственных нейронных сетевых топологий — с прямой связью и обратной связью.

Поток информации является однонаправленным. Блок передает информацию на другие единицы, от которых он не получает никакой информации. Нет петли обратной связи. Они имеют фиксированные входы и выходы.


Здесь, допускаются петли обратной связи.

Как работают искусственные нейронные сети

В топологии показаны схемы, каждая стрелка представляет собой связь между двумя нейронами и указывает путь для потока информации. Каждая связь имеет вес, целое число, которое контролирует сигнал между двумя нейронами.

Если сеть создает «хороший» и «нужный» выход, то нет необходимости корректировать вес. Однако если сеть создает «плохой» или «нежелательный» вывод или ошибку, то система корректирует свои весовые коэффициенты для улучшения последующих результатов.

Машинное обучение в искусственных нейронных сетях

ИНС способны к обучению, и они должны быть обучены. Существует несколько стратегий обучения

Обучение — включает в себя учителя, который подает в сеть обучающую выборку на которые учитель знает ответы. Сеть сравнивает свои результаты с ответами учителя и корректирует свои весовые коэффициенты.

Обучение без учителя — это необходимо, когда нет обучающей выборки с известными ответами. Например в задачах кластеризации, т.е. деления множества элементов на группы по каким-то критериям.

Обучение с подкреплением — эта стратегия, построенная на наблюдении. Сеть принимает решение наблюдая за своим окружением. Если наблюдение является отрицательным, сеть корректирует свои веса, чтобы иметь возможность делать разные необходимые решения.

Алгоритм обратного распространения

Байесовские сети (БС)

Эти графические структуры для представления вероятностных отношений между набором случайных переменных.

В этих сетях каждый узел представляет собой случайную переменную с конкретными предложениями. Например, в медицинской диагностике, узел Рак представляет собой предложение, что пациент имеет рак.

Ребра, соединяющие узлы представляют собой вероятностные зависимости между этими случайными величинами. Если из двух узлов, один влияет на другой узел, то они должны быть связаны напрямую. Сила связи между переменными количественно определяется вероятностью, которая связан с каждым узлом.

Есть только ограничение на дугах в БН, вы не можете вернуться обратно к узле просто следуя по направлению дуги. Отсюда БНС называют ациклическим графом.

Структура БН идеально подходит для объединения знаний и наблюдаемых данных. БН могут быть использованы, чтобы узнать причинно-следственные связи и понимать различные проблемы и предсказывать будущее, даже в случае отсутствия данных.

Где используются нейронные сети

    Они способны выполнять задачи, которые просты для человека, но затруднительны для машин:

    Аэрокосмические — автопилот самолета;

    Автомобильные — автомобильные системы наведения;

    Военные — сопровождение цели, автопилот, распознавание сигнала/изображения;

    Электроника — прогнозирование, анализ неисправностей, машинное зрение, синтез голоса;

    Финансовые — оценка недвижимости, кредитные консультанты, ипотека, портфель торговой компании и др.

    Обработка сигнала — нейронные сети могут быть обучены для обработки звукового сигнала.

Нейронные сети (искусственная нейронная сеть) - это система соединенных и взаимодействующих между собой простых процессоров (искусственных нейронов). Такие процессоры обычно довольно просты (особенно в сравнении с процессорами, используемыми в персональных компьютерах). Каждый процессор подобной сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам. И, тем не менее, будучи соединёнными в достаточно большую сеть с управляемым взаимодействием, эти процессоры вместе способны выполнять довольно сложные задачи, поскольку нейронные сети обучаются в процессе работы.

Уже несколько лет подряд разработчики из разных уголков мира демонстрируют нейронные сети, которые либо могут улучшить фотографии, либо нарисовать картинки с нуля. На калифорнийской конференции GTC 2019 группа Research показала нечто поистине удивительное - искусственный интеллект GauGAN, который создает реалистичные пейзажи на основе схематических рисунков. В отличие от всех аналогичных проектов, новинка умеет добавлять тени и отражения даже от мельчайших камней и менять времена года.

Группы исследователей часто экспериментируют с видео контентом при помощи нейросетей. Взять к примеру , которая в конце 2017 года нейронную сеть менять погоду и время суток на видео. Очередной проект подобного рода запустили исследователи из Университета Карнеги-Мелона, создавшие нейросеть для наложения мимики одного человека на лицо другого.

Сегодня мы начинаем изучать на нашем сайте одну очень интересную тему, а именно нейронные сети . Что это, зачем они нужны, как с ними работать – во всем этом нам еще предстоит разобраться) Теория будет переплетаться с практическими задачами и примерами для упрощения понимания и для того, чтобы можно было наглядно увидеть как работают нейронные сети. Первая статья по традиции будет несколько вводной, но и сегодня мы уже обсудим некоторые важные моменты, которые нам пригодятся в будущем. В общем, давайте приступать!

Изучение и использование искусственных нейронных сетей, в принципе, началось уже достаточно давно – в начале 20 века, но по настоящему широкую известность они получили несколько позже. Связано это, в первую очередь, с тем, что стали появляться продвинутые (для того времени) вычислительные устройства, мощности которых были достаточно велики для работы с искусственными нейронными сетями. По сути, на данный момент можно легко смоделировать нейронную сеть средней сложности на любом персональном компьютере. И мы этим обязательно займемся 😉

Что же из себя представляет нейронная сеть ? А это ясно из названия – сеть представляет из себя совокупность нейронов, соединенных друг с другом определенным образом. Рассмотрим один нейрон:

Представляет из себя элемент, который вычисляет выходной сигнал (по определенному правилу) из совокупности входных сигналов. То есть основная последовательность действий одного нейрона такая:

  • Прием сигналов от предыдущих элементов сети
  • Вычисление выходного сигнала
  • Передача выходного сигнала следующим элементам нейронной сети

Между собой нейроны могут быть соединены абсолютно по-разному, это определяется структурой конкретной сети. Но суть работы нейронной сети остается всегда одной и той же. По совокупности поступающих на вход сети сигналов на выходе формируется выходной сигнал (или несколько выходных сигналов). То есть нейронную сеть упрощенно можно представить в виде черного ящика, у которого есть входы и выходы. А внутри этого ящика сидит огромное количество нейронов 😉

Мы перечислили основные этапы работы сети, теперь давайте остановимся на каждом из них в отдельности.

Комбинирование входных сигналов

Поскольку к каждому нейрону могут приходить несколько входных сигналов, то при моделировании нейронной сети необходимо задать определенное правило комбинирования всех этих сигналов. И довольно-таки часто используется правило суммирования взвешенных значений связей. Что значит взвешенных? Сейчас разберемся…

Каждую связь в сети нейронов можно полностью охарактеризовать при помощи трех факторов:

  • первый – элемент, от которого исходит связь
  • второй – элемент, к которую связь направлена
  • третий – вес связи.

Сейчас нас в большей степени интересует именно третий фактор. Вес связи определяет, будет ли усилен или ослаблен сигнал, передаваемый по данной связи. Если объяснять просто, “на пальцах”, то давайте рассмотрим такой пример:

Выходной сигнал нейрона 1 равен 5. Вес связи между нейронами равен 2. Таким образом, чтобы определить входной сигнал нейрона 2, приходящий от нейрона 1, необходимо умножить значение этого сигнала на вес связи (5*2). Как видите, все очень просто)

А если сигналов много? Правильно! Они все суммируются. В итоге на входе нейрона мы получаем следующее:

В этой формуле – это результат комбинирования всех входных сигналов для нейрона (комбинированный ввод нейрона). – количество элементов, передающих свои выходные сигналы на вход сигнала . А – вес связи, соединяющей нейрон с нейроном . Суммируя все взвешенные входные сигналы, мы получаем комбинированный ввод элемента сети.

Чаще всего структура связей между нейронами представляется в виде матрицы , которую называют весовой матрицей. Элемент матрицы , как и в формуле, определяет вес связи, идущей от элемента к элементу . Для того, чтобы понять как составляются весовые матрицы, давайте рассмотрим простую нейронную сеть:

Такой нейронной сети будет иметь следующий вид:

Например, от второго элемента к третьему идет связь, вес которой равен 3. Смотрим на матрицу, вторая строка, третий столбец – число 3, все верно 😉

С весовыми коэффициентами и комбинированным вводом разобрались, двигаемся дальше.

Функция активности элемента.

С входными сигналами мы разобрались, пришло время выходных. Для каждого элемента сети имеется определенное правило, в соответствии с которым из значения комбинированного ввода элемента вычисляется его выходное значение. Это правило называется функцией активности. А само выходное значение называется активностью нейрона. В роли функций активности могут выступать абсолютно любые математические функции, приведу в качестве примера несколько из наиболее часто использующихся:

  • пороговая функция – если значение комбинированного ввода ниже определенного значения (порога), то активность равна нулю, если выше – единице.
  • логистическая функция.

Давайте рассмотрим еще один небольшой пример, который очень часто используется в литературе для объяснения сути работы нейронных сетей. Задача примера заключается в том, чтобы при помощи нейронной сети вычислить отношение XOR. То есть на вход мы будем подавать разные варианты сигналов, а на выходе должны получить результат операции XOR для поданных на вход значений:

Элементы 1 и 2 являются входными, а элемент 7 – выходным. Нейроны 5 и 6 называются скрытыми, поскольку они не связаны с внешней средой. Таким образом, мы получили три слоя – входной, скрытый и выходной. Элементы 3 и 4 называют элементами смещения. Их выходной сигнал (активность) всегда равен 1. Для вычисления комбинированного ввода в этой сети мы будем использовать правило суммирования взвешенных связей, а в качестве функции активности будет выступать пороговая функция. Если комбинированный ввод элемента меньше 0, то активность равна 0, если ввод больше 0, то активность – 1.

Давайте подадим на вход нейрона 1 – единицу, а на вход нейрона 2 – ноль. В этом случае на выходе мы должны получить 1 (0 XOR 1 = 1). Рассчитаем выходное значение вручную для демонстрации работы сети.

Комбинированный ввод элемента 5: = 1 * (-1) + 0 * (-1) + 1 * 1.5 = 0.5.

Активность элемента 5: 1 (0.5 > 0).

Комбинированный ввод элемента 6: = 1 * (-1) + 0 * (-1) + 1 * 0.5 = -0.5.

Активность элемента 6: 0.

Комбинированный ввод элемента 7: = 1 * (1) + 0 * (-1) + 1 * (-0.5) = 0.5.

Активность элемента 7, а в то же время и выходное значение сети равно 1. Что и требовалось доказать =)

Можно попробовать использовать в качестве входных сигналов все возможные значения (0 и 0, 1 и 0, 0 и 1, 1 и 1), на выходе мы всегда будем видеть значение, соответствующее таблице истинности операции XOR. Как видите, сеть работает!

В данном случае все значения весовых коэффициентов нам были известны заранее, но главной особенностью нейронных сетей является то, что они могут сами корректировать значения веса всех связей в процессе обучения сети. Но об обучении нейронных сетей мы поговорим уже в следующей статье и, конечно же, рассмотрим практический пример для закрепления материала. Так что до скорых встреч!

Добрый день, меня зовут Наталия Ефремова, и я research scientist в компании NtechLab. Сегодня я буду рассказывать про виды нейронных сетей и их применение.

Сначала скажу пару слов о нашей компании. Компания новая, может быть многие из вас еще не знают, чем мы занимаемся. В прошлом году мы выиграли состязание MegaFace . Это международное состязание по распознаванию лиц. В этом же году была открыта наша компания, то есть мы на рынке уже около года, даже чуть больше. Соответственно, мы одна из лидирующих компаний в распознавании лиц и обработке биометрических изображений.

Первая часть моего доклада будет направлена тем, кто незнаком с нейронными сетями. Я занимаюсь непосредственно deep learning. В этой области я работаю более 10 лет. Хотя она появилась чуть меньше, чем десятилетие назад, раньше были некие зачатки нейронных сетей, которые были похожи на систему deep learning.

В последние 10 лет deep learning и компьютерное зрение развивались неимоверными темпами. Все, что сделано значимого в этой области, произошло в последние лет 6.

Я расскажу о практических аспектах: где, когда, что применять в плане deep learning для обработки изображений и видео, для распознавания образов и лиц, поскольку я работаю в компании, которая этим занимается. Немножко расскажу про распознавание эмоций, какие подходы используются в играх и робототехнике. Также я расскажу про нестандартное применение deep learning, то, что только выходит из научных институтов и пока что еще мало применяется на практике, как это может применяться, и почему это сложно применить.

Доклад будет состоять из двух частей. Так как большинство знакомы с нейронными сетями, сначала я быстро расскажу, как работают нейронные сети, что такое биологические нейронные сети, почему нам важно знать, как это работает, что такое искусственные нейронные сети, и какие архитектуры в каких областях применяются.

Сразу извиняюсь, я буду немного перескакивать на английскую терминологию, потому что большую часть того, как называется это на русском языке, я даже не знаю. Возможно вы тоже.

Итак, первая часть доклада будет посвящена сверточным нейронным сетям. Я расскажу, как работают convolutional neural network (CNN), распознавание изображений на примере из распознавания лиц. Немного расскажу про рекуррентные нейронные сети recurrent neural network (RNN) и обучение с подкреплением на примере систем deep learning.

В качестве нестандартного применения нейронных сетей я расскажу о том, как CNN работает в медицине для распознавания воксельных изображений, как используются нейронные сети для распознавания бедности в Африке.

Что такое нейронные сети

Прототипом для создания нейронных сетей послужили, как это ни странно, биологические нейронные сети. Возможно, многие из вас знают, как программировать нейронную сеть, но откуда она взялась, я думаю, некоторые не знают. Две трети всей сенсорной информации, которая к нам попадает, приходит с зрительных органов восприятия. Более одной трети поверхности нашего мозга заняты двумя самыми главными зрительными зонами - дорсальный зрительный путь и вентральный зрительный путь.

Дорсальный зрительный путь начинается в первичной зрительной зоне, в нашем темечке и продолжается наверх, в то время как вентральный путь начинается на нашем затылке и заканчивается примерно за ушами. Все важное распознавание образов, которое у нас происходит, все смыслонесущее, то что мы осознаём, проходит именно там же, за ушами.

Почему это важно? Потому что часто нужно для понимания нейронных сетей. Во-первых, все об этом рассказывают, и я уже привыкла что так происходит, а во-вторых, дело в том, что все области, которые используются в нейронных сетях для распознавания образов, пришли к нам именно из вентрального зрительного пути, где каждая маленькая зона отвечает за свою строго определенную функцию.

Изображение попадает к нам из сетчатки глаза, проходит череду зрительных зон и заканчивается в височной зоне.

В далекие 60-е годы прошлого века, когда только начиналось изучение зрительных зон мозга, первые эксперименты проводились на животных, потому что не было fMRI. Исследовали мозг с помощью электродов, вживлённых в различные зрительные зоны.

Первая зрительная зона была исследована Дэвидом Хьюбелем и Торстеном Визелем в 1962 году. Они проводили эксперименты на кошках. Кошкам показывались различные движущиеся объекты. На что реагировали клетки мозга, то и было тем стимулом, которое распознавало животное. Даже сейчас многие эксперименты проводятся этими драконовскими способами. Но тем не менее это самый эффективный способ узнать, что делает каждая мельчайшая клеточка в нашем мозгу.

Таким же способом были открыты еще многие важные свойства зрительных зон, которые мы используем в deep learning сейчас. Одно из важнейших свойств - это увеличение рецептивных полей наших клеток по мере продвижения от первичных зрительных зон к височным долям, то есть более поздним зрительным зонам. Рецептивное поле - это та часть изображения, которую обрабатывает каждая клеточка нашего мозга. У каждой клетки своё рецептивное поле. Это же свойство сохраняется и в нейронных сетях, как вы, наверное, все знаете.

Также с возрастанием рецептивных полей увеличиваются сложные стимулы, которые обычно распознают нейронные сети.

Здесь вы видите примеры сложности стимулов, различных двухмерных форм, которые распознаются в зонах V2, V4 и различных частях височных полей у макак. Также проводятся некоторое количество экспериментов на МРТ.

Здесь вы видите, как проводятся такие эксперименты. Это 1 нанометровая часть зон IT cortex"a мартышки при распознавании различных объектов. Подсвечено то, где распознается.

Просуммируем. Важное свойство, которое мы хотим перенять у зрительных зон - это то, что возрастают размеры рецептивных полей, и увеличивается сложность объектов, которые мы распознаем.

Компьютерное зрение

До того, как мы научились это применять к компьютерному зрению - в общем, как такового его не было. Во всяком случае, оно работало не так хорошо, как работает сейчас.

Все эти свойства мы переносим в нейронную сеть, и вот оно заработало, если не включать небольшое отступление к датасетам, о котором расскажу попозже.

Но сначала немного о простейшем перцептроне. Он также образован по образу и подобию нашего мозга. Простейший элемент напоминающий клетку мозга - нейрон. Имеет входные элементы, которые по умолчанию располагаются слева направо, изредка снизу вверх. Слева это входные части нейрона, справа выходные части нейрона.

Простейший перцептрон способен выполнять только самые простые операции. Для того, чтобы выполнять более сложные вычисления, нам нужна структура с большим количеством скрытых слоёв.

В случае компьютерного зрения нам нужно еще больше скрытых слоёв. И только тогда система будет осмысленно распознавать то, что она видит.

Итак, что происходит при распознавании изображения, я расскажу на примере лиц.

Для нас посмотреть на эту картинку и сказать, что на ней изображено именно лицо статуи, достаточно просто. Однако до 2010 года для компьютерного зрения это было невероятно сложной задачей. Те, кто занимался этим вопросом до этого времени, наверное, знают насколько тяжело было описать объект, который мы хотим найти на картинке без слов.

Нам нужно это было сделать каким-то геометрическим способом, описать объект, описать взаимосвязи объекта, как могут эти части относиться к друг другу, потом найти это изображение на объекте, сравнить их и получить, что мы распознали плохо. Обычно это было чуть лучше, чем подбрасывание монетки. Чуть лучше, чем chance level.

Сейчас это происходит не так. Мы разбиваем наше изображение либо на пиксели, либо на некие патчи: 2х2, 3х3, 5х5, 11х11 пикселей - как удобно создателям системы, в которой они служат входным слоем в нейронную сеть.

Сигналы с этих входных слоёв передаются от слоя к слою с помощью синапсов, каждый из слоёв имеет свои определенные коэффициенты. Итак, мы передаём от слоя к слою, от слоя к слою, пока мы не получим, что мы распознали лицо.

Условно все эти части можно разделить на три класса, мы их обозначим X, W и Y, где Х - это наше входное изображение, Y - это набор лейблов, и нам нужно получить наши веса. Как мы вычислим W?

При наличии нашего Х и Y это, кажется, просто. Однако то, что обозначено звездочкой, очень сложная нелинейная операция, которая, к сожалению, не имеет обратной. Даже имея 2 заданных компоненты уравнения, очень сложно ее вычислить. Поэтому нам нужно постепенно, методом проб и ошибок, подбором веса W сделать так, чтобы ошибка максимально уменьшилась, желательно, чтобы стала равной нулю.

Этот процесс происходит итеративно, мы постоянно уменьшаем, пока не находим то значение веса W, которое нас достаточно устроит.

К слову, ни одна нейронная сеть, с которой я работала, не достигала ошибки, равной нулю, но работала при этом достаточно хорошо.

Перед вами первая сеть, которая победила на международном соревновании ImageNet в 2012 году. Это так называемый AlexNet. Это сеть, которая впервые заявила о себе, о том, что существует convolutional neural networks и с тех самых пор на всех международных состязаниях уже convolutional neural nets не сдавали своих позиций никогда.

Несмотря на то, что эта сеть достаточно мелкая (в ней всего 7 скрытых слоёв), она содержит 650 тысяч нейронов с 60 миллионами параметров. Для того, чтобы итеративно научиться находить нужные веса, нам нужно очень много примеров.

Нейронная сеть учится на примере картинки и лейбла. Как нас в детстве учат «это кошка, а это собака», так же нейронные сети обучаются на большом количестве картинок. Но дело в том, что до 2010 не существовало достаточно большого data set’a, который способен был бы научить такое количество параметров распознавать изображения.

Самые большие базы данных, которые существовали до этого времени: PASCAL VOC, в который было всего 20 категорий объектов, и Caltech 101, который был разработан в California Institute of Technology. В последнем была 101 категория, и это было много. Тем же, кто не сумел найти свои объекты ни в одной из этих баз данных, приходилось стоить свои базы данных, что, я скажу, страшно мучительно.

Однако, в 2010 году появилась база ImageNet, в которой было 15 миллионов изображений, разделённые на 22 тысячи категорий. Это решило нашу проблему обучения нейронных сетей. Сейчас все желающие, у кого есть какой-либо академический адрес, могут спокойно зайти на сайт базы, запросить доступ и получить эту базу для тренировки своих нейронных сетей. Они отвечают достаточно быстро, по-моему, на следующий день.

По сравнению с предыдущими data set’ами, это очень большая база данных.

На примере видно, насколько было незначительно все то, что было до неё. Одновременно с базой ImageNet появилось соревнование ImageNet, международный challenge, в котором все команды, желающие посоревноваться, могут принять участие.

В этом году победила сеть, созданная в Китае, в ней было 269 слоёв. Не знаю, сколько параметров, подозреваю, тоже много.

Архитектура глубинной нейронной сети

Условно ее можно разделить на 2 части: те, которые учатся, и те, которые не учатся.

Чёрным обозначены те части, которые не учатся, все остальные слои способны обучаться. Существует множество определений того, что находится внутри каждого сверточного слоя. Одно из принятых обозначений - один слой с тремя компонентами разделяют на convolution stage, detector stage и pooling stage.

Не буду вдаваться в детали, еще будет много докладов, в которых подробно рассмотрено, как это работает. Расскажу на примере.

Поскольку организаторы просили меня не упоминать много формул, я их выкинула совсем.

Итак, входное изображение попадает в сеть слоёв, которые можно назвать фильтрами разного размера и разной сложности элементов, которые они распознают. Эти фильтры составляют некий свой индекс или набор признаков, который потом попадает в классификатор. Обычно это либо SVM, либо MLP - многослойный перцептрон, кому что удобно.

По образу и подобию с биологической нейронной сетью объекты распознаются разной сложности. По мере увеличения количества слоёв это все потеряло связь с cortex’ом, поскольку там ограничено количество зон в нейронной сети. 269 или много-много зон абстракции, поэтому сохраняется только увеличение сложности, количества элементов и рецептивных полей.

Если рассмотреть на примере распознавания лиц, то у нас рецептивное поле первого слоя будет маленьким, потом чуть побольше, побольше, и так до тех пор, пока наконец мы не сможем распознавать уже лицо целиком.

С точки зрения того, что находится у нас внутри фильтров, сначала будут наклонные палочки плюс немного цвета, затем части лиц, а потом уже целиком лица будут распознаваться каждой клеточкой слоя.

Есть люди, которые утверждают, что человек всегда распознаёт лучше, чем сеть. Так ли это?

В 2014 году ученые решили проверить, насколько мы хорошо распознаем в сравнении с нейронными сетями. Они взяли 2 самые лучшие на данный момент сети - это AlexNet и сеть Мэттью Зиллера и Фергюса, и сравнили с откликом разных зон мозга макаки, которая тоже была научена распознавать какие-то объекты. Объекты были из животного мира, чтобы обезьяна не запуталась, и были проведены эксперименты, кто же распознаёт лучше.

Так как получить отклик от мартышки внятно невозможно, ей вживили электроды и мерили непосредственно отклик каждого нейрона.

Оказалось, что в нормальных условиях клетки мозга реагировали так же хорошо, как и state of the art model на тот момент, то есть сеть Мэттью Зиллера.

Однако при увеличении скорости показа объектов, увеличении количества шумов и объектов на изображении скорость распознавания и его качество нашего мозга и мозга приматов сильно падают. Даже самая простая сверточная нейронная сеть распознаёт объекты лучше. То есть официально нейронные сети работают лучше, чем наш мозг.

Классические задачи сверточных нейронных сетей

Их на самом деле не так много, они относятся к трём классам. Среди них - такие задачи, как идентификация объекта, семантическая сегментация, распознавание лиц, распознавание частей тела человека, семантическое определение границ, выделение объектов внимания на изображении и выделение нормалей к поверхности. Их условно можно разделить на 3 уровня: от самых низкоуровневых задач до самых высокоуровневых задач.

На примере этого изображения рассмотрим, что делает каждая из задач.

  • Определение границ - это самая низкоуровневая задача, для которой уже классически применяются сверточные нейронные сети.
  • Определение вектора к нормали позволяет нам реконструировать трёхмерное изображение из двухмерного.
  • Saliency, определение объектов внимания - это то, на что обратил бы внимание человек при рассмотрении этой картинки.
  • Семантическая сегментация позволяет разделить объекты на классы по их структуре, ничего не зная об этих объектах, то есть еще до их распознавания.
  • Семантическое выделение границ - это выделение границ, разбитых на классы.
  • Выделение частей тела человека .
  • И самая высокоуровневая задача - распознавание самих объектов , которое мы сейчас рассмотрим на примере распознавания лиц.

Распознавание лиц

Первое, что мы делаем - пробегаем face detector"ом по изображению для того, чтобы найти лицо. Далее мы нормализуем, центрируем лицо и запускаем его на обработку в нейронную сеть. После чего получаем набор или вектор признаков однозначно описывающий фичи этого лица.

Затем мы можем этот вектор признаков сравнить со всеми векторами признаков, которые хранятся у нас в базе данных, и получить отсылку на конкретного человека, на его имя, на его профиль - всё, что у нас может храниться в базе данных.

Именно таким образом работает наш продукт FindFace - это бесплатный сервис, который помогает искать профили людей в базе «ВКонтакте».

Кроме того, у нас есть API для компаний, которые хотят попробовать наши продукты. Мы предоставляем сервис по детектированию лиц, по верификации и по идентификации пользователей.

Сейчас у нас разработаны 2 сценария. Первый - это идентификация, поиск лица по базе данных. Второе - это верификация, это сравнение двух изображений с некой вероятностью, что это один и тот же человек. Кроме того, у нас сейчас в разработке распознавание эмоций, распознавание изображений на видео и liveness detection - это понимание, живой ли человек перед камерой или фотография.

Немного статистики. При идентификации, при поиске по 10 тысячам фото у нас точность около 95% в зависимости от качества базы, 99% точность верификации. И помимо этого данный алгоритм очень устойчив к изменениям - нам необязательно смотреть в камеру, у нас могут быть некие загораживающие предметы: очки, солнечные очки, борода, медицинская маска. В некоторых случаях мы можем победить даже такие невероятные сложности для компьютерного зрения, как и очки, и маска.

Очень быстрый поиск, затрачивается 0,5 секунд на обработку 1 миллиарда фотографий. Нами разработан уникальный индекс быстрого поиска. Также мы можем работать с изображениями низкого качества, полученных с CCTV-камер. Мы можем обрабатывать это все в режиме реального времени. Можно загружать фото через веб-интерфейс, через Android, iOS и производить поиск по 100 миллионам пользователей и их 250 миллионам фотографий.

Как я уже говорила мы заняли первое место на MegaFace competition - аналог для ImageNet, но для распознавания лиц. Он проводится уже несколько лет, в прошлом году мы были лучшими среди 100 команд со всего мира, включая Google.

Рекуррентные нейронные сети

Recurrent neural networks мы используем тогда, когда нам недостаточно распознавать только изображение. В тех случаях, когда нам важно соблюдать последовательность, нам нужен порядок того, что у нас происходит, мы используем обычные рекуррентные нейронные сети.

Это применяется для распознавания естественного языка, для обработки видео, даже используется для распознавания изображений.

Про распознавание естественного языка я рассказывать не буду - после моего доклада еще будут два, которые будут направлены на распознавание естественного языка. Поэтому я расскажу про работу рекуррентных сетей на примере распознавания эмоций.

Что такое рекуррентные нейронные сети? Это примерно то же самое, что и обычные нейронные сети, но с обратной связью. Обратная связь нам нужна, чтобы передавать на вход нейронной сети или на какой-то из ее слоев предыдущее состояние системы.

Предположим, мы обрабатываем эмоции. Даже в улыбке - одной из самых простых эмоций - есть несколько моментов: от нейтрального выражения лица до того момента, когда у нас будет полная улыбка. Они идут друг за другом последовательно. Чтоб это хорошо понимать, нам нужно уметь наблюдать за тем, как это происходит, передавать то, что было на предыдущем кадре в следующий шаг работы системы.

В 2005 году на состязании Emotion Recognition in the Wild специально для распознавания эмоций команда из Монреаля представила рекуррентную систему, которая выглядела очень просто. У нее было всего несколько свёрточных слоев, и она работала исключительно с видео. В этом году они добавили также распознавание аудио и cагрегировали покадровые данные, которые получаются из convolutional neural networks, данные аудиосигнала с работой рекуррентной нейронной сети (с возвратом состояния) и получили первое место на состязании.

Обучение с подкреплением

Следующий тип нейронных сетей, который очень часто используется в последнее время, но не получил такой широкой огласки, как предыдущие 2 типа - это deep reinforcement learning, обучение с подкреплением.

Дело в том, что в предыдущих двух случаях мы используем базы данных. У нас есть либо данные с лиц, либо данные с картинок, либо данные с эмоциями с видеороликов. Если у нас этого нет, если мы не можем это отснять, как научить робота брать объекты? Это мы делаем автоматически - мы не знаем, как это работает. Другой пример: составлять большие базы данных в компьютерных играх сложно, да и не нужно, можно сделать гораздо проще.

Все, наверное, слышали про успехи deep reinforcement learning в Atari и в го.

Кто слышал про Atari? Ну кто-то слышал, хорошо. Про AlphaGo думаю слышали все, поэтому я даже не буду рассказывать, что конкретно там происходит.

Что происходит в Atari? Слева как раз изображена архитектура этой нейронной сети. Она обучается, играя сама с собой для того, чтобы получить максимальное вознаграждение. Максимальное вознаграждение - это максимально быстрый исход игры с максимально большим счетом.

Справа вверху - последний слой нейронной сети, который изображает всё количество состояний системы, которая играла сама против себя всего лишь в течение двух часов. Красным изображены желательные исходы игры с максимальным вознаграждением, а голубым - нежелательные. Сеть строит некое поле и движется по своим обученным слоям в то состояние, которого ей хочется достичь.

В робототехнике ситуация состоит немного по-другому. Почему? Здесь у нас есть несколько сложностей. Во-первых, у нас не так много баз данных. Во-вторых, нам нужно координировать сразу три системы: восприятие робота, его действия с помощью манипуляторов и его память - то, что было сделано в предыдущем шаге и как это было сделано. В общем это все очень сложно.

Дело в том, что ни одна нейронная сеть, даже deep learning на данный момент, не может справится с этой задачей достаточно эффективно, поэтому deep learning только исключительно кусочки того, что нужно сделать роботам. Например, недавно Сергей Левин предоставил систему, которая учит робота хватать объекты.

Вот здесь показаны опыты, которые он проводил на своих 14 роботах-манипуляторах.

Что здесь происходит? В этих тазиках, которые вы перед собой видите, различные объекты: ручки, ластики, кружки поменьше и побольше, тряпочки, разные текстуры, разной жесткости. Неясно, как научить робота захватывать их. В течение многих часов, а даже, вроде, недель, роботы тренировались, чтобы уметь захватывать эти предметы, составлялись по этому поводу базы данных.

Базы данных - это некий отклик среды, который нам нужно накопить для того, чтобы иметь возможность обучить робота что-то делать в дальнейшем. В дальнейшем роботы будут обучаться на этом множестве состояний системы.

Нестандартные применения нейронных сетей

Это к сожалению, конец, у меня не много времени. Я расскажу про те нестандартные решения, которые сейчас есть и которые, по многим прогнозам, будут иметь некое приложение в будущем.

Итак, ученые Стэнфорда недавно придумали очень необычное применение нейронной сети CNN для предсказания бедности. Что они сделали?

На самом деле концепция очень проста. Дело в том, что в Африке уровень бедности зашкаливает за все мыслимые и немыслимые пределы. У них нет даже возможности собирать социальные демографические данные. Поэтому с 2005 года у нас вообще нет никаких данных о том, что там происходит.

Учёные собирали дневные и ночные карты со спутников и скармливали их нейронной сети в течение некоторого времени.

Нейронная сеть была преднастроена на ImageNet"е. То есть первые слои фильтров были настроены так, чтобы она умела распознавать уже какие-то совсем простые вещи, например, крыши домов, для поиска поселения на дневных картах. Затем дневные карты были сопоставлены с картами ночной освещенности того же участка поверхности для того, чтобы сказать, насколько есть деньги у населения, чтобы хотя бы освещать свои дома в течение ночного времени.

Здесь вы видите результаты прогноза, построенного нейронной сетью. Прогноз был сделан с различным разрешением. И вы видите - самый последний кадр - реальные данные, собранные правительством Уганды в 2005 году.

Можно заметить, что нейронная сеть составила достаточно точный прогноз, даже с небольшим сдвигом с 2005 года.

Были конечно и побочные эффекты. Ученые, которые занимаются deep learning, всегда с удивлением обнаруживают разные побочные эффекты. Например, как те, что сеть научилась распознавать воду, леса, крупные строительные объекты, дороги - все это без учителей, без заранее построенных баз данных. Вообще полностью самостоятельно. Были некие слои, которые реагировали, например, на дороги.

И последнее применение о котором я хотела бы поговорить - семантическая сегментация 3D изображений в медицине. Вообще medical imaging - это сложная область, с которой очень сложно работать.

Для этого есть несколько причин.

  • У нас очень мало баз данных. Не так легко найти картинку мозга, к тому же повреждённого, и взять ее тоже ниоткуда нельзя.
  • Даже если у нас есть такая картинка, нужно взять медика и заставить его вручную размещать все многослойные изображения, что очень долго и крайне неэффективно. Не все медики имеют ресурсы для того, чтобы этим заниматься.
  • Нужна очень высокая точность. Медицинская система не может ошибаться. При распознавании, например, котиков, не распознали - ничего страшного. А если мы не распознали опухоль, то это уже не очень хорошо. Здесь особо свирепые требования к надежности системы.
  • Изображения в трехмерных элементах - вокселях, не в пикселях, что доставляет дополнительные сложности разработчикам систем.
Но как обошли этот вопрос в данном случае? CNN была двупотоковая. Одна часть обрабатывала более нормальное разрешение, другая - чуть более ухудшенное разрешение для того, чтобы уменьшить количество слоёв, которые нам нужно обучать. За счёт этого немного сократилось время на тренировку сети.

Где это применяется: определение повреждений после удара, для поиска опухоли в мозгу, в кардиологии для определения того, как работает сердце.

Вот пример для определения объема плаценты.

Автоматически это работает хорошо, но не настолько, чтобы это было выпущено в производство, поэтому пока только начинается. Есть несколько стартапов для создания таких систем медицинского зрения. Вообще в deep learning очень много стартапов в ближайшее время. Говорят, что venture capitalists в последние полгода выделили больше бюджета на стартапы обрасти deep learning, чем за прошедшие 5 лет.

Эта область активно развивается, много интересных направлений. Мы с вами живем в интересное время. Если вы занимаетесь deep learning, то вам, наверное, пора открывать свой стартап.

Ну на этом я, наверное, закруглюсь. Спасибо вам большое.

НЕЙРО́ННЫЕ СЕ́ТИ искусственные, многослойные высокопараллельные (т. е. с большим числом независимо параллельно работающих элементов) логические структуры, составленные из формальных нейронов. Начало теории нейронных сетей и нейрокомпьютеров положила работа американских нейрофизиологов У. Мак-Каллока и У. Питтса «Логическое исчисление идей, относящихся к нервной деятельности» (1943), в которой они предложили математическую модель биологического нейрона. Среди основополагающих работ следует выделить модель Д. Хэбба, который в 1949 г. предложил закон обучения, явившийся стартовой точкой для алгоритмов обучения искусственных нейронных сетей. На дальнейшее развитие теории нейронной сети существенное влияние оказала монография американского нейрофизиолога Ф. Розенблатта «Принципы нейродинамики», в которой он подробно описал схему перцептрона (устройства, моделирующего процесс восприятия информации человеческим мозгом). Его идеи получили развитие в научных работах многих авторов. В 1985–86 гг. теория нейронных сетей получила «технологический импульс», вызванный возможностью моделирования нейронных сетей на появившихся в то время доступных и высокопроизводительных персональных компьютерах . Теория нейронной сети продолжает достаточно активно развиваться в начале 21 века. По оценкам специалистов, в ближайшее время ожидается значительный технологический рост в области проектирования нейронных сетей и нейрокомпьютеров. За последние годы уже открыто немало новых возможностей нейронных сетей, а работы в данной области вносят существенный вклад в промышленность, науку и технологии, имеют большое экономическое значение.

Основные направления применения нейронных сетей

Потенциальными областями применения искусственных нейронных сетей являются те, где человеческий интеллект малоэффективен, а традиционные вычисления трудоёмки или физически неадекватны (т. е. не отражают или плохо отражают реальные физические процессы и объекты). Актуальность применения нейронных сетей (т. е. нейрокомпьютеров) многократно возрастает, когда появляется необходимость решения плохо формализованных зада ч. Основные области применения нейронных сетей: автоматизация процесса классификации, автоматизация прогнозирования, автоматизация процесса распознавания, автоматизация процесса принятия решений; управление, кодирование и декодирование информации; аппроксимация зависимостей и др.

С помощью нейронных сетей успешно решается важная задача в области телекоммуникаций – проектирование и оптимизация сетей связи (нахождение оптимального пути трафика между узлами). Кроме управления маршрутизацией потоков, нейронные сети используются для получения эффективных решений в области проектирования новых телекоммуникационных сетей.

Распознавание речи – одна из наиболее популярных областей применения нейронных сетей.

Ещё одна область – управление ценами и производством (потери от неоптимального планирования производства часто недооцениваются). Поскольку спрос и условия реализации продукции зависят от времени, сезона, курсов валют и многих других факторов, то и объём производства должен гибко варьироваться с целью оптимального использования ресурсов (нейросетевая система обнаруживает сложные зависимости между затратами на рекламу, объёмами продаж, ценой, ценами конкурентов, днём недели, сезоном и т. д.). В результате использования системы осуществляется выбор оптимальной стратегии производства с точки зрения максимизации объёма продаж или прибыли.

При анализе потребительского рынка (маркетинг), когда обычные (классические) методы прогнозирования отклика потребителей могут быть недостаточно точны, используется прогнозирующая нейросетевая система с адаптивной архитектурой нейросимулятора.

Исследование спроса позволяет сохранить бизнес компании в условиях конкуренции, т. е. поддерживать постоянный контакт с потребителями через «обратную связь». Крупные компании проводят опросы потребителей, позволяющие выяснить, какие факторы являются для них решающими при покупке данного товара или услуги, почему в некоторых случаях предпочтение отдаётся конкурентам и какие товары потребитель хотел бы увидеть в будущем. Анализ результатов такого опроса – достаточно сложная задача, так как существует большое число коррелированных параметров. Нейросетевая система позволяет выявлять сложные зависимости между факторами спроса, прогнозировать поведение потребителей при изменении маркетинговой политики, находить наиболее значимые факторы и оптимальные стратегии рекламы, а также очерчивать сегмент потребителей, наиболее перспективный для данного товара.

В медицинской диагностике нейронные сети применяются, например, для диагностики слуха у грудных детей. Система объективной диагностики обрабатывает зарегистрированные «вызванные потенциалы» (отклики мозга), проявляющиеся в виде всплесков на электроэнцефалограмме, в ответ на звуковой раздражитель, синтезируемый в процессе обследования. Обычно для уверенной диагностики слуха ребёнка опытному эксперту-аудиологу необходимо провести до 2000 тестов, что занимает около часа. Система на основе нейронной сети способна с той же достоверностью определить уровень слуха уже по 200 наблюдениям в течение всего нескольких минут, причём без участия квалифицированного персонала.

Нейронные сети применяются также для прогнозирования краткосрочных и долгосрочных тенденций в различных областях (финансовой, экономической, банковской и др.).

Структура нейронных сетей

Нервная система и мозг человека состоят из нейронов, соединённых между собой нервными волокнами. Нервные волокна способны передавать электрические импульсы между нейронами. Все процессы передачи раздражений от нашей кожи, ушей и глаз к мозгу, процессы мышления и управления действиями – всё это реализовано в живом организме как передача электрических импульсов между нейронами.

Биологический нейрон (Cell) имеет ядро (Nucleus), а также отростки нервных волокон двух типов (рис. 1) – дендриты (Dendrites), по которым принимаются импульсы (Carries signals in), и единственный аксон (Axon), по которому нейрон может передавать импульс (Carries signals away). Аксон контактирует с дендритами других нейронов через специальные образования – синапсы (Synapses), которые влияют на силу передаваемого импульса. Структура, состоящая из совокупности большого количества таких нейронов, получила название биологической (или естественной) нейронной сети.

Появление формального нейрона во многом обусловлено изучением биологических нейронов. Формальный нейрон (далее – нейрон) является основой любой искусственной нейронной сети. Нейроны представляют собой относительно простые, однотипные элементы, имитирующие работу нейронов мозга. Каждый нейрон характеризуется своим текущим состоянием по аналогии с нервными клетками головного мозга, которые могут быть возбуждены и заторможены. Искусственный нейрон, так же как и его естественный прототип, имеет группу синапсов (входов ), которые соединены с выходами других нейронов, а также аксон – выходную связь данного нейрона, откуда сигнал возбуждения или торможения поступает на синапсы других нейронов.

Фор­маль­ный ней­рон пред­став­ля­ет со­бой ло­гический эле­мент с $N$ вхо­да­ми, ($N+1$ ) ве­со­вы­ми ко­эф­фи­ци­ен­та­ми, сум­ма­то­ром и не­ли­ней­ным пре­об­ра­зо­ва­те­лем. Про­стей­ший фор­маль­ный ней­рон, осу­ще­ст­в­ляю­щий ло­гическое пре­обра­зо­ва­ние $y = \text{sign}\sum_{i=0}^{N}a_ix_i$ вход­ных сигна­лов (ко­то­ры­ми, напр., яв­ля­ют­ся вы­ход­ные сиг­на­лы др. фор­маль­ных ней­ро­нов Н. с.) в вы­ход­ной сигнал, пред­став­лен на рис. 1.

Здесь $y$ – зна­че­ние вы­хо­да фор­маль­но­го ней­ро­на; $a_i$ – ве­со­вые ко­эф­фи­ци­ен­ты; $x_i$ – вход­ные зна­че­ния фор­маль­но­го ней­ро­на ($x_i∈\left \{0,1\right \},\; x_0=1$ ). Про­цесс вы­чис­ле­ния вы­ход­но­го зна­че­ния фор­маль­но­го ней­ро­на пред­став­ля­ет со­бой дви­же­ние по­то­ка дан­ных и их пре­об­ра­зо­ва­ние. Сна­ча­ла дан­ные по­сту­па­ют на блок вхо­да фор­маль­но­го ней­ро­на, где про­ис­хо­дит ум­но­же­ние ис­ход­ных дан­ных на со­от­вет­ст­вую­щие ве­со­вые ко­эф­фи­ци­ен­ты, т. н. синоптические веса (в соответствии с синапсами биологических нейронов). Ве­со­вой ко­эф­фи­ци­ент яв­ля­ет­ся ме­рой, ко­то­рая оп­ре­де­ля­ет, на­сколь­ко со­от­вет­ст­вую­щее вход­ное зна­че­ние влия­ет на со­стоя­ние фор­маль­но­го ней­ро­на. Ве­со­вые ко­эф­фи­ци­ен­ты мо­гут из­ме­нять­ся в со­от­вет­ст­вии с обу­чаю­щи­ми при­мера­ми, ар­хи­тек­ту­рой Н. с., пра­ви­ла­ми обу­че­ния и др. По­лу­чен­ные (при ум­но­же­нии) зна­че­ния пре­об­ра­зу­ют­ся в сум­ма­то­ре в од­но чи­сло­вое зна­че­ние $g$ (по­сред­ст­вом сум­ми­ро­ва­ния). За­тем для оп­ре­де­ле­ния выхо­да фор­маль­но­го ней­ро­на в бло­ке не­ли­ней­но­го пре­об­ра­зо­ва­ния (реа­ли­зую­ще­го пе­ре­да­точ­ную функ­цию) $g$ срав­ни­ва­ет­ся с не­ко­то­рым чис­лом (по­ро­гом). Ес­ли сум­ма боль­ше зна­че­ния по­ро­га, фор­маль­ный ней­рон ге­не­ри­ру­ет сиг­нал, в про­тив­ном слу­чае сиг­нал бу­дет ну­ле­вым или тор­мо­зя­щим. В дан­ном фор­маль­ном ней­ро­не при­ме­ня­ет­ся не­ли­ней­ное пре­об­ра­зо­ва­ние$$\text{sign}(g)= \begin{cases} 0,\; g < 0 \\ 1,\; g ⩾ 0 \end{cases},\quad \text{где}\,\,g = \sum_{i=0}^N a_i x_i.$$

Выбор структуры нейронной сети осуществляется в соответствии с особенностями и сложностью задачи. Теоретически число слоёв и число нейронов в каждом слое нейронной сети может быть произвольным, однако фактически оно ограничено ресурсами компьютера или специализированной микросхемы, на которых обычно реализуется нейронная сеть. При этом если в качестве активационной функции для всех нейронов сети используется функция единичного скачка, нейронная сеть называется многослойным персептроно м.

На рис. 3 показана общая схема многослойной нейронной сети с последовательными связями. Высокий параллелизм обработки достигается путём объединения большого числа формальных нейронов в слои и соединения определённым образом различных нейронов между собой.

В общем случае в эту структуру могут быть введены перекрёстные и обратные связи с настраиваемыми весовыми коэффициентами (рис. 4).

Нейронные сети являются сложными нелинейными системами с огромным числом степеней свободы. Принцип, по которому они обрабатывают информацию, отличается от принципа, используемого в компьютерах на основе процессоров с фон-неймановской архитектурой – с логическим базисом И, ИЛИ, НЕ (см. Дж. фон Нейман , Вычислительная машина ). Вместо классического программирования (как в традиционных вычислительных системах) применяется обучение нейронной сети, которое сводится, как правило, к настройке весовых коэффициентов с целью оптимизации заданного критерия качества функционирования нейронной сети.

Нейросетевые алгоритмы

Нейросетевым алгоритмом решения задач называется вычислительная процедура, полностью или по большей части реализованная в виде нейронной сети той или иной структуры (например, многослойная нейронная сеть с последовательными или перекрёстными связями между слоями формальных нейронов) с соответствующим алгоритмом настройки весовых коэффициентов. Основой разработки нейросетевого алгоритма является системный подход, при котором процесс решения задачи представляется как функционирование во времени некоторой динамической системы. Для её построения необходимо определить: объект, выступающий в роли входного сигнала нейронной сети; объект, выступающий в роли выходного сигнала нейронной сети (например, непосредственно решение или некоторая его характеристика); желаемый (требуемый) выходной сигнал нейронной сети; структуру нейронной сети (число слоёв, связи между слоями, объекты, служащие весовыми коэффициентами); функцию ошибки системы (характеризующую отклонение желаемого выходного сигнала нейронной сети от реального выходного сигнала); критерий качества системы и функционал её оптимизации, зависящий от ошибки; значение весовых коэффициентов (например, определяемых аналитически непосредственно из постановки задачи, с помощью некоторых численных методов или процедуры настройки весовых коэффициентов нейронной сети).

Количество и тип формальных нейронов в слоях, а также число слоёв нейронов выбираются исходя из специфики решаемых задач и требуемого качества решения. Нейронная сеть в процессе настройки на решение конкретной задачи рассматривается как многомерная нелинейная система, которая в итерационном режиме целенаправленно ищет оптимум некоторого функционала, количественно определяющего качество решения поставленной задачи. Для нейронных сетей, как многомерных нелинейных объектов управления, формируются алгоритмы настройки множества весовых коэффициентов. Основные этапы исследования нейронной сети и построения алгоритмов настройки (адаптации) их весовых коэффициентов включают: исследование характеристик входного сигнала для различных режимов работы нейронной сети (входным сигналом нейронной сети является, как правило, входная обрабатываемая информация и указание так называемого «учител я» нейронной сети); выбор критериев оптимизации (при вероятностной модели внешнего мира такими критериями могут быть минимум средней функции риска, максимум апостериорной вероятности, в частности при наличии ограничений на отдельные составляющие средней функции риска); разработку алгоритма поиска экстремумов функционалов оптимизации (например, для реализации алгоритмов поиска локальных и глобального экстремумов); построение алгоритмов адаптации коэффициентов нейронной сети; анализ надёжности и методов диагностики нейронной сети и др.

Необходимо отметить, что введение обратных связей и, как следствие, разработка алгоритмов настройки их коэффициентов в 1960–80 годы имели чисто теоретический смысл, т. к. не было практических задач, адекватных таким структурам. Лишь в конце 1980-х – начале 1990-х годов стали появляться такие задачи и простейшие структуры с настраиваемыми обратными связями для их решения (так называемые рекуррентные нейронные сети). Разработчики в области нейросетевых технологий занимались не только созданием алгоритмов настройки многослойных нейронных сетей и нейросетевыми алгоритмами решения различных задач, но и наиболее эффективными (на текущий момент развития технологии электроники) аппаратными эмуляторами (особые программы, которые предназначены для запуска одной системы в оболочке другой) нейросетевых алгоритмов. В 1960-е годы, до появления микропроцессора, наиболее эффективными эмуляторами нейронных сетей были аналоговые реализации разомкнутых нейронных сетей с разработанными алгоритмами настройки на универсальных ЭВМ (иногда системы на адаптивных элементах с аналоговой памятью). Такой уровень развития электроники делал актуальным введение перекрёстных связей в структуры нейронных сетей. Это приводило к значительному уменьшению числа нейронов в нейронной сети при сохранении качества решения задачи (например, дискриминантной способности при решении задач распознавания образов). Исследования 1960–70-х годов в области оптимизации структур нейронных сетей с перекрёстными связями наверняка найдут развитие при реализации мемристорных нейронных систем [мемристор (memristor, от memory – память, и resistor – электрическое сопротивление), пассивный элемент в микроэлектронике, способный изменять своё сопротивление в зависимости от протекавшего через него заряда], с учётом их специфики в части аналого-цифровой обработки информации и весьма значительного количества настраиваемых коэффициентов. Специфические требования прикладных задач определяли некоторые особенности структур нейронных сетей с помощью алгоритмов настройки: континуум (от лат. continuum – непрерывное, сплошное) числа классов, когда указание «учителя» системы формируется в виде непрерывного значения функции в некотором диапазоне изменения; континуум решений многослойной нейронной сети, формируемый выбором континуальной функции активации нейрона последнего слоя; континуум числа признаков, формируемый переходом в пространстве признаков от представления выходного сигнала в виде $N$ -мерного вектора вещественных чисел к вещественной функции в некотором диапазоне изменения аргумента; континуум числа признаков, как следствие, требует специфической программной и аппаратной реализации нейронной сети; вариант континуума признаков входного пространства был реализован в задаче распознавания периодических сигналов без преобразования их с помощью аналого-цифрового преобразователя (АЦП) на входе системы, и реализацией аналого-цифровой многослойной нейронной сети; континуум числа нейронов в слое; реализация многослойных нейронных сетей с континуумом классов и решений проводится выбором соответствующих видов функций активации нейронов последнего слоя.

В таблице показан систематизированный набор вариантов алгоритмов настройки многослойных нейронных сетей в пространстве «Входной сигнал – пространство решений». Представлено множество вариантов характеристик входных и выходных сигналов нейронных сетей, для которых справедливы алгоритмы настройки коэффициентов, разработанных российской научной школой в 1960–70 годах. Сигнал на вход нейронной сети описывается количеством классов (градаций) образов, представляющих указания «учителя». Выходной сигнал нейронной сети представляет собой количественное описание пространства решений. В таблице дана классификация вариантов функционирования нейронных сетей для различных видов входного сигнала (2 класса, $K$ классов, континуум классов) и различных вариантов количественного описания пространства решений (2 решения, $K_p$ решений, континуум решений). Цифрами 1, 7, 8 представлены конкретные варианты функционирования нейронных сетей.

Таблица. Набор вариантов алгоритмов настройки

Пространство(число) решений

Входной сигнал

2 класса $K$ классов Континуум классов
2 1 7 8
$K_p$ $K_p=3$ $K\lt K_p$ 9 10
$K = K_p$ 2
$K_p =\text{const}$ $K\gt K_p$ 4
Континуум 5 6 11

Основными преимуществами нейронных сетей как логического базиса алгоритмов решения сложных задач являются: инвариантность (неизменность, независимость) методов синтеза нейронных сетей от размерности пространства признаков; возможность выбора структуры нейронных сетей в значительном диапазоне параметров в зависимости от сложности и специфики решаемой задачи с целью достижения требуемого качества решения; адекватность текущим и перспективным технологиям микроэлектроники; отказоустойчивость в смысле его небольшого, а не катастрофического изменения качества решения задачи в зависимости от числа вышедших из строя элементов.

Нейронные сети – частный вид объекта управления в адаптивной системе

Нейронные сети явились в теории управления одним из первых примеров перехода от управления простейшими линейными стационарными системами к управлению сложными нелинейными, нестационарными, многомерными, многосвязными системами. Во второй половине 1960-х годов родилась методика синтеза нейронных сетей, которая развивалась и успешно применялась в течение последующих почти пятидесяти лет. Общая структура этой методики представлена на рис. 5.

Входные сигналы нейронных сетей

Вероятностная модель окружающего мира является основой нейросетевых технологий. Подобная модель – основа математической статистики. Нейронные сети возникли как раз в то время, когда экспериментаторы, использующие методы математической статистики, задали себе вопрос: «А почему мы обязаны описывать функции распределения входных случайных сигналов в виде конкретных аналитических выражений (нормальное распределение, распределение Пуассона и т. д.)? Если это правильно и на это есть какая-то физическая причина, то задача обработки случайных сигналов становится достаточно простой».

Специалисты по нейросетевым технологиям сказали: «Мы ничего не знаем о функции распределения входных сигналов, мы отказываемся от необходимости формального описания функции распределения входных сигналов, даже если сузим класс решаемых задач. Мы считаем функции распределения входных сигналов сложными, неизвестными и будем решать частные конкретные задачи в условиях подобной априорной неопределённости (т. е. неполноты описания; нет информации и о возможных результатах)». Именно поэтому нейронные сети в начале 1960-х годов эффективно применялись при решении задач распознавания образов. Причём задача распознавания образов трактовалась как задача аппроксимации многомерной случайной функции, принимающей $K$ значений, где $K$ – число классов образов.

Ниже отмечены некоторые режимы работы многослойных нейронных сетей, определяемые характеристиками случайных входных сигналов, для которых ещё в конце 1960-х годов были разработаны алгоритмы настройки коэффициентов.

Обучение нейронных сетей

Очевидно, что функционирование нейронной сети, т. е. действия, которые она способна выполнять, зависит от величин синоптических связей. Поэтому, задавшись структурой нейронной сети, отвечающей определённой задаче, разработчик должен найти оптимальные значения для всех весовых коэффициентов $w$ . Этот этап называется обучением нейронной сети, и от того, насколько качественно он будет выполнен, зависит способность сети решать во время эксплуатации поставленные перед ней проблемы. Важнейшими параметрами обучения являются: качество подбора весовых коэффициентов и время, которое необходимо затратить на обучение. Как правило, два этих параметра связаны между собой обратной зависимостью и их приходится выбирать на основе компромисса. В настоящее время все алгоритмы обучения нейронных сетей можно разделить на два больших класса: «с учителем» и «без учителя».

Априорные вероятности появления классов

При всей недостаточности априорной информации о функциях распределения входных сигналов игнорирование некоторой полезной информации может привести к потере качества решения задачи. Это в первую очередь касается априорных вероятностей появления классов. Были разработаны алгоритмы настройки многослойных нейронных сетей с учётом имеющейся информации об априорных вероятностях появления классов. Это имеет место в таких задачах, как распознавание букв в тексте, когда для данного языка вероятность появления каждой буквы известна и эту информацию необходимо использовать при построении алгоритма настройки коэффициентов многослойной нейронной сети.

Квалификация «учителя»

Нейронной сети предъявляются значения как входных, так и выходных параметров, и она по некоторому внутреннему алгоритму подстраивает веса своих синаптических связей. Обучение «с учителем» предполагает, что для каждого входного вектора существует целевой вектор, представляющий собой требуемый выход. В общем случае квалификация «учителя» может быть различной для различных классов образов. Вместе они называются представительской или обучающей выборко й. Обычно нейронная сеть обучается на некотором числе таких выборок. Предъявляется выходной вектор, вычисляется выход нейронной сети и сравнивается с соответствующим целевым вектором, разность (ошибка) с помощью обратной связи подаётся в нейронную сеть, и веса изменяются в соответствии с алгоритмом, стремящимся минимизировать ошибку. Векторы обучающего множества предъявляются последовательно, вычисляются ошибки и веса подстраиваются для каждого вектора до тех пор, пока ошибка по всему обучающему массиву не достигнет приемлемо низкого уровня.

В задачах распознавания образов, как правило, по умолчанию квалификация «учителя» является полной, т.е. вероятность правильного отнесения «учителем» образов к тому или иному классу равна единице. На практике при наличии косвенных измерений это зачастую не соответствует действительности, например в задачах медицинской диагностики, когда при верификации (проверке) архива медицинских данных, предназначенных для обучения, вероятность отнесения этих данных к тому или иному заболеванию не равна единице. Введение понятия квалификации «учителя» позволило разработать единые алгоритмы настройки коэффициентов многослойных нейронных сетей для режимов обучения, обучения «с учителем», обладающим конечной квалификацией, и самообучения (кластеризации), когда при наличии $K$ или двух классов образов квалификация «учителя» (вероятность отнесения образов к тому или иному классу) равна $\frac {1} {K}$ или 1 / 2 . Введение понятия квалификации «учителя» в системах распознавания образов позволило чисто теоретически рассмотреть режимы «вредительства» системе, когда ей сообщается заведомо ложное (с различной степенью ложности) отнесение образов к тому или иному классу. Данный режим настройки коэффициентов многослойной нейронной сети пока не нашёл практического применения.

Кластеризация

Кластеризация (самообучение, обучение «без учителя») – это частный режим работы многослойных нейронных сетей, когда системе не сообщается информация о принадлежности образцов к тому или иному классу. Нейронной сети предъявляются только входные сигналы, а выходы сети формируются самостоятельно с учётом только входных и производных от них сигналов. Несмотря на многочисленные прикладные достижения, обучение «с учителем» критиковалось за биологическую неправдоподобность. Трудно вообразить обучающий механизм в естественном человеческом интеллекте, который сравнивал бы желаемые и действительные значения выходов, выполняя коррекцию с помощью обратной связи. Если допустить подобный механизм в человеческом мозге, то откуда тогда возникают желаемые выходы? Обучение «без учителя» является более правдоподобной моделью обучения в биологической системе. Она не нуждается в целевом векторе для выходов и, следовательно, не требует сравнения с предопределёнными идеальными ответами. Обучающее множество состоит лишь из входных векторов. Обучающий алгоритм подстраивает веса нейронной сети так, чтобы получались согласованные выходные векторы, т. е. чтобы предъявление достаточно близких входных векторов давало одинаковые выходы. Процесс обучения, следовательно, выделяет статистические свойства обучающего множества и группирует сходные векторы в классы. Предъявление на вход вектора из данного класса даст определённый выходной вектор, но до обучения невозможно предсказать, какой выход будет производиться данным классом входных векторов. Следовательно, выходы подобной сети должны трансформироваться в некоторую понятную форму, обусловленную процессом обучения. Это не является серьёзной проблемой. Обычно не сложно идентифицировать связь между входом и выходом, установленную сетью.

Кластеризации посвящено множество научных работ. Основная задача кластеризации заключается в обработке множества векторов в многомерном пространстве признаков с выделением компактных подмножеств (подмножеств, близко расположенных друг к другу), их количества и свойств. Наиболее распространённым методом кластеризации является метод «$K$ -means», практически не связанный с методами обратного распространения и не обобщаемый на архитектуры типа многослойных нейронных сетей.

Введение понятия квалификации «учителя» и единого подхода к обучению и самообучению в 1960-е годы позволило фактически создать основу для реализации режима кластеризации в многослойных нейронных сетях широкого класса структур.

Нестационарные образы

Существующие разработки в области систем распознавания образов на базе многослойных нейронных сетей в основном относятся к стационарным образам, т.е. к случайным входным сигналам, имеющим сложные неизвестные, но стационарные во времени функции распределения. В некоторых работах была сделана попытка распространить предлагаемую методику настройки многослойных нейронных сетей на нестационарные образы, когда предполагаемая неизвестная функции распределения входного сигнала зависит от времени или входной случайный сигнал является суперпозицией регулярной составляющей и случайной составляющей с неизвестной сложной функцией распределения, не зависящей от времени.

О критериях первичной оптимизации в многослойных нейронных сетях

Вероятностная модель мира, взятая за основу при построении алгоритмов адаптации в многослойных нейронных сетях, позволила формировать критерий первичной оптимизации в рассматриваемых системах в виде требований минимума средней функции риска и его модификаций: максимум апостериорной вероятности (условная вероятность случайного события при условии того, что известны апостериорные, т. е. основанные на опыте, данные); минимум средней функции риска; минимум средней функции риска при условии равенства условных функций риска для различных классов; минимум средней функции риска при условии заданного значения условной функции риска для одного из классов; другие критерии первичной оптимизации, вытекающие из требований конкретной практической задачи. В работах российских учёных были представлены модификации алгоритмов настройки многослойных нейронных сетей для указанных выше критериев первичной оптимизации. Отметим, что в подавляющем большинстве работ в области теории нейронных сетей и в алгоритмах обратного распространения рассматривается простейший критерий – минимум среднеквадратической ошибки, без каких бы то ни было ограничений на условные функции риска.

В режиме самообучения (кластеризации) предпосылкой формирования критерия и функционала первичной оптимизации нейронных сетей служит представление функции распределения входного сигнала в виде многомодальной функции в многомерном пространстве признаков, где каждой моде с некоторой вероятностью соответствует класс. В качестве критериев первичной оптимизации в режиме самообучения использовались модификации средней функции риска.

Представленные модификации критериев первичной оптимизации были обобщены на случаи континуума классов и решений; континуума признаков входного пространства; континуума числа нейронов в слое; при произвольной квалификации учителя. Важным разделом формирования критерия и функционала первичной оптимизации в многослойных нейронных сетях при вероятностной модели мира является выбор матрицы потерь, которая в теории статистических решений определяет коэффициент потерь $L_{12}$ при ошибочном отнесении образов 1-го класса ко 2-му и коэффициент потерь $L_{21}$ при отнесении образов 2-го класса к 1-му. Как правило, по умолчанию матрица $L$ этих коэффициентов при синтезе алгоритмов настройки многослойных нейронных сетей, в том числе и при применении метода обратного распространения, принимается симметричной. На практике это не соответствует действительности. Характерным примером является система обнаружения мин с применением геолокатора. В этом случае потери при ошибочном отнесении камня к мине равнозначны некоторой небольшой потере времени пользователем геолокатора. Потери, связанные с ошибочным отнесением мины к классу камней, связаны с жизнью или значительной потерей здоровья пользователями геолокатора.

Анализ разомкнутых нейронных сетей

Данный этап синтеза ставит своей целью определение в общем виде статистических характеристик выходных и промежуточных сигналов нейронных сетей как многомерных, нелинейных объектов управления с целью дальнейшего формирования критерия и функционала вторичной оптимизации, т. е. функционала, реально оптимизируемого алгоритмом адаптации в конкретной нейронной сети. В подавляющем большинстве работ в качестве такого функционала принимается среднеквадратическая ошибка, что ухудшает качество решения или вообще не соответствует задаче оптимизации, поставленной критерием первичной оптимизации.

Разработаны методика и алгоритмы формирования функционала вторичной оптимизации, соответствующего заданному функционалу первичной оптимизации.

Алгоритмы поиска экстремума функционалов вторичной оптимизации

Алгоритм поиска экстремума применительно к конкретному функционалу вторичной оптимизации определяет алгоритм настройки коэффициентов многослойной нейронной сети. В начале 21 века наибольший практический интерес представляют подобные алгоритмы, реализованные в системе MatLab (сокращение от англ. «Matrix Laboratory» – пакет прикладных программ для решения задач технических вычислений и одноимённый язык программирования). Однако необходимо отметить частность алгоритмов адаптации в многослойных нейронных сетях, используемых в системах MatLab (Neural Network Toolbox – предоставляет функции и приложения для моделирования сложных нелинейных систем, которые описываются уравнениями; поддерживает обучение «с учителем» и «без учителя», прямым распространением, с радиальными базисными функциями и др.), и ориентацию этих алгоритмов не на специфику решаемых задач, а на воображаемую «геометрию» функционалов вторичной оптимизации. Эти алгоритмы не учитывают многих деталей специфики применения многослойных нейронных сетей при решении конкретных задач и, естественно, требуют коренной, если не принципиальной, переработки при переходе к мемристорным нейронным системам. Был проведён детальный сравнительный анализ метода обратного распространения и российских методов 1960–70-х годов. Основная особенность данных алгоритмов заключается в необходимости поиска локальных и глобального экстремумов многоэкстремального функционала в многомерном пространстве настраиваемых коэффициентов нейронной сети. Рост размеров нейронной сети ведёт к значительному росту числа настраиваемых коэффициентов, т. е. к росту размерности пространства поиска. Ещё в 1960-х годах в работах предлагались поисковые и аналитические процедуры расчёта градиента функционала вторичной оптимизации, а в классе аналитических процедур предлагалось и исследовалось применение для организации поиска не только первой, но и второй производной функционала вторичной оптимизации. Специфика многоэкстремальности функционала вторичной оптимизации привела в течение последующих десятилетий к появлению различных модификаций методов поиска (генетические алгоритмы и т. п.). Созданы алгоритмы поиска экстремумов функционалов вторичной оптимизации с ограничениями на величину, скорость и другие параметры весовых коэффициентов нейронных сетей. Именно эти методы должны быть основой работ по методам настройки нейронных сетей с применением мемристоров (весовых коэффициентов) с учётом таких специфических характеристик, как передаточные функции.

Начальные условия при настройке коэффициентов

Выбор начальных условий итерационной процедуры поиска экстремумов функционалов вторичной оптимизации является важным этапом синтеза алгоритмов настройки многослойных нейронных сетей. Задача выбора начальных условий должна решаться специфически для каждой задачи, решаемой нейронной сетью, и быть неотъемлемой составляющей общей процедуры синтеза алгоритмов настройки многослойных нейронных сетей. Качественное решение этой задачи в значительной степени может сократить время настройки. Априорная сложность функционала вторичной оптимизации сделала необходимой введение процедуры выбора начальных условий в виде случайных значений коэффициентов с повторением этой процедуры и процедуры настройки коэффициентов. Эта процедура ещё в 1960-е годы казалась чрезвычайно избыточной с точки зрения времени, затрачиваемого на настройку коэффициентов. Однако, несмотря на это, она достаточно широко применяется и в настоящее время. Для отдельных задач тогда же была принята идея выбора начальных условий, специфических для данной решаемой задачи. Такая процедура была отработана для трёх задач: распознавание образов; кластеризация; нейроидентификация нелинейных динамических объектов.

Память в контуре настройки коэффициентов

Системный подход к построению алгоритмов поиска экстремума функционала вторичной оптимизации предполагает в качестве одного из режимов настройки перенастройку коэффициентов в каждом такте поступления образов на входе по текущему значению градиента функционала вторичной оптимизации. Разработаны алгоритмы настройки многослойных нейронных сетей с фильтрацией последовательности значений градиентов функционала вторичной оптимизации: фильтром нулевого порядка с памятью $m_n$ (для стационарных образов); фильтром $1, …, k$ -го порядка с памятью $m_n$ (для нестационарных образов) с различной гипотезой изменения во времени функций распределения для образов различных классов.

Исследование алгоритмов адаптации в нейронных сетях

Главный вопрос – как выбрать структуру многослойной нейронной сети для решения выбранной конкретной задачи – до сих пор в значительной степени не решён. Можно предложить лишь разумный направленный перебор вариантов структур с оценкой их эффективности в процессе решения задачи. Однако оценка качества работы алгоритма настройки на конкретной выбранной структуре, конкретной задаче может быть недостаточно корректной. Так, для оценки качества работы линейных динамических систем управления применяются типовые входные сигналы (ступенчатый, квадратичный и т. д.), по реакции на которые оцениваются установившаяся ошибка (астатизм системы) и ошибки в переходных процессах.

Подобно этому, для многослойных нейронных сетей были разработаны типовые входные сигналы для проверки и сравнения работоспособности различных алгоритмов настройки. Естественно, что типовые входные сигналы для таких объектов, как многослойные нейронные сети, являются специфическими для каждой решаемой задачи. В первую очередь были разработаны типовые входные сигналы для следующих задач: распознавание образов; кластеризация; нейроуправление динамическими объектами.

Основным аксиоматическим принципом применения нейросетевых технологий вместо методов классической математической статистики является отказ от формализованного описания функций распределения вероятностей для входных сигналов и принятие концепции неизвестных, сложных функций распределения. Именно по этой причине были предложены следующие типовые входные сигналы.

Для задачи кластеризации была предложена выборка случайного сигнала с многомодальным распределением, реализуемая в $N$ -мерном пространстве признаков с модами функции распределения, центры которых в количестве $Z$ размещаются на гипербиссектрисе $N$ -мерного пространства признаков. Каждая мода реализует составляющую случайной выборки с нормальным распределением и среднеквадратичным отклонением $σ$ , равным для каждой из $Z$ мод. Предметом сравнения различных методов кластеризации будет динамика настройки и качество решения задачи в зависимости от $N$ , $Z$ и $σ$ , при достаточно большой случайной выборке $M$ . Этот подход можно считать одним из первых достаточно объективных подходов к сравнению алгоритмов кластеризации, в том числе основанных на многослойных нейронных сетях c соответствующим выбором структуры для достижения необходимого качества кластеризации. Для задач классификации входные сигналы для испытаний аналогичны сигналам для кластеризации с тем изменением, что выборка с многомодальным распределением делится надвое (в случае двух классов) или на $K$ (в случае $K$ классов) частей с перемежающимися модами функции распределения для отдельных классов.

Нейронные сети с переменной структурой

Отказ в нейросетевых технологиях от априорной информации, от информации о функциях распределения входных сигналов приводит к необходимости реализации разумного перебора параметров структуры многослойных нейронных сетей для обеспечения необходимого качества решения задачи.

В 1960-е годы для весьма актуального в то время класса задач – распознавания образов – была предложена процедура настройки многослойных нейронных сетей, в которой структура априори не фиксируется, а является результатом настройки наряду со значениями настраиваемых коэффициентов. При этом в процессе настройки выбираются число слоёв и число нейронов в слоях. Процедура настройки коэффициентов многослойной нейронной сети с переменной структурой легко переносится с задачи распознавания двух классов образов на задачу распознавания $K$ классов образов. Причём здесь результатом настройки являются $K$ нейронных сетей, в каждой из которых первым классом является $k$ -й класс ($k = 1, \ldots, K$ ), а вторым все остальные. Подобная идея настройки многослойных нейронных сетей с переменной структурой применима и к решению задачи кластеризации. При этом в качестве первого класса образов принимается исходная анализируемая выборка, а в качестве второго класса – выборка с равномерным распределением в диапазоне изменения признаков. Реализуемая в процессе настройки многослойная нейронная сеть с переменной структурой качественно и количественно отражает сложность решения задачи. С этой точки зрения задача кластеризации как задача рождения новых знаний об изучаемом объекте заключается в выделении и анализе тех областей многомерного пространства признаков, в которых функция распределения вероятностей превышает уровень равномерного распределения в диапазоне изменения величин признаков.

Перспективы развития

В начале 21 века одной из основных концепций развития (обучения) многослойной нейронной сети является стремление к увеличению числа слоёв, а это предполагает обеспечение выбора структуры нейронной сети, адекватной решаемой задаче, разработку новых методов для формирования алгоритмов настройки коэффициентов. Достоинствами нейронных сетей являются: свойство т.н. постепенной деградации − при выходе из строя отдельных элементов качество работы системы падает постепенно (для сравнения, логические сети из элементов И, ИЛИ, НЕ выходят из строя при нарушении работы любого элемента сети); повышенная устойчивость к изменению параметров схем, их реализующих (например, весьма значительные изменения весов не приводят к ошибкам в реализации простой логической функции двух переменных) и др.

Широкое распространение нейросетевых алгоритмов в области сложных формализуемых, слабоформализуемых и неформализуемых задач привело к созданию нового направления в вычислительной математике – нейроматематики . Нейроматематика включает нейросетевые алгоритмы решения следующих задач: распознавание образов; оптимизация и экстраполяция функций; теории графов; криптографические задачи; решение вещественных и булевских систем линейных и нелинейных уравнений, обыкновенных одномерных и многомерных дифференциальных уравнений, дифференциальных уравнений в частных производных и др. На основе теории нейронных сетей создан новый раздел современной теории управления сложными нелинейными и многомерными, многосвязными динамическими системами – нейроуправление , включающий методы нейросетевой идентификации сложных динамических объектов; построение нейрорегуляторов в контурах управления сложными динамическими объектами и др.