Московский государственный университет печати. Московский государственный университет печати Лекция постоянный и переменный электрический ток

§ 12 - 1Получение переменного тока.

Переменнвм током называется ток, направление которого периодичемки изменяется с течением времени. Основным устройством, которое используется для получения перемен-

где a - угол между направлением магнитного поля В и нормалью к площади рамки S. На-правление тока в рамке в выбранный момент времени определяется по правилу правой руки. Нетрудно видеть, что направление токов в верхнем и нижнем проводниках противо-положны друг другу. Концы рамки подключаются к кольцам, которые, в свою очередь, с помощью скользящих контактов подсоединены к выходным клеммам генератора. В мощных генераторах рамка содержит несколько десятков или сотен витков, токи в ней достигают значительной величины, поэтому сама рамка делается неподвижной, чтобы избе-жать трущихся контактов, а магнитная система вращается вокруг рамки. Частота вращения является госудаоственным стандартом: в США это 60Гц, в Росси –50 Гц.

§ 12 –2 Квазистационарные токи.

Квазистационарным называется переменный ток, для которого в любой омент времени оказывается справедливым закон Ома, сформулированный ранее для постоянного тока. Это означает, что в неразветвленных цепях сила тока, проходящего через любой элемент цепи, в данный момент времени одинакова для всех элементов. Неквазистационарными токи становятся тогда, когда частота колебаний достигает очень больших значений – таких, что соответствующая им длина волны l = сТ, где с –скорость света, а Т –период колебаний, становится сравнимой с геометрическими размерами цепи. Например, для промышленного тока 50 Гц эта длина волны равна 6000 км.

В прошлом семестре было показано, что на длине волны амплитуды колебаний в разных точках пространства различны, изменяясь от максимума до нуля и нооборот через каждые l/4. Поэтому мгновеннве значения ока будут одинаковы тогда, когда l>> l , где l – длина цепи.

лагая, что условие квазистационарности выполнено. Тогда

E k , (ХХ)

где = U C - напряжение на конденсаторе, а суммарная ЭДС складывается из ЭДС источника тока и ЭДС самоиндукции E L:

E k = E L + E (t), E L = - .

Обычно величину называют падением напряжения на индуктивности и обозна-чают U L , т.е. U L = , произведение IR =U R –падением напряжения на сопротивлении. С учетом этого уравнение (ХХ) можно преобразовать:

U R + U L + U C = E (t). (ХХХ)

Вспоминая, что и заменяя величины U C и U L , получим

E (t). (¨¨¨)

Предположим, что ток в нашей цепи изменяется по синусоидальному закону: I = I 0 sinwt.

Тогда U R = I 0 R sinwt , U L = wLI 0 coswt = wLI 0 sin(wt -p/2),

Эти соотношения должны быть спаведливыми в любой момент времени, поэтому они спра-ведливы и для амплитудных значений, т.е.
.

Трактуя эти равенства как закон Ома для участка цепи, можно заметить, что величины Z L =wL и Z C = аналогичны по своему значению сопротивлению R. Используя такую

интерпретацию, можно видеть, что уравнение (¨¨¨) приобретает тригонометрический смысл: напряжения на емкости и индуктивности оказываются сдвинутыми по фазе на ±p/2 относительно напряжения на сопротивлении R. Здесь удобнее использовать векторное представление колебаний, которое рассматривалось в прошлом семестре. Любое гармо-ническое колебание y(t) = Asin(wt + j) можно представить в векторном виде: длина вектора определяется амплитудой колебаний А, начальная фаза определяет угол отклонения вектора от горизональной оси, а w - частоту, с которой вектор вращается вокруг начала координат. В этом представлении напряжение на сопротивлении R изображается в виде горизонтально-

или, выражая U R , U L и U C через произведения тока на соответствующие сопротивления,

.

Извлекая квадратный корень из обеих частей последнего равенства, получим:

. (·)

При выводе этого выражения учтено, что для последовательной цепи I R = I L = I C =I. Полученное выражение по своей структуре аналогично закону Ома для цепи постоянного тока. Поэтому оно называется законом Ома для переменного тока . Важно отметить, что между током и напряжением существует сдвиг фаз, величина которого определяется из рис.30:

или .

§ 12 – 4 Мощность переменного тока.

1. Переменный ток и переменное напряжение. Сопротивление участка цепи при протекании переменного тока.

2. Протекание переменного тока по резистору. Сопротивление резистора, действующие значения тока и напряжения.

3. Конденсатор в цепи переменного тока, емкостное сопротивление.

4. Протекание переменного тока по идеальной катушке индуктивности, индуктивное сопротивление.

5. Протекание переменного тока по RLC-цепочке, импеданс. Резонанс напряжений. RCR-цепочка.

6. Импеданс тканей организма. Эквивалентная электрическая схема тканей. Реография.

7. Основные понятия и формулы.

8. Задачи.

15.1. Переменный ток и переменное напряжение. Сопротивление участка цепи при протекании переменного тока

В широком смысле «переменным» называют любой ток, который изменяется с течением времени по величине и направлению. В технике переменным называют ток, который изменяется со временем по гармоническому закону. Такой ток мы и будем рассматривать:

Переменный ток представляет собой вынужденные электромагнитные колебания, которые возникают при подключении какоголибо прибора к сети переменного напряжения:

Обычно начало отсчета времени выбирают так, чтобы для напряжения электрической сети начальная фаза была равна нулю. Поэтому в формуле (15.2) нет слагаемого φ 0 .

В цепи постоянного тока отношение напряжения к силе тока называется сопротивлением участка цепи (R = U/I). Аналогично вводят понятие сопротивления и для цепи переменного тока. Его величина обозначается буквой Х.

Сопротивление участка цепи в сети переменного тока равно отношению амплитудного значения переменного напряжения на этом участке к амплитудному значению силы тока в нем:

Максимальное значение переменного тока (I max) и его начальная фаза (φ 0) зависят от свойств элементов, входящих в электрическую схему прибора. Рассмотрим протекание переменного тока по таким элементам.

15.2. Протекание переменного тока по резистору. Сопротивление резистора, действующие значения тока и напряжения

Резистором называется проводник, не обладающий индуктивностью и емкостью.

Для всех частот переменного тока, который используется в технике, сопротивление резистора (X R) остается постоянным и совпадает с его сопротивлением в цепи постоянного тока:

Резистор - единственный элемент, для которого ток и напряжение совпадают по фазе. Для того чтобы показать разность фаз между током и напряжением в общем случае, используют векторную диаграмму, на которой вектор, изображающий амплитудное напряжение (U max), расположен под углом к оси токов. Угол, который вектор U max образует с осью токов, показывает, насколько фаза напряжения опережает фазу тока.

Цепь с резистором R и соответствующая ей векторная диаграмма представлены на рис. 15.1.

Рис. 15.1. Цепь переменного тока с резистором и ее векторная диаграмма

Поскольку ток и напряжение изменяются в одинаковой фазе, векторы U max и I max отложены по одной прямой в одном направлении.

В принципе любому переменному току сопутствует электромагнитное излучение. Однако для частот переменного тока, используемых в промышленности, интенсивность такого излучения ничтожно мала, и потерями энергии на электромагнитное излучение пренебрегают. Поэтому работа переменного тока, протекающего через резистор, полностью превращается в его внутреннюю энергию. В связи с этим сопротивление резистора называют активным.

Расчеты показывают, что средняя мощность, выделяемая в резисторе при протекании переменного (гармонического) тока, вычисляется по формулам

Значения переменного тока и напряжения, определяемые формулой (15.7), называются действующими. Существует договоренность

о том, что по умолчанию для цепи переменного тока указывают именно действующие значения. Например, напряжение в бытовой сети переменного тока равно 220 В. Указанное значение 220 В является действующим значением напряжения.

15.3. Конденсатор в цепи переменного тока,

емкостное сопротивление

Включим в цепь переменного напряжения (15.2) конденсатор емкостью С. Вместе с изменением напряжения будет меняться и заряд конденсатора, а в подводящих проводах возникнет ток. Заряд конденсатора связан с напряжением в цепи соотношением (см. формулу 10.16)

Сопротивление конденсатора в цепи переменного тока называют емкостным сопротивлением. Его величину найдем по формулам (15.3, 15.9):

Цепь с конденсатором и соответствующая ей векторная диаграмма представлены на рис. 15.2.

Рис. 15.2. Цепь переменного тока с конденсатором и ее векторная диаграмма

Поскольку напряжение отстает по фазе от тока на π/2, вектор U max повернут относительно оси токов по часовой стрелке (в математике это направление считают отрицательным).

15.4. Протекание переменного тока по идеальной катушке индуктивности, индуктивное сопротивление

Включим в цепь переменного напряжения (15.2) катушку с индуктивностью L, активным сопротивлением которой можно пренебречь. Такую катушку называют идеальной. Вследствие самоиндукции в ней возникнет э.д.с., препятствующая изменению тока в цепи.

Поскольку активным сопротивлением катушки мы пренебрегаем, э.д.с. и напряжение одинаковы: ε = U. Используя формулу (10.15) для э.д.с. самоиндукции, получим дифференциальное уравнение для тока

Цепь с катушкой L и соответствующая ей векторная диаграмма представлены на рис. 15.3.

Рис. 15.3. Цепь переменного тока с катушкой и ее векторная диаграмма

Поскольку напряжение опережает по фазе ток на π/2, то вектор U max повернут относительно оси токов против часовой стрелки (в математике это направление считают положительным).

При протекании переменного тока по конденсатору и идеальной катушке индуктивности не происходит потерь энергии. Эти элементы половину периода забирают энергию из сети и преобразуют ее в энергию электрического и магнитного поля соответственно. Вторую половину периода энергия поля возвращается в сеть, поддерживая ток. В связи с отсутствием потерь энергии емкостное и индуктивное сопротивления называют реактивными.

15.5. Протекание переменного тока по RLC-цепочке, импеданс. Резонанс напряжений

Рассмотрим цепь, состоящую из последовательно соединенных резистора R, катушки индуктивности L и конденсатора С (рис. 15.4). Если на нее подать переменное напряжение (15.2), то ток в цепи будет отставать по фазе от напряжения на некоторый угол φ:

Такая цепь имеет как активное, так и реактивное сопротивления. Поэтому ее сопротивление называют импедансом и обозначают Z.

Импеданс равен отношению амплитудного значения переменного напряжения на концах цепи к амплитудному значению силы тока в ней:

Z = U max /I max .

Рис. 15.4. RLC-цепь в сети переменного тока и соответствующая ей векторная диаграмма

RLC-цепь и соответствующая ей векторная диаграмма представлены на рис. 15.4.

Элементы RLC-цепочки соединены последовательно. Поэтому по ним протекает одинаковый ток, а приложенное напряжение U(t) складывается из напряжений на отдельных участках цепи:

Резонанс напряжений

Если величины L, C и ω подобраны таким образом, что X c = X l , то импеданс Z (формула 15.16) имеет минимально возможное значение, равное R (Z = R). При этом амплитуда тока максимальна, а приложенное напряжение и ток изменяются в одной фазе (φ = 0). Данное

явление называется резонансом напряжений. Подставив в условие резонанса (X C = X L) выражения (15.11), (15.14), получим формулу для расчета резонансной частоты:

RCR- цепочка

Рассмотрим протекание тока по параллельной RCR-цепочке, которая моделирует проводящие свойства биологической ткани (рис. 15.5). Если ее включить в сеть переменного напряжения (15.2), то по нижнему и верхнему участкам будут протекать токи:

Вектор его амплитуды I равен сумме амплитуд I 1 и I 2 , а угол опережения φ показан на рис. 15.5,б.

Приведем без вывода формулу для нахождения импеданса RCR- цепочки:

Рис. 15.5. RCR-цепочка и ее векторная диаграмма

15.6. Импеданс тканей организма. Эквивалентная электрическая схема тканей. Дисперсия импеданса. Реография

Импеданс тканей организма

Электрические свойства тканей организма различны. Органические вещества (белки, жиры, углеводы) являются диэлектриками. В состав тканевых жидкостей входят электролиты.

Ткани состоят из клеток, важной частью которых являются мембраны. Двойной фосфолипидный слой уподобляет мембрану конденсатору.

В организме нет таких систем, которые были бы подобны катушкам индуктивности, поэтому индуктивность его близка к нулю.

Таким образом, импеданс тканей определяется только активным и емкостным сопротивлениями. Наличие в биологических системах емкостных элементов подтверждается тем, что сила тока опережает по фазе приложенное напряжение. Величина угла опережения для разных биологических объектов при частоте 1 кГц приводится в таблице.

Эквивалентная электрическая схема тканей

В общем случае органическую ткань можно рассматривать как клетки, находящиеся в проводящей среде (R 1), роль которой играет, например, межклеточная жидкость (рис. 15.6). Клеточные мембраны обладают емкостными свойствами, а электролиты внутри клетки обладают активным сопротивлением (R 2).

Этому представлению соответствует электрическая схема, рассмотренная в разделе 15.5 (см. рис. 15.5). На рисунке 15.7 показана зависимость импеданса от круговой частоты тока, которая получается из формулы (15.19) после подстановки в нее выражения для

Рис. 15.6. Электрические свойства биологических тканей

Рис. 15.7. Зависимость импеданса от частоты для RCR-цепочки

Дисперсия импеданса

Кривая на рис. 15.7 качественно верно описывает изменение импеданса биологической ткани: плавное уменьшение импеданса при росте частоты. Однако для реальных биологических тканей эта зависимость сложнее. На рисунке 15.8 представлен график частотной зависимости импеданса мышечной ткани, полученный экспериментально (масштаб на вертикальной оси - логарифмический).

На графике четко проявляются три интервала частот, в которых величина Z медленнее меняется с частотой по сравнению с общим ходом кривой. Они названы областями α-, β- и γ-дисперсии соответственно. Им соответствуют три области частот: низкие частоты ν < 10 кГц, радиочастоты ν = 0,1-10 МГц, микроволновые частоты ν > 0,1 ГГц.

Наличие областей α-, β- и γ-дисперсии связано с частотной дисперсией диэлектрической проницаемости (ε = f(v)), от которой зависит величина емкости (см. формулу 10.20). На рисунке 15.9 показаны структурные элементы, вносящие основной вклад в поляризацию ткани на различных частотах:

- α-дисперсия обусловлена поляризацией целых клеток (1, 2) в результате диффузии ионов, что требует относительно большого времени, поэтому данный механизм проявляется при действии электрического поля низкой частоты (0,1-10 кГц). В этой области емкостное сопротивление мембран велико и преобладают токи, протекающие через растворы электролитов, окружающие фрагменты мембран.

Рис. 15.8. Частотная зависимость импеданса биологической ткани

Рис. 15.9. Структурные элементы, вносящие основной вклад в поляризацию ткани

Поляризация клеток - самый медленный процесс среди всех механизмов поляризации. При увеличении частоты поляризация клеток практически полностью прекращается.

- β-дисперсия обусловлена структурной поляризацией клеточных мембран (3), в которой участвуют белковые макромолекулы (4), а на ее верхней границе - глобулярные водорастворимые белки (5), фосфолипиды (6, 7) и мельчайшие субклеточные структуры (8). При этом получаются существенно меньшие значения диэлектрической проницаемости, чем при поляризации целых клеток. Этот механизм поляризации доминирует на частотах 1-10 МГц. При дальнейшем увеличении частоты перестает работать и этот механизм.

- γ-дисперсия обусловлена процессами ориентационной поляризации молекул (9, 10) свободной и связанной воды, а также низкомолекулярных веществ типа сахаров и аминокислот. При этом диэлектрическая проницаемость уменьшается еще больше. Этот механизм поляризации доминирует на частотах выше 1 ГГц.

В частотных диапазонах, соответствующих главным областям дисперсии, происходят наибольшие потери энергии переменного электрического тока (поля). Выделение энергии происходит на том структурном уровне, который отвечает за данную область диспер-

сии. На этом основано действие различных методов физиотерапии с использованием переменных токов и полей.

Импеданс ткани зависит не только от частоты, но и от состояния ткани. Частотная зависимость импеданса позволяет оценить жизнеспособность тканей организма. Это используют при пересадке (трансплантации) тканей и органов. Так, например, определение жизнеспособности трансплантата является одной из первоочередных задач офтальмохирургии. Такая оценка нужна и при определении тактики лечения ожогов роговицы, при кератопластике и кератопротезировании на глазах с бельмом (помутнение роговицы глаза), при наблюдении за течением кератита (воспаление роговицы), для определения пригодности консервативного донорского материала.

Реография

Импеданс тканей и органов зависит от их физиологического состояния и от степени наполнения кровеносных сосудов, проходящих в этих тканях. При наполнении ткани кровью во время систолы полное сопротивление ткани уменьшается, а при диастоле увеличивается. Импеданс изменяется в такт с работой сердца. Это используется в диагностических целях.

Реография - диагностический метод, основанный на регистрации изменения импеданса тканей в процессе сердечной деятельности.

Эти изменения представляются в виде реограммы. Пример реограммы голени здорового человека представлен на рис. 15.10.

Рис. 15.10. Реограмма голени здорового человека

При наполнении сосудов кровью величина электропроводимости тканей изменяется, а вместе с ней изменяется и величина импеданса.

По скорости изменения полного сопротивления можно судить о быстроте притока крови при систоле и оттока крови во время диастолы.

С помощью этого метода получают реограммы головного мозга (реоэнцефалограмма), сердца (реокардиограмма), магистральных сосудов, легких, печени, конечностей. Исследование реограмм применяют в диагностике заболеваний периферических кровеносных сосудов, сопровождающихся изменением их эластичности, сужением артерий и т.д.

15.7. Основные понятия и формулы

Окончание таблицы

15.8. Задачи

1. Напряжение и сила тока в цепи изменяются по закону U = 60sin(314t + 0,25) мВ, i = 15sin(314t) мА. Определить импеданс цепи Z и фазовый угол между током и напряжением.

2. Допустимо ли в цепь переменного тока напряжением 220 В включать конденсатор, напряжение пробоя для которого равно 250 В?

5. Частота переменного тока равна 50 Гц. Сколько раз за секунду напряжение равно нулю?

Ответ: 100 раз.

6. Найти полное сопротивление переменному току, если последовательно включены:

а) резистор сопротивлением R 1 = 3 Ом и катушка с индуктивным сопротивлением X L = 4 Ом;

б) резистор сопротивлением R 2 = 6 Ом и конденсатор с емкостным сопротивлением X C = 8 Ом;

в) резистор сопротивлением R 3 = 12 Ом, конденсатор емкостным сопротивлением X C = 8 Ом и катушка с индуктивным сопротивлением X L = 24 Ом.

Ответ: а) 5 Ом; б) 10 Ом; в) 20 Ом.

7. Сколько времени будет гореть неоновая лампочка, если ее на 1 минуту подключить в сеть переменного тока с действующим напряжением 120 В и частотой 50 Гц. Лампочка зажигается и гаснет при напряжении 84,5 В.

График зависимости U(t) представлен на рис. 15.11.

Рис. 15.11.

На графике обозначено напряжение зажигания лампы U з и соответствующие ему два момента времени: t 1 - время зажигания

лампы, когда мгновенные значения напряжения становятся больше U з; t 2 - время, когда лампочка гаснет, так как мгновенные значения напряжения становятся меньше напряжения U з.Очевидно, что длительность одной вспышки


В течение одного колебания напряжения лампочка загорается 2 раза, так как работа неоновой лампы не зависит от полярности приложенного напряжения (см. рис. 15.11). Поэтому число колебаний напряжения за время t 0 равно (t 0 - ν), а число вспышек за это время h = 2t 0 ? v.

Тогда время, в течение которого светится лампа, равно

8. Неоновая лампа включена в сеть переменного тока с действующим значением 71 В и периодом 0,02 с. Напряжение зажигания лампы, равное 86,7 В, считать равным напряжению гашения. Найти: а) значение промежутка времени, в течение которого длится вспышка лампы; б) частоту вспышек.

Ответ: а) 3,3 мс; б) 100 Гц.

9. Действующее напряжение в электросети 220 В. На какое напряжение должна быть рассчитана изоляция провода?

Решение

Рассмотрим электрическую цепь, состоящую из последовательно соединенных конденсатора емкостью С, катушки с индуктивностью L, электрического сопротивления R и ключа К, рис. 56 .

Если при разомкнутом ключе К конденсатор зарядить до разности потенциалов пометка">I, изменяющийся с течением времени I = I(t).

Мгновенные значения силы I переменного тока должны удовлетворять всем законам, установленным выше для цепей постоянного тока. Такие переменные токи называют квазистационарными.

Найдем вид зависимости силы квазистационарного тока от времени, считая, что электрические сопротивления катушки, соединительных проводов и ключа равны нулю.

По закону Ома для участка цепи 1LR 2 имеем

формула" src="http://hi-edu.ru/e-books/xbook785/files/117-1.gif" border="0" align="absmiddle" alt=" - соответственно мгновенные значения силы тока в цепи, разности потенциалов, алгебраической суммы ЭДС, действующих на участке.

На участке цепи 1LR 2 приложена только ЭДС самоиндукции, возникающая в катушке при протекании в ней переменного тока..gif" border="0" align="absmiddle" alt="

Если заряд на обкладках конденсатора в начальный момент времени t =0 был q, то сила убывающего тока в цепи I:

формула" src="http://hi-edu.ru/e-books/xbook785/files/117-5.gif" border="0" align="absmiddle" alt="

Разность потенциалов между обкладками конденсатора

формула" src="http://hi-edu.ru/e-books/xbook785/files/117-7.gif" border="0" align="absmiddle" alt="

По своей форме это дифференциальное уравнение аналогично дифференциальному уравнению свободных затухающих колебаний математического или физического маятников

формула" src="http://hi-edu.ru/e-books/xbook785/files/118.gif" border="0" align="absmiddle" alt=" - собственная частота незатухающих колебаний, пометка">m является индуктивность L, аналогом коэффициента сопротивления r - сопротивление цепи R, аналогом коэффициента упругости пружины k (или коэффициента квазиупругой силы) - величина, обратная емкости С.

Решение уравнения (13.4) имеет следующий вид:

формула" src="http://hi-edu.ru/e-books/xbook785/files/118-3.gif" border="0" align="absmiddle" alt="

Таким образом, при замыкании заряженного конденсатора на цепь, состоящую из последовательно соединенных индуктивности и электрического сопротивления, заряд на обкладках конденсатора совершает затухающие колебания. Поэтому изображенная на рис. 56 цепь получила название колебательного контура.

Период затухающих колебаний в колебательном контуре равен

формула" src="http://hi-edu.ru/e-books/xbook785/files/118-5.gif" border="0" align="absmiddle" alt=" обращается в бесконечность пометка">R постепенно уменьшать, то затухание колебаний в нем также уменьшится. В пределе при R = 0 свободные электромагнитные колебания становятся незатухающими. Период свободных незатухающих колебаний равен

опред-е">формулой Томсона.

Рассмотрим переходные процессы в замкнутой электрической цепи, состоящей из источника тока, ключа К, катушки L с большим числом витков и гальванометра, при замыкании и размыкании ключа (рис. 57 ).

Если разомкнуть ключ К, то сила тока i в витках, а следовательно, и магнитный поток Ф, который пронизывал витки катушки, будут убывать..gif" border="0" align="absmiddle" alt=", называют экстратоками самоиндукции. В данном случае в контуре возникает экстраток размыкания I . Согласно правилу Ленца, экстратоки всегда направлены так, чтобы препятствовать изменениям тока в цепи i . Гальванометр в этом случае дает отброс стрелки в противоположном к первоначальному направлению.

При замыкании ключа К в цепи происходит нарастание магнитного потока. В витках катушки возникает экстраток замыкания I, который имеет такое направление, чтобы препятствовать нарастанию тока i .

Найдем закон, по которому изменяется ток в цепи при размыкании ключа К. Пусть в цепи течет постоянный ток пометка">t = 0 разомкнем цепь, ток через катушку индуктивности будет уменьшаться, что приведет к возникновению формула" src="http://hi-edu.ru/e-books/xbook785/files/120-2.gif" border="0" align="absmiddle" alt=" Приравнивая ЭДС самоиндукции из разных уравнений, получим

формула" src="http://hi-edu.ru/e-books/xbook785/files/120-4.gif" border="0" align="absmiddle" alt="

Интегрируя это выражение по I и t, получим

формула" src="http://hi-edu.ru/e-books/xbook785/files/120-6.gif" border="0" align="absmiddle" alt="

Таким образом, при отключении источника тока, сила тока в контуре убывает по экспоненциальному закону (рис. 58 ). Время, в течение которого сила тока уменьшается в е раз, называют временем релаксации пометка">L и меньше электрическое сопротивление R, тем больше время релаксации пометка">I = 0 до установившегося значения формула" src="http://hi-edu.ru/e-books/xbook785/files/121-2.gif" border="0" align="absmiddle" alt=".

Рассмотрим цепь, содержащую индуктивность L, сопротивление R, источник ЭДС пометка">К (рис. 59 ).

Пусть в исходном состоянии ключ находился в положении 1. При переводе ключа в положение 2 в цепи действует только ЭДС самоиндукции, которая поддерживает ток. Элементарная работа при этом

пометка">I до 0, найдем полную работу за время протекания тока:

формула" src="http://hi-edu.ru/e-books/xbook785/files/Wm.gif" border="0" align="absmiddle" alt=":

формула" src="http://hi-edu.ru/e-books/xbook785/files/122-2.gif" border="0" align="absmiddle" alt=" Умножив это равенство на Idt, найдем работу источника ЭДС:

пометка">dI пометка">dI =0), энергия источника расходуется только на джоулеву теплоту, но в катушке поддерживается запас энергии магнитного поля. При переводе ключа в положение 2 она идет на работу тока и постепенно убывает.

Для соленоида на основании (12.6) и (13.6) энергия магнитного поля

формула" src="http://hi-edu.ru/e-books/xbook785/files/122-5.gif" border="0" align="absmiddle" alt="

где различные выражения получены с учетом, что пометка">Электрический ток, возникающий под действием ЭДС, которая изменяется по гармоническому закону, называется переменным током.

Переменный ток - это вынужденные колебания тока в электрических цепях.

Электрическое сопротивление любого реального колебательного контура отлично от нуля. Поэтому свободные электромагнитные колебания постепенно затухают. Для получения незатухающих электромагнитных колебаний необходимо извне подводить энергию, компенсирующую потери. В этом случае в контуре будут осуществляться вынужденные электромагнитные колебания (рис. 60 ).

Роль вынуждающей силы в колебательном контуре выполняет источник тока, обладающий периодически изменяющейся ЭДС.

Пусть ЭДС меняется по гармоническому закону

пометка">L возникает ЭДС самоиндукции формула" src="http://hi-edu.ru/e-books/xbook785/files/123-2.gif" border="0" align="absmiddle" alt="

Тогда ЭДС источника тока можно представить как сумму падений напряжений:

формула" src="http://hi-edu.ru/e-books/xbook785/files/123-4.gif" border="0" align="absmiddle" alt="

Напряжение на емкостном сопротивлении формула" src="http://hi-edu.ru/e-books/xbook785/files/123-6.gif" border="0" align="absmiddle" alt="

Вместо действия трех полей на одно активное сопротивление мы рассматриваем действие одного внешнего поля на три сопротивления: активное R и два реактивных - емкостное формула" src="http://hi-edu.ru/e-books/xbook785/files/Xl.gif" border="0" align="absmiddle" alt=".

Переменный ток, текущий через резистор R

опред-е">резонансом напряжений, а частота опред-е">резонансной частотой.

Явление резонанса напряжений необходимо учитывать при расчете изоляции электрических линий, содержащих катушки индуктивности и конденсаторы, так как иначе может наблюдаться их пробой.

Резонанс электромагнитных колебаний лежит в основе всей радиотехники. Однако резонансное поглощение электромагнитных колебаний существует и при значительно более высоких частотах, чем радиотехнические. Колебательная система может быть образована, например, кристаллической решеткой поваренной соли. Под действием переменного электрического поля она резонирует на частотах подзаголовок">Контрольные вопросы и задачи

  1. Нарисуйте схему электрического колебательного контура. Чему равна частота собственных незатухающих колебаний в таком контуре?
  2. Чему равна частота затухающих электромагнитных колебаний?
  3. Дайте определение переменному электрическому току.
  4. Какую роль в колебательном контуре играет источник тока с переменной ЭДС?
  5. Запишите полное сопротивление в цепи переменного тока.
  6. Что называется экстратоками замыкания и размыкания?
  7. По какому закону изменяется сила тока в цепи при размыкании?
  8. От чего зависит скорость изменения тока в цепи при замыкании или размыкании цепи?
  9. Покажите, что магнитное поле обладает энергией и найдите выражение для объемной плотности энергии магнитного поля.
  10. Определите, через сколько времени сила тока замыкания достигнет 0,95 предельного значения, если источник тока замыкают на катушку сопротивлением R =12 Ом и индуктивностью L =0,5 Гн.
  11. Что называется переменным электрическим током?
  12. Нарисуйте электрическую схему, в которой можно получить вынужденные электромагнитные колебания.

Лекция: 3. ПЕРЕМЕННЫЙ ТОК

План лекции:

1. Основные параметры цепей переменного тока.

2. Конденсатор в цепи переменного тока.

3. Индуктивность в цепи переменного тока.

4. Резонанс в цепи переменного тока.

Цель лекции : усвоение основных положений теории цепей переменного тока и применение их для диагностики и лечения.

1.Основные параметры цепей переменного тока.

Если в замкнутой цепи действует источник с переменной ЭДС, то в цепи возникает колебательное движение электронов. Электронное возмущение от источника ЭДС распространяется вдоль проводника с большой скоростью, в то время как скорость колебательного движения зарядов относительно невелика. Этот процесс можно сравнить, например, с движением железнодорожного состава при трогании.

Согласованное колебательное движение электронов – это, по существу, и есть переменный электрический ток. Ток, изменяющий по тому или иному закону свою величину и направление, называется переменным. Наиболее простым и распространённым является синусоидальный переменный ток, мгновенные значения которого изменяются по закону синуса или косинуса.

i=I 0 sin(t); (1)

Где: i-мгновенное значение тока;

I 0 -амплитудное значение тока;

Действующее значение тока.

График изменений переменного тока по гармоническому закону представлен на рис. 1.

Рассмотрим цепь переменного тока, содержащую только активное сопротивление R, то есть такое, в котором движение электронов приводит к тепловым потерям. Будем решать задачу о законах изменения тока при заданном законе изменения напряжения. Необходимо установить, синхронно ли изменяется ток и напряжение?

Зададим закон изменения напряжения. Пусть напряжение изменяется по закону косинуса:

U=U 0 cos(t). (1)

Будем искать закон изменения тока i=?

Рис1. График изменений синусоидального переменного тока.

I 0 – амплитуда; Т – период.

Рис.2. Активное сопротивление в цепи переменного тока

В теоретических основах электротехники показано, что закон Ома справедлив и для цепей переменного тока вплоть до частот  =10 6 Гц.

Воспользуемся законом Ома и выразим связь между i, U, R

; (2),

Рис. 3. а)График изменения тока и напряжения в цепи с активным сопротивлением. б) Векторная диаграмма для цепи с активным сопротивлением; i – вектор тока, u – вектор напряжения, - направление вращения векторов.

Так как
; то
(3).

Сравнение формулы (1) с формулой (3) показывает, что в цепи переменного тока с активным сопротивлением ток и напряжение изменяются одновременно то есть синфазно. На графике это можно показать следующим образом (см. рис.3).

В электротехнике для отображения этого явления пользуются векторной диаграммой.

2. Конденсор в цепи переменного тока.

Рассмотрим цепь переменного тока с ёмкостью. Считаем, что других сопротивлений в цепи нет. Пусть на входе цепи действует переменное напряжение, которое изменяется по закону косинуса

U= U 0 cost; (4)

Необходимо установить закон изменения тока в цепи с конденсатором. i = ?

Согласно определения емкость это есть отношение заряда к напряжению на ёмкости.

Т о есть:
; откуда заряд на ёмкости q=CU; (5).

Рис. 4: Конденсатор в цепи переменного тока.

По определению ток – это есть изменение заряда во времени.

То есть:
(6).

Подставим в формулу (6) вместо заряда q его величину из формулы (5) и так как на конденсаторе действует переменное напряжение, то вместо U в формуле (5) подставим переменное напряжение с заданным законом изменения U=U 0 cos t.

В результате имеем:
; (7)

Таким образом для нахождения тока в цепи с конденсатором необходимо найти первую производную от выражения (7).

Постоянные коэффициенты выносим за знак дифференцирования
;

В результате дифференцирования получаем:

i-U 0 Csint; (8)

Так как заданное напряжение изменяется по закону косинуса (см. формулу 4), а ток изменяется по закону синуса (см. формулу 8), то для сравнения этих формул желательно так же выразить изменения тока через косинус.

Тогда имеем:
; (9)

Таким образом сравнение формул (4) и (9) показывает, что ток в цепи с ёмкостью опережает напряжение по фазе на угол /2.

В полученной формуле (9) коэффициенты стоящие перед косинусом представляют собой амплитуду тока, то есть I 0 ;

Тогда I 0 = U 0 С; (10)

Формула (10) по существу представляет собой запись закона Ома, так как связь между током и напряжением такова, что величина

; (11), имеет смысл сопротивления.

X С – называется реактивным ёмкостным сопротивлением. Оно не ведёт к тепловым потерям.

Определим размерность ёмкостного сопротивления:

(11).

Таким образом ёмкостное сопротивление так же как обычное измеряется в Омах.

В цепях постоянного тока X   то есть конденсатор является разрывом в цепи. В цепи переменного тока токи проводимости продолжают токи смещения диэлектрика конденсатора. Токи смещения в конденсаторе обусловлены колебательными движениями связанных зарядов в диэлектрике.

Отставание фазы напряжения от фазы тока в электротехнике принято отображать векторными диаграммами.

Рис5. Векторная диаграмма для цепи с конденсатором.

Построение векторной диаграммы начинают с изображения вектора тока I 0 . Затем указывают направление вращения вектора тока I 0 . Вектор тока I 0 вращается со скоростью против часовой стрелки. При построении вектора напряжения необходимо учитывать его отставание от вектора тока на угол 90 0 .

Построим векторную диаграмму для цепи с конденсатором.

Напряжение на ёмкости, при отсутствии активных потерь, отстаёт от тока на угол .