Монолитное строительство. Монолитные операционные системы

Монолитные операционные системы

Монолитные операционные системы являются прямой противоположностью микроядерным. В монолитной ОС очень трудно удалить один из уровней многоуровневой модульной структуры. Добавление новых функций и изменение существующих для монолитных ОС требует очень хорошего знания всей архитектуры ОС и чрезвычайно больших усилий. Для преодоления этих трудностей используется технология «сервер – клиент».

Модель сервер – клиент предполагает наличие программного компонента, являющегося потребителем какого-либо сервиса – клиента , и программного компонента, поставщика этого сервиса – сервера . Взаимодействие между сервером и клиентом стандартизуется, сервер может обслуживать клиентов, реализованных различными способами. Главное требование – использование единообразного интерфейса. Инициатором обмена является клиент, который посылает запрос серверу. Один и тот же программный компонент может быть и клиентом, и сервером.

При поддержке монолитных ОС возникает ряд проблем, связанных с тем, что все функции микроядра работают в едином адресном пространстве:

Опасность возникновения конфликта между различными частями ядра;

Сложность подключения к ядру новых драйверов.

Преимущество микроядерной архитектуры перед монолитной заключается в том, что каждый компонент системы представляет собой самостоятельный процесс, запуск и останов которого не отражается на работоспособности остальных процессов.

3. Принципы построения интерфейсов операционных систем.

Операционная система – интерфейс между аппаратурой компьютера и пользователем с его задачей.

Интерфейс операционных систем – специальные интерфейсы системного и прикладного программирования, предназначенные для выполнения следующих задач:

1) управление процессами, которое включает в себя следующий набор основных функций:

· запуск, приостанов и снятие задачи с выполнения;

· задание или изменение приоритета задачи;

· взаимодействие задач между собой (сигналы, семафоры, очереди, конвейеры, почтовые ящики);

· удаленный вызов подпрограмм;

2) управление памятью:

· запрос на выделение блока памяти;

· освобождение памяти;

· изменение параметров блока памяти;

· отображение файлов на память;

3) управление вводом/выводом:

· запрос на управление виртуальными устройствами;

· файловые операции.

Пользовательский интерфейс ОС реализуется с помощью специальных программных модулей, которые принимают его команды на соответствующем языке и транслируют их в обычные вызовы в соответствии с основным интерфейсом системы. Обычно эти модули называются интерпретатором команд .

Имеются два основных подхода к управлению задачами:

1) порождаемая задача наследует все ресурсы задачи-родителя;

2) при порождении нового процесса ресурсы для него запрашиваются у операционной системы.

Обращение к операционной системе в соответствии с имеющимися API может осуществляться:

· посредством вызова подпрограммы с передачей ей необходимых параметров;

· через механизм программных прерываний.

Интерфейс прикладного программирования предназначен для использования прикладными программами системных ресурсов ОС и реализуемых ею функций.

Термин API (application program interface, интерфейс прикладного программирования):

· API как интерфейс высокого уровня, принадлежащий к библиотекам RTL (run time library, библиотека во время выполнения);

· API прикладных и системных программ, входящих в поставку операционной системы;

· прочие API.

API представляет собой набор функций, предоставляемых системой программирования разработчику прикладной программы и ориентированных на организацию взаимодействия результирующей программы с целевой вычислительной системой (совокупность аппаратных и программных средств, в окружении которых выполняется результирующая программа).

API используется не только прикладными, но и многими системными программами как в составе ОС, так и в составе системы программирования.

Программный интерфейс API включает в себя не только сами функции, но и соглашения об их использовании, которые зависят от:

· операционной системы;

· архитектуры целевой вычислительной системы;

· системы программирования.

Варианты реализации API:

· на уровне ОС;

· на уровне системы программирования;

· на уровне внешней библиотеки процедур и функций.

В каждом из этих вариантов разработчику предоставляется возможность подключить функции API к исходному коду программы и организовать их вызов.

Возможности API можно оценить со следующих позиций:

· эффективность выполнения функций API (скорость выполнения, объем вычислительных ресурсов);

· широта предоставляемых возможностей;

· зависимость прикладной программы от архитектуры целевой вычислительной системы.

В идеале набор функций API должен:

· выполняться с наивысшей эффективностью;

· предоставлять пользователю все возможности современных ОС;

· иметь минимальную зависимость от архитектуры вычислительной системы.

4. Требования к операционным системам реального времени (Отрабатывается самостоятельно).

Система реального времени должна давать отклик на непредсказуемые внешние воздействия в течение предсказуемого интервала времени. Свойства операционных систем реального времени:

· ограниченное время отклика , реакция на событие гарантированно последует до наступления крайнего срока;

· одновременность обработки . Даже если возникает более одного события одновременно, временные ограничения для всех событий должны быть выдержаны. В системе реального времени должен присутствовать параллелизм, который достигается использованием нескольких процессоров и/или многозадачного подхода.

Примеры систем реального времени:

· системы управления атомными электростанциями;

· системы управления технологическими процессами;

· системы медицинского мониторинга;

· системы управления вооружением;

· системы космической навигации;

· системы разведки;

· системы управления лабораторными экспериментами;

· системы управления автомобильными двигателями;

· робототехника;

· телеметрические системы управления;

· системы антиблокировки тормозов;

· системы сигнализации и т.д.

Различают системы «мягкого» и «жесткого» реального времени. Различия зависят от требований к системе:

· в «жесткой» системе нарушение временных ограничений не допустимо;



· в «мягкой» системе нарушение временных ограничений нежелательно.

Основные требования к операционной системе реального времени:

1) мультипрограммность и многозадачность (многопоточность) . ОС должна активно использовать прерывания для диспетчеризации. Максимальное время выполнения того или иного действия должно быть известно заранее и соответствовать требованиям приложения;

2) приоритеты задач (потоков). Проблема, какой задаче ресурс требуется больше всего. В идеальной ситуации ОСРВ отдает ресурс потоку или драйверу с ближайшим крайнем сроком завершения. Чтобы реализовать этот принцип ОС должна знать, сколько времени требуется каждому процессу для его завершения. Таких ОС нет, так как их очень сложно реализовать, поэтому вводится понятие уровня приоритета для задачи и временные ограничения сводятся к приоритетам;

3) наследование приоритетов . ОСРВ должна допускать наследование приоритета, то есть повышение уровня приоритета потока до уровня приоритета потока, который его вызывает. Наследование означает, что блокирующий ресурс поток наследует приоритет потока, который он блокирует;

4) синхронизация процессов и задач . Так как задачи разделяют данные (ресурсы) и должны сообщаться друг с другом, то должны существовать механизмы блокирования и коммуникации. Эти системные механизмы должны быть всегда доступны процессам, требующим реального времени;

5) предсказуемость . Времена выполнения системных вызовов и временные характеристики поведения системы в различных обстоятельствах должны быть известны разработчику.

Разработчик ОСРВ должен привести следующие характеристики:

· задержку прерывания, время от момента прерывания до момента запуска задачи;

· максимальное время выполнения каждого системного вызова;

· максимальное время маскирования прерываний драйверами и ОС.

В общем случае "структура" монолитной системы представляет собой отсутствие структуры (рисунок 3). ОС написана как набор процедур, каждая из которых может вызывать другие, когда ей это нужно. При использовании этой техники каждая процедура системы имеет хорошо определенный интерфейс, и каждая может вызвать любую другую при необходимости.

Монолитная ОС собирается из программных модулей и затем компилируется как единая система. И хотя как программа такая СОС может и быть модульной, на практике взаимодействие ее процедур происходит в единой области видимости и любая процедура может вызвать любую.

  1. Многоуровневые системы

При структуризации от монолитных систем переходят к многоуровневым. Уровни образуются группами функций операционной системы - файловая система, управление процессами и устройствами и т.п. Каждый уровень может взаимодействовать только со своим непосредственным соседом - выше- или нижележащим уровнем. Прикладные программы или модули самой операционной системы передают запросы вверх и вниз по этим уровням (рисунок 4).

Хотя такой структурный подход на практике обычно работал неплохо, сегодня он все больше воспринимается монолитным, старые ОС UNIXс многоуровневой структурой сейчас характеризуются как ОС с монолитными ядрами. В системах, имеющих многоуровневую структуру было нелегко удалить один слой и заменить его другим в силу множественности и размытости интерфейсов между слоями. Добавление новых функций и изменение существующих требовало хорошего знания операционной системы и массы времени. Когда стало ясно, что операционные системы живут долго и должны иметь возможности развития и расширения, монолитный подход сменился моделью клиент-сервер с тесно связанной с ней концепция микроядра.

  1. Модель клиент-сервер и микроядра

Применительно к структурированию ОС идея использования взаимодействия клиент-сервер и микроядра состоит в разбиении ее на несколько процессов - серверов, каждый из которых выполняет отдельный набор сервисных функций - например, управление памятью, управление файловой системой. Каждый сервер выполняется в пользовательском режиме. Клиент, которым может быть либо другой компонент ОС, либо прикладная программа, запрашивает сервис, посылая сообщение на сервер. Ядро ОС (называемое здесь микроядром), работая в привилегированном режиме, доставляет сообщение нужному серверу, сервер выполняет операцию, после чего ядро возвращает результаты клиенту с помощью другого сообщения (рисунок 5).

Подход с использованием микроядра заменил вертикальное распределение функций операционной системы на горизонтальное. Компоненты, лежащие выше микроядра, хотя и используют сообщения, пересылаемые через микроядро, взаимодействуют друг с другом непосредственно. Это свойство микроядерных систем позволяет естественно использовать их в распределенных средах. При получении сообщения микроядро может его обработать или переслать другому процессу. Поскольку для микроядра безразлично, поступило ли сообщение от локального или удаленного процесса, подобная схема передачи сообщений является удобной основой удаленных вызовов процедур (RPC - remote procedure calls). Микроядро занимается основной функцией ОС – управлением ресурсами, зачастую оно берет на себя функции взаимодействия с аппаратурой, хотя предпочтительно в рамках микроядра выделять машиннозависимый функции в отдельные подмодули для улучшения переносимости. Различные варианты реализации модели клиент-сервер в структуре ОС могут существенно различаться по объему работ, выполняемых в режиме ядра. На одном краю этого спектра находится разрабатываемая фирмой IBM на основе микроядра Mach операционная система Workplace OS, придерживающаяся чистой микроядерной доктрины, состоящей в том, что все несущественные функции ОС должны выполняться не в режиме ядра, а в непривилегированном (пользовательском) режиме. На другом - Windows NT, в составе которой имеется исполняющая система (NT executive), работающая в режиме ядра и выполняющая функции обеспечения безопасности, ввода-вывода и другие.

Микроядерный подход при проектировании архитектуры ОС требует ответа на вопрос, какие функции ОС следует оставить в ядре, а какие вынести из него. Модули, содержащиеся в ядре, нельзя заменить без его перекомпиляции. Причем если само микроядро является плохо структурированным, то замена одного его модуля на другой (например замена планировщика задач) может стать очень трудной задачей. С другой стороны хотя вынос за пределы ядра не основных и динамически изменяемых функций хотя и делает ОС хорошо масштабируемой и более надежной (ядро обычно выступает как единый домен сбоев, в то время как гибель внешнего сервера ОС может пережить безболезненно), это сказывается на ее производительности.

В состав микроядра обычно не включают сетевые функции, пользовательский интерфейс, файловую систему, а лишь основные функции управления???

  • Важнейшие технологические процессы капитального строительства
  • Возведение монолитных ж/б плит перекрытий и наружных стен
  • Глава 13 Практика достоверного определения полной восстановительной стоимости
  • В общем виде операционная система монолитного типа представляет собой набор процедур, каждая из которых может вызывать другие. Процедуры ОС компилируются, а затем компонуются в единый объектный файл, специального формата, отличающегося от пользовательских приложений.

    Однако, организация механизма реализации системных вызовов в такой ОС предполагает всё таки следующую структуру:

    1. Главная программа, которая осуществляет обработку системных прерываний;

    2. Набор служебных процедур, реализующие системные вызовы;

    3. Набор утилит, обслуживающие служебные процедуры.

    В ОС программа, которая инициирует и прекращает процессы обработки системных прерываний называется супервизором (supervisor). Спервизор - управляющая резидентная программа в составе операционной системы, координирующая распределение и использование ресурсов вычислительной системы.

    В операционной системе может быть несколько супервизоров. Например, С. ввода-вывода контролирует состояние средств ввода-вывода, инициирует и прекращает процессы ввода-вывода. С. основной памяти осуществляет учет и динамическое распределение области оперативной памяти, в которую загружаются программы пользователей и некоторые системные программы. С. страниц организует страничный обмен виртуальной памяти.

    В современных ВС в основном речь идёт о модульных ОС с монолитным ядром и в качестве примеров приводятся большинство UNIX-систем Linux; реализуемых на традиционных ядрах, ядро MS-DOS, ядро KolibriOS.

    В качестве примера монолитной ОС можно привести ОС MS-DOS, в качестве ядра можно рассматривать два модуля msdos.sys Базовый модуль DOS, файл MSDOS.SYS и io.sys, Модуль расширения BIOS, к ним с системными вызовами обращались командный интерпретатор command.com, системные утилиты и приложения.

    Недостатки:

    1. Монолитные ядра требуют перекомпиляции при любом изменении состава оборудования.

    2. «Разбухание» кода монолитных ядер делает их малопригодными для систем, ограниченных по объёму ОЗУ, например, встраиваемых системах, микроконтроллерах и т. д.

    Альтернативой монолитным ядрам считаются архитектуры, основанные на микроядрах.

    Альтернативой монолитным ОС выступает архитектура модульной ОС.

    Модульные ОС структурно состоят из модулей, каждый из которых реализует определённый набор функций. Наиболее общим подходом к структуризации операционной системы является разделение всех ее модулей на две группы:

    1. Ядро - модули, выполняющие основные функции ОС;

    2. Модули, выполняющие вспомогательные функции ОС.

    Модули ядра выполняют такие базовые функции как управление процессами, памятью, устройствами ввода вывода, обработка прерываний.

    Вспомогательные модули как правило подразделяются на следующие:

    · утилиты – программы, решающие задачи сопровождения ВС (сжатие дисков, архивация);

    · системные обрабатывающие программы (редакторы, отладчики, компиляторы и пр.)

    · программные модули, обеспечивающие графический пользовательский интерфейс.

    · библиотеки процедур различного назначения, упрощающие разработку приложений (библиотека математических функций, функций ввода-вывода).

    Как и обычные пользовательские приложения, для выполнения своих задач вспомогательные модули, обращаются к функциям ядра посредством системных вызовов. Вспомогательные модули являются транзитными загружаются в оперативную память только на время выполнения своих функций. Такая организация ОС экономит оперативную память компьютера.

    Модульное ядро - современная, усовершенствованная модификация архитектуры монолитных ядер операционных систем компьютеров.

    Модульность реализуется за счёт механизма подгрузки модулей поддерживающих то или иное аппаратное обеспечение (например, драйверов). При этом не требуются полной перекомпиляции ядра при изменении состава аппаратного обеспечения компьютера.

    операционная система – это обычная программа, поэтому было бы логично и организовать ее так же, как устроено большинство программ, то есть составить из процедур и функций. В этом случае компоненты операционной системы являются не самостоятельными модулями, а составными частями одной большой программы. Такая структура операционной системы называется монолитным ядром (monolithic kernel). Монолитное ядро представляет собой набор процедур, каждая из которых может вызвать каждую. Все процедуры работают в привилегированном режиме. Таким образом, монолитное ядро – это такая схема операционной системы , при которой все ее компоненты являются составными частями одной программы, используют общие структуры данных и взаимодействуют друг с другом путем непосредственного вызова процедур. Для монолитной операционной системы ядро совпадает со всей системой.

    Во многих операционных системах с монолитным ядром сборка ядра, то есть его компиляция, осуществляется отдельно для каждого компьютера, на который устанавливается операционная система . При этом можно выбрать список оборудования и программных протоколов, поддержка которых будет включена в ядро. Так как ядро является единой программой, перекомпиляция – это единственный способ добавить в него новые компоненты или исключить неиспользуемые. Следует отметить, что присутствие в ядре лишних компонентов крайне нежелательно, так как ядро всегда полностью располагается в оперативной памяти. Кроме того, исключение ненужных компонентов повышает надежность операционной системы в целом.

    Монолитное ядро – старейший способ организации операционных систем . Примером систем с монолитным ядром является большинство Unix-систем.

    Даже в монолитных системах можно выделить некоторую структуру. Как в бетонной глыбе можно различить вкрапления щебенки, так и в монолитном ядре выделяются вкрапления сервисных процедур, соответствующих системным вызовам . Сервисные процедуры выполняются в привилегированном режиме, тогда как пользовательские программы – в непривилегированном. Для перехода с одного уровня привилегий на другой иногда может использоваться главная сервисная программа, определяющая, какой именно системный вызов был сделан, корректность входных данных для этого вызова и передающая управление соответствующей сервисной процедуре с переходом в привилегированный режим работы. Иногда выделяют также набор программных утилит, которые помогают выполнять сервисные процедуры.

    Многоуровневые системы (Layered systems)

    Продолжая структуризацию, можно разбить всю вычислительную систему на ряд более мелких уровней с хорошо определенными связями между ними, так чтобы объекты уровня N могли вызывать только объекты уровня N-1. Нижним уровнем в таких системах обычно является hardware, верхним уровнем – интерфейс пользователя. Чем ниже уровень, тем более привилегированные команды и действия может выполнять модуль, находящийся на этом уровне. Впервые такой подход был применен при создании системы THE (Technishe Hogeschool Eindhoven) Дейкстрой (Dijkstra) и его студентами в 1968 г. Эта система имела следующие уровни:


    Рис. 1.2.

    Слоеные системы хорошо реализуются. При использовании операций нижнего слоя не нужно знать, как они реализованы, нужно лишь понимать, что они делают. Слоеные системы хорошо тестируются. Отладка начинается с нижнего слоя и проводится послойно. При возникновении ошибки мы можем быть уверены, что она находится в тестируемом слое. Слоеные системы хорошо модифицируются. При необходимости можно заменить лишь один слой, не трогая остальные. Но слоеные системы сложны для разработки: тяжело правильно определить порядок слоев и что к какому слою относится. Слоеные системы менее эффективны, чем монолитные. Так, например, для выполнения операций ввода-вывода программе пользователя придется последовательно проходить все слои от верхнего до нижнего.

    Виртуальные машины

    В начале лекции мы говорили о взгляде на операционную систему как на виртуальную машину , когда пользователю нет необходимости знать детали внутреннего устройства компьютера. Он работает с файлами, а не с магнитными головками и двигателем; он работает с огромной виртуальной, а не ограниченной реальной оперативной памятью; его мало волнует, единственный он на машине пользователь или нет. Рассмотрим несколько иной подход. Пусть операционная система реализует виртуальную машину для каждого пользователя, но не упрощая ему жизнь, а, наоборот, усложняя. Каждая такая виртуальная машина предстает перед пользователем как голое железо – копия всего hardware в вычислительной системе, включая процессор , привилегированные и непривилегированные команды, устройства ввода-вывода, прерывания и т.д. И он остается с этим железом один на один. При попытке обратиться к такому виртуальному железу на уровне привилегированных команд в действительности происходит системный вызов реальной операционной системы , которая и производит все необходимые действия. Такой подход позволяет каждому пользователю загрузить свою операционную систему на виртуальную машину и делать с ней все, что душа пожелает.


    Рис. 1.3.

    Первой реальной системой такого рода была система CP/CMS, или VM/370, как ее называют сейчас, для семейства машин IBM/370.

    Недостатком таких операционных систем является снижение эффективности виртуальных машин по сравнению с реальным компьютером, и, как правило, они очень громоздки. Преимущество же заключается в использовании на одной вычислительной системе программ, написанных для разных операционных систем .

    Микроядерная архитектура

    Современная тенденция в разработке операционных систем состоит в перенесении значительной части системного кода на уровень пользователя и одновременной минимизации ядра. Речь идет о подходе к построению ядра, называемом микроядерной архитектурой ( microkernel architecture) операционной системы , когда большинство ее составляющих являются самостоятельными программами. В этом случае взаимодействие между ними обеспечивает специальный модуль ядра, называемый микроядром. Микроядро работает в привилегированном режиме и обеспечивает взаимодействие между программами, планирование использования процессора , первичную обработку прерываний , операции ввода-вывода и базовое управление памятью.


    Рис. 1.4.

    Остальные компоненты системы взаимодействуют друг с другом путем передачи сообщений через микроядро.

    Основное достоинство микроядерной архитектуры – высокая степень модульности ядра операционной системы . Это существенно упрощает добавление в него новых компонентов. В микроядерной операционной системе можно, не прерывая ее работы, загружать и выгружать новые драйверы, файловые системы и т. д. Существенно упрощается процесс отладки компонентов ядра, так как новая версия драйвера может загружаться без перезапуска всей операционной системы . Компоненты ядра операционной системы ничем принципиально не отличаются от пользовательских программ, поэтому для их отладки можно применять обычные средства. Микроядерная архитектура повышает надежность системы, поскольку ошибка на уровне непривилегированной программы менее опасна, чем отказ на уровне режима ядра.

    В то же время микроядерная архитектура операционной системы вносит дополнительные накладные расходы, связанные с передачей сообщений, что существенно влияет на производительность. Для того чтобы микроядерная операционная система по скорости не уступала операционным системам на базе

    В странах бывшего Советского Союза в гражданском и промышленном строительстве отдавалось предпочтение возведению сборных архитектурных сооружений из железобетона. Хотя еще в 30-х годах двадцатого века были попытки освоить монолитные технологии строительства. Но низкое на то время качество строительной опалубки и отсутствие технологических решений по работе с бетоном в холодное время года существенно затормозили развитие монолитного строительства.

    Первым успешным отечественным опытом можно считать возведение в г. Сочи пятнадцатиэтажной гостиницы, при строительстве которой использовалась скользящая строительная опалубка, а подъем жидкого бетона осуществлялся по схеме «кран-бадья». Монолитные работы были окончены всего через 15 дней после начала заливки опалубки для фундамента . При этом калькуляция затрат показала, что расход строительной смеси снижен на 30,7%, а армирующего каркаса - на 24,5%. Общая экономия возведения здания с применением съемной опалубки составила 20%.

    Возведение монолитных зданий и архитектурных сооружений особенно широкое развитие получило в начале 21 столетия, когда на отечественном рынке появились качественные и надежные опалубочные системы, а также модифицирующие добавки для бетона, изменяющие его технологические и эксплуатационные свойства.

    Преимущества монолитных технологий

    Монолитное строительство вряд ли получило бы такое распространение, если бы не обладало существенными преимуществами в сравнении с традиционными технологиями возведения зданий и архитектурных сооружений.

    1. Одним из главных достоинств монолитной архитектуры с применением съемной опалубки является независимость от, так называемого, шага конструкции.

    В классическом сборном железобетонном строительстве все элементы должны иметь размеры, кратные определенному шагу (или модулю). Все заводы, специализирующиеся на производстве ж/б-изделий, изготавливают ограниченный ряд типоразмеров элементов для сборного строительства и не имеют возможности гибкой переналадки производства под выпуск индивидуального или несерийного продукта.

    Такая вынужденная унификация соответствующим образом сказывается и на архитектурных решениях. Проектировщик просто не в силах перешагнуть за рамки унификации и стандартизации. Монолитное строительство зданий с помощью съемной строительной опалубки стерло эти границы, открыв новые горизонты для проектных и дизайнерских решений.

    2. Монолитные технологии позволяют увеличить длину пролетов со стандартных 12 метров до 15-16, а иногда и до 20 метров без ущерба жесткости, устойчивости и прочности перекрытий .

    3. Монолитные дома не имеют монтажных швов, что положительно сказывается на их звукоизоляционных и теплосберегающих характеристиках. В жилых зданиях, возведенных с помощью съемной опалубки, затраты на отопление в среднем ниже на 20% в сравнении с обычными сборными из ж/б-элементов, кирпичной или блочной кладки, а в монолитных домах, построенных с применением несъемной опалубки, - на 50-70% (в зависимости от материала, из которого она произведена).

    4. За счет более рационального расхода материалов (в частности строительных смесей и армирующего металлокаркаса) общий вес здания легче на 15-20%, что в свою очередь дает возможность сэкономить на фундаменте.

    5. Скорость возведения монолитных зданий и сооружений существенно выше, чем при классическом сборном строительстве. «Львиную» долю работ составляет монтаж строительной опалубки. После того, как съемная опалубка установлена, выверена и закреплена, в межпалубное пространство подается строительная смесь (обычно из бункера или с помощью бетоноподающих насосов).

    6. Все работы сконцентрированы на строительной площадке (кроме подготовки бетонных смесей и производства опалубки). Нет необходимости в аренде тяжелой грузоподъемной техники, организации рельсовых путей для ее хода, не требуется выделение площадей для складирования ж/б-изделий перед их монтажом и пр.

    7. Высокое качество бетонных поверхностей. При использовании качественной строительной опалубки и соблюдении технологий монолитного строительства бетонные перекрытия получаются ровными и гладкими, что существенно упрощает их последующую чистовую отделку.

    8. Монолитное строительство позволяет возводить более прочные, надежные и долговечные здания. Расчетный срок эксплуатации обычных панельных зданий составляет 50 лет, тогда как для монолитных - более 200! Кроме того, монолитные сооружения обладают большей сейсмической устойчивостью.

    Будущее монолитных технологий

    Первые монолитные сооружения имели более высокую себестоимость в сравнении со зданиями, возведенными по классической сборной технологии. Монолитное строительство стало экономически выгодным благодаря развитию съемных опалубочных систем. В настоящее время монолитные дома ориентировочно на 20-40% дешевле в строительстве, чем сборные из железобетонных элементов.

    Качество строительной опалубки - краеугольный камень монолитного зодчества, от которого зависят все его преимущества: скорость и качество работ, надежность и долговечность здания, и др. Применение монолитной опалубки дает возможность еще на стадии проектирования планировать какой угодно интерьер будущих помещений, ограничение составляет только максимальная площадь комнаты. В зависимости от назначения монолитная опалубка делится на стеновую , для фундаментов, горизонтальных перекрытий и колонн .

    Тенденция развития монолитных технологий показывает, что они уверенно набирают «обороты» и, возможно, постепенно вытеснят сборные железобетонные технологии с рынка вовсе. Статистика строительства г. Москвы говорит, что в 90-х годах прошлого столетия доля монолитных сооружений составляла всего 10%. В 1999 году соотношение монолитных зданий к панельным составило уже 30:70, а всего через два года, в 2001 - 50:50. Сейчас с каждым годом перевес усиливается в сторону монолитного зодчества.

    • Рост популярности возведения в Москве зданий с помощью монолитной опалубки объясняется несколькими факторами:
      • более низкой себестоимостью работ;
      • условиями плотной застройки, когда строительство сборных панельных домов ограничено небольшой площадью;
      • запретами на строительство типовых панельных зданий в исторических регионах.