Кто разработал основные принципы архитектуры эвм. Основы архитектуры эвм. Системный блок содержит наиболее важные компоненты

Архитектура ЭВМ – совокупность основных устройств, узлов и блоков ЭВМ, а также структура основных управляющих и информационных связей между ними, обеспечивающая выполнение заданных функций.

Архитектура в информатике – концепция взаимосвязи элементов сложной структуры, включает компоненты логической, физической и программной структур.

Архитектура компьютера обычно определяется совокупностью ее свойств, существенных для пользователя.

Большинство современных ЭВМ функционируют на основе принципов, сформулированных в 1945 году американским ученым венгерского происхождения Джоном фон Нейманом:

1. Принцип двоичного кодирования. Согласно этому принципу, вся информация, поступающая в ЭВМ, кодируется с помощью двоичных символов (сигналов).

2. Принцип программного управления. Компьютерная программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

3. Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Поэтому ЭВМ не различает, что хранится в данной ячейке памяти - число, текст или команда. Над командами можно выполнять такие же действия, как и над данными.

4. Принцип адресности. Структурно основная память состоит из пронумерованных ячеек, любая из которых которая доступна процессору в произвольный момент времени.

Согласно фон Нейману, ЭВМ состоит из следующих основных блоков (рис 1.1.) устройства ввода/вывода информации; 2) памяти ЭВМ; 3) процессора, включающего устройство управления (УУ) и арифметико-логическое устройство (АЛУ)

В ходе работы ЭВМ информация через устройства ввода попадает в память. Процессор извлекает из памяти обрабатываемую информацию, работает с ней и помещает в нее результаты обработки. Полученные результаты через устройства вывода сообщаются человеку.

Память ЭВМ состоит из двух видов памяти: внутренняя (оперативная) и внешняя (долговременная) память. Оперативная память – это электронное устройство, которое хранит информацию, пока питается электроэнергией. Внешняя память – это различные магнитные носители (ленты, диски), оптические диски.

За прошедшие десятилетия процесс совершенствования ЭВМ шел в рамках приведенной структуры (Рис. 1.2).

ЦПУ – центральное процессорное устройство.

Арифметико-логическое устройство (АЛУ ) – для арифметических вычислений и принятия логических решений.

Запоминающее устройство (ЗУ ) служит для хранения информации.

Устройство управления (УУ ) – координация различных блоков ЭВМ.

АЛУ, ЗУ, УУ, устройства ввода/вывода нельзя отнести к категории только технического обеспечения, поскольку в них присутствует и программное. Такие составные части компьютера будем называть системами.


Рис. 1.2. Современная архитектура ЭВМ

Система - совокупность элементов, подчиняющихся единым функциональным требованиям.

Принцип открытой архитектуры - состоит в обеспечении возможности переносимости прикладных программ между различными платформами и обеспечения взаимодействия систем друг с другом. Эта возможность достигается за счет использования международных стандартов на все программные и аппаратные интерфейсы между компонентами систем. Это позволяет, во-первых, выполнять модернизацию ПК (upgrade), дополняя его новыми элементами и заменяя устаревшие блоки, во-вторых, дает возможность пользователю составлять самостоятельно структуру своего ПК в зависимости от конкретных целей и задач.

Структура компьютера – некоторая модель, устанавливающая состав, порядок и принципы взаимодействия входящих в нее компонентов.

Слово «архитектура» в изначальном своем смысле используется в градостроении. Будучи достаточно сложной структурой, современный город состоит из районов, площадей, улиц, домов и т.п., расположенных определенным образом.

Для того чтобы ориентироваться в хитросплетении улиц и площадей, в любом городе существует исторически сложившаяся система названий, а также определенная нумерация домов. Наличие общепринятой адресации позволяет однозначно определить положение любого строения и в случае необходимости быстро отыскать его. Во многих случаях расположение улиц и присвоение им имен носит беспорядочный характер. В то же время бывает, что эта деятельность тщательно продумана и является продолжением общей планировки города, т.е. фактически частью его архитектуры. Классическим примером может служить известная система взаимно-перпендикулярных улиц (авеню и стриты) города Нью-Йорка. Помимо чисто практической, архитектура города может иметь еще и художественную ценность (что обычно больше интересует приезжих). Но этот аспект понятия «архитектура» вряд ли переносим на вычислительную технику.

Используя аналогию с градостроительством, естественно понимать под архитектурой ЭВМ ту совокупность их характеристик, которая необходима пользователю. Это, прежде всего, основные устройства и блоки ЭВМ, а также структура связей между ними. Если заглянуть, например, в «Толковый словарь по вычислительным системам», мы прочтем там, что термин «архитектура ЭВМ используется для описания принципа действия, конфигурации и взаимного соединения основных логических узлов ЭВМ «архитектура»».

Однако описание внутренней структуры ЭВМ вовсе не является самоцелью: с точки зрения архитектуры представляют интерес лишь те связи и принципы, которые являются наиболее общими, присущими многим конкретным реализациям вычислительных машин. Часто говорят даже о семействах ЭВМ, т.е. группах моделей, совместимых между собой. В пределах одного семейства основные принципы устройства и функционирования машин одинаковы, хотя отдельные модели могут существенно различаться по производительности, стоимости и другим параметрам. Ярким примером могут служить различные модификации компьютеров PDP фирмы DEC (более известные нашим пользователям по отечественным аналогам - серии ДВК), семейство MSX-машин, которому принадлежит широко распространенная YAMAHA, а также заполонившие мир IBM-совместимые персональные компьютеры.

Именно то общее, что есть в строении ЭВМ, и относят к понятию архитектуры. Важно отметить, что целью такой общности, в конечном счете, служит вполне понятное стремление: все машины одного семейства, независимо от их конкретного устройства и фирмы-производителя, должны быть способны выполнять одну и ту же программу. Отсюда неизбежно следует вывод, что с точки зрения архитектуры важны не все сведения о построении ЭВМ, а только те, которые могут как-то использоваться при программировании и «пользовательской» работе с ЭВМ. Ниже приводится перечень тех наиболее общих принципов построения ЭВМ, которые относятся к архитектуре:

Структура памяти ЭВМ;

Способы доступа к памяти и внешним устройствам;

Возможность изменения конфигурации компьютера;

Система команд;

Форматы данных;

Организация интерфейса.

Суммируя все вышеизложенное, получаем следующее определение архитектуры:

«Архитектура-это наиболее общие принципы построения ЭВМ, реализующие программное управление работой и взаимодействием основных ее функциональных узлов».

2. КЛАССИЧЕСКАЯ АРХИТЕКТУРА ЭВМ II ПРИНЦИПЫ ФОН НЕЙМАНА

Основы учения об архитектуре вычислительных машин заложил выдающийся американский математик Джон фон Нейман. Он подключился к созданию первой в мире ламповой ЭВМ ENIAC в 1944 г., когда ее конструкция была уже выбрана. В процессе работы во время многочисленных дискуссий со своими коллегами Г. Голдстайном и А. Берксом фон Нейман высказал идею принципиально новой ЭВМ. В 1946 г. ученые изложили свои принципы построения вычислительных машин в ставшей классической статье «Предварительное рассмотрение логической конструкции электронно-вычислительного устройства». С тех пор прошло полвека, но выдвинутые в ней положения сохраняют актуальность и сегодня.

Ранее все вычислительные машины хранили обрабатываемые числа в десятичном виде. Авторы убедительно продемонстрировали преимущества двоичной системы для технической реализации, удобство и простоту выполнения в ней арифметических и логических операций. В дальнейшем ЭВМ стали обрабатывать и нечисловые виды информации - текстовую, графическую, звуковую и другие, но двоичное кодирование данных по-прежнему составляет информационную основу любого современного компьютера.

Еще одной поистине революционной идеей, значение которой трудно переоценить, является предложенный Нейманом принцип «хранимой программы». Первоначально программа задавалась путем установки перемычек на специальной коммутационной панели. Это было весьма трудоемким занятием: например, для изменения программы машины ENIAC требовалось несколько дней (в то время как собственно расчет не мог продолжаться более нескольких минут - выходили из строя лампы). Нейман первым догадался, что программа может также храниться в виде набора нулей и единиц, причем в той же самой памяти, что и обрабатываемые ею числа. Отсутствие принципиальной разницы между программой и данными дало возможность ЭВМ самой формировать для себя программу в соответствии с результатами вычислений.

Фон Нейман не только выдвинул основополагающие принципы логического устройства ЭВМ, но и предложил ее структуру, которая воспроизводилась в течение первых двух поколений ЭВМ. Основными блоками по Нейману являются устройство управления (УУ) и арифметико-логическое устройство (АЛУ) (обычно объединяемые в центральный процессор), память, внешняя память, устройства ввода и вывода. Схема устройства такой ЭВМ представлена на рисунке 2.1. Сплошные линии со стрелками указывают направление потоков информации, пунктирные-управляющих сигналов от процессора к остальным узлам ЭВМ

Рисунок 2.1 - Архитектура ЭВМ, построенной на принципах Фон Неймана

Устройство управления и арифметико-логическое устройство в современных компьютерах объединены в один блок - процессор, являющийся преобразователем информации, поступающей из памяти и внешних устройств (сюда относятся выборка команд из памяти, кодирование и декодирование, выполнение различных, в том числе и арифметических, операций, согласование работы узлов компьютера). Память (ЗУ) хранит информацию (данные) и программы. Запоминающее устройство у современных компьютеров «многоярусно» и включает оперативное запоминающее устройство (ОЗУ), хранящее ту информацию, с которой компьютер работает непосредственно в данное время и внешние запоминающие устройства (ВЗУ) гораздо большей емкости, чем ОЗУ, но с существенно более медленным доступом. На ОЗУ и ВЗУ классификация устройств памяти не заканчивается - определенные функции выполняют и СОЗУ (сверхоперативное запоминающее устройство), и ПЗУ (постоянное запоминающее устройство), и другие подвиды компьютерной памяти.

В построенной по описанной схеме ЭВМ происходит последовательное считывание команд из памяти и их выполнение. Номер (адрес) очередной ячейки памяти, из которой будет извлечена следующая команда программы, указывается специальным устройством - счетчиком команд в УУ. Его наличие также является одним из характерных признаков рассматриваемой архитектуры.

Разработанные фон Нейманом основы архитектуры вычислительных устройств оказались настолько фундаментальными, что получили в литературе название «фон-неймановской архитектуры». Подавляющее большинство вычислительных машин на сегодняшний день - фон-неймановские машины. Исключение составляют лишь отдельные разновидности систем для параллельных вычислений, в которых отсутствует счетчик команд, не реализована классическая концепция переменной и имеются другие существенные принципиальные отличия от классической модели (примерами могут служить потоковая и редукционная вычислительные машины).

Структура компьютера - это совокупность его функциональных элементов и связей между ними. Структура компьютера графически представляется в виде структурных схем, с помощью которых можно дать описание компьютера на любом уровне детализации.

Архитектурой компьютера считается его представление на некотором общем уровне, включающее описание пользовательских возможностей программирования, системы команд, системы адресации, организации памяти и т. д. Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера: процессора, оперативного запоминающего устройства (ОЗУ, ОП), внешних ЗУ и периферийных устройств.

Важнейшее место в структуризации систем занимают средства сопряжения, которые называются интерфейсами. Интерфейс представляет собой совокупность коммутаторов, линий, сигналов, электронных схем и алгоритмов (протоколов), предназначенную для осуществления обмена информацией между устройствами.

Структуры и архитектуры ЭВМ Принципы фон Неймана

В основу архитектуры большинства компьютеров положены следующие общие принципы, сформулированные в 1945 г. американским ученым Дж. фон Нейманом в отчете по ЭВМ EDVAC

Принцип программного управления; принцип однородности памяти; принцип адресности. По истечении более 60 лет большинство компьютеров так и имеют «фон-неймановскую архитектуру», причем обычно принципы фон Неймана реализованы в следующей форме:

  • оперативная память (ОП или ОЗУ - оперативное запоминающее устройство) организована как совокупность машинных слов (МС) фиксированной длины или разрядности (имеется в виду количество двоичных единиц или бит, содержащихся в каждом МС). Например, ранние ПЭВМ имели разрядность 8, затем появились 16-разрядные, а затем - 32- и 64-разрядные машины. В свое время существовали даже 45-разрядные (М-20, М-220), 35-разрядные (Минск-22, Минск-32) и др. машины;
  • ОП образует единое адресное пространство, адреса МС возрастают от младших к старшим;
  • в ОП размещаются как данные, так и программы, причем в области данных одно слово, как правило, соответствует одному числу, а в области программы - одной команде (машинной инструкции - минимальному и неделимому элементу программы);
  • команды выполняются в естественной последовательности (по возрастанию адресов в ОП), пока не встретится команда управления (условного/безусловного перехода, или ветвления - branch), в результате которой естественная последовательность нарушится;
  • ЦП может произвольно обращаться к любым адресам в ОП для выборки и/или записи в МС чисел или команд.

Функциональные блоки (агрегаты, устройства)

Краткий список основных устройств, входящих в состав вычислительных машин, приведен на рис. 2.1.

Центральное устройство (ЦУ) представляет основную компоненту ЭВМ и в свою очередь включает ЦП - центральный процессор (central processing unit - CPU) и ОП (Main Storage, Core Storage, Random Access Memory - RAM).

Процессор непосредственно реализует операции обработки информации и управления вычислительным процессом, осуществляя выборку машинных команд и данных из оперативной па-

2.1. Структуры и архитектуры ЭВМ

Рис. 2.1. Перечень устройств ЭВМ

* Данные устройства здесь не рассматриваются. Читатель может обратиться, например, к .

мяти, их выполнение и запись результатов в ОП, включение и отключение ВУ. Рассмотрим в качестве примера процессор Intel Pentium (рис. 2.2). Он состоит из следующих блоков :

Ядро (Core). Основное исполнительное устройство, которое включает в себя арифметико-логическое устройство (АЛУ, или Arithmetic and Logical Unit - ALU) регистры, конвейеры. АЛУ - часть процессора, выполняющая арифметические и логические операции над данными, работает в соответствии с сообщаемыми ему кодами операций, которые должны быть выполнены над переменными, помещаемыми в регистры. Повышение производительности достигалось благодаря двум конвейерам, позволяющим выполнить одновременно несколько инструкций. Это два параллельных 5-ступенчатых конвейера обработки целых чисел, которые позволяют читать, интерпретировать, исполнять две команды одновременно. Целочисленные команды могут выполняться за один такт синхронизации. Эти конвейеры неодинаковы: U-конвейер выполняет любую команду системы команд семейства 86; V-конвейер выполняет только «простые» команды, т. е. команды, которые полностью встроены в схемы МП и не требуют микропрограммного управления (microcode) при выполнении (это команды, до-


Рис. 2.2.

пускающие спаривание с другими командами: регистр-регистр, память-регистр, регистр-память, переходы, вызовы, арифметико-логические операции);

  • предсказатель переходов (Branch Predictor) - блок, который «пытается угадать» направление ветвления программы и заранее загрузить информацию в блоки пред- выборки и декодирования команд ;
  • буфер адреса переходов (Branch Target Buffer - ВТ В). Обеспечивает динамическое предсказание переходов. Он улучшает выполнение команд путем запоминания состоявшихся переходов (256 последних переходов) и с опережением выполняет наиболее вероятный переход при выборке команды ветвления. При статических методах предсказания предписывается всегда выполнять или нет определенные виды переходов. При динамических методах исследуется поведение команд перехода за предшествующий период;
  • блок плавающей точки (Floating Point Unit). Выполняет обработку чисел с плавающей точкой;
  • кэш-память 1-го уровня (Level 1 cache). Процессор имеет два банка памяти по 8 Кбайт, один - для команд, второй - для данных, которые обладают большим быстродействием, чем более емкая внешняя кэш-память (L2 cache).
  • интерфейс шины (Bus Interface). Передает в ЦП поток команд и данных, а также передает данные из ЦП.

Внешние (периферийные) устройства (В У). ВУ обеспечивают взаимодействие с окружающей средой - пользователями, объектами управления, другими машинами.

Интерфейсы служат для сопряжения центральных узлов машины с ее внешними устройствами.

Однотипные ЦУ и устройства хранения данных могут использоваться в различных типах машин. Известны примеры того, как фирмы, начавшие свою деятельность с производства управляющих машин, совершенствуя свою продукцию, перешли к выпуску систем, которые в зависимости от конфигурации ВУ могут исполнять как роль универсальных, так и управляющих машин (машины Hewlett-Packard - HP и Digital Equipment Corporation - DEC).

Архитектуры ЭВМ

Архитектура «звезда». Здесь процессор (ЦУ) - рис. 2.3, а - соединен непосредственно с ВУ и управляет их работой (ранние модели машин). Этот тип также именуется классическая архитектура (фон Неймана) - одно арифметико-логическое устройство (АЛУ), через которое проходит поток данных, и одно устройство управления (УУ), через которое проходит поток команд - программа. Это однопроцессорный компьютер.

Принстонская и гарвардская архитектуры. Архитектуру фон Неймана часто отождествляют с принстонской архитектурой, которая характеризуется использованием общей оперативной памяти для хранения программ и данных. Гарвардская же архитектура характеризуется физическим разделением памяти команд (программ) и памяти данных. Элементы гарвардской архитектуры часто используются в современных процессорах, когда в кэш-памяти ЦП выделяется память команд (I-cache) и память данных (D-cache).

Иерархическая архитектура (рис. 2.3, б) - ЦУ соединено с периферийными процессорами (вспомогательными процессорами, каналами, канальными процессорами), управляющими в свою очередь контроллерами, к которым подключены группы ВУ (системы IBM 360-375, ЕС ЭВМ);

Магистральная структура (общая шина - unibas, рис. 2.3, в) - процессор (процессоры) и блоки памяти (ОП) взаимодействуют между собой и с ВУ (контроллерами ВУ) через внутренний канал, общий для всех устройств (машины DEC, IBM РС-совмес- тимые ПЭВМ).

Технически шина представляет собой набор проводников (линий), соединяющий различные компоненты компьютера для подвода к ним питания и обмена данными. В минимальной комплектации шина имеет три типа линий:

управления; адреса; данных.

К этому типу архитектуры относится также архитектура персонального компьютера (ПК). Конечно, реальная структура ПК (рис. 2.3, г) отличается от теоретических схем - здесь используется несколько разновидностей шинных интерфейсов, которые соединяются между собой мостами - контроллерами памяти (Northbridge, «Северный мост») и периферийных устройств (Southbridge, «Южный мост»).


Рис. 2.3. Основные классы архитектур ЭВМ: а - централизованная; б - иерархическая; в - магистральная; г - общая структура персонального компьютера - архитектура Northbridge/Southbridge

Здесь приведен пример набора микросхем (chipset) Triton 430 ТХ:

  • Northbridge - микросхема 82439ТХ System Controller, МТХС. Интегрирует контроль кэш-памяти, ОП и шины PCI;
  • Southbridge - 82371АВ PCI ISA IDE Xcelerator, PIIX4 - многофункциональное устройство, реализующее связь PCI- ISA, функции концентратора (hub) USB и функции управления потреблением электроэнергии (Enhanced Power Management). Здесь реализована Dynamic Power Management Architecture (DPMA) - архитектура динамического управления энергопотреблением. Поддерживается также протокол прямого обращения к памяти (Ultra DMA), который обеспечивает скорость передачи в 33 Мбайт/с с НЖМД.

Современные системы включают два типа шин:

  • системная шина, соединяющая процессор с ОП и кэш-памятью 2-го уровня;
  • множество шин ввода-вывода, соединяющие процессор с различными периферийными устройствами.

Системная шина при архитектуре DIB (Dual independent bus, двойная независимая шина) физически разделена на две (рис. 2.3, г):

  • первичная шина (FSB, frontside bus), связывающая процессор с ОП и ОП с периферийными устройствами;
  • вторичная шина (BSB, backside bus) для связи с кэш-па- мятью.

Использование двойной независимой шины повышает производительность за счет возможности для процессора параллельно обращаться к различным уровням памяти. Обычно термины «FSB» и «системная шина» используют как синонимы.

Следует иметь в виду, что терминология, используемая в настоящее время для описания интерфейсов, не является вполне однозначной и ясной. Системная шина часто упоминается как «главная шина», «хост-шина», «шина процессора», или «локальная шина». Для шин ввода-вывода используются термины «шина расширения», «внешняя шина» и опять же - «локальная шина».

Открытая архитектура IBM-PC и ее развитие

Впервые реализованная в машинах IBM PC, IBM PC/XT и PC/AT концепция открытой архитектуры предполагает, что периферийные устройства связываются с ЦУ (процессор

и ОП) посредством сменных карт расширения (или адаптеров), содержащих электронику, согласующую ЦУ и периферию - рис. 2.4. Развитие или замена одних внешних устройств на другие в таких условиях сопровождается простой заменой карты.


Рис. 2.4. Открытая архитектура IBM PC:

1 - системная плата (процессор, память, chipset); 2 - внутренний интерфейс (ISA, MCA, SCSI, LPC, AGP, HyperTransport, PCI, PCI-X и пр.); 3 - плата расширения (адаптер, интерфейсная карта, контроллер внешнего устройства); 4 - интерфейс внешнего устройства (RS-232, Centronics, USB, Firewire, инфракрасный, eSATA, Bluetooth и пр.); 5 - периферийное устройство (клавиатура, монитор, принтер, сканер и пр.)

Системные платы и их разновидности. Системную плату также называют главной (mainboard) или материнской (motherboard), иногда - объединительной платой. Это - основная монтажная схема внутри ПК, на которой располагаются процессор, память, слоты расширения и которая непосредственно или косвенно присоединяется к каждой части ПК.

На рисунках ниже иллюстрируются компоненты для двух типичных плат:

  • Baby АТ (ВАТ), где используется разъем Socket 7 для присоединения процессора, приблизительно 1995 г. (рис. 2.5, 2.7, а);
  • АТХ с разъемом Slot 1 для присоединения процессора Pentium И, типичный для системных плат, на рынке с конца 1998 г. (рис. 2.6, 2.7, б).

Открытая архитектура первых ПК предполагала минимум устройств, контроллеры которых были интегрированы в системную плату (например, порт для клавиатуры). Все остальные, включая адаптер дисплея, принтера, модема, НГМД или контроллер жесткого диска, являлись дополнительными компонентами, подключаемыми через разъемы расширения.

В конце 1990-х гг. обозначилась тенденция к помещению адаптеров периферийных устройств непосредственно на систем-




Рис. 2.7. Разъемы и интерфейсы, размещенные на задней панели корпусов: а - плата Baby АТ (схематическое изображение), б - АТХ (то же); в - общий вид некоторых типов внешних интерфейсов: 1 - разъем для подсоединения шнура электропитания монитора (на ATX-корпусах может отсутствовать); 2 - разъем для подключения компьютера к сети переменного тока; 3 - разъем для подсоединения клавиатуры PS/2 (мини-DIN, 6 штырьков); 4 - разъем для подсоединения клавиатуры DIN-5; 5 - разъем для подключения мыши PS/2; 6 - USB-порты; 7 - последовательный порт (COM2); 8 - последовательный порт (СОМ1); 9 - параллельный порт (LPT); 10 - видеовыход (VGA/SVGA); 11 - разъем для подключения локальной сети (в соответствии с моделью компьютера); 12 - MIDI/Game порт (в соответствии с моделью компьютера); 13 - гнезда для подключения внешних аудиосистем (в соответствии с моделью компьютера)

ную плату и через какое-то время было интегрировано значительное количество устройств, однако многие из них - графика, сетевой интерфейс, устройства SCSI и звуковые - все же продолжали оставаться съемными. Этот процесс шел медленно, например порты ввода-вывода и контроллеры диска еще в 1995 г. часто размещались на платах расширения. Изготовители постоянно экспериментировали с различными уровнями интеграции, встраивая некоторые или даже все эти компоненты в системную плату. Однако есть очевидное препятствие - труднее модернизировать сборку, поскольку интегрированные компоненты не могут быть удалены. Для высокоинтегрированных системных плат часто требуется нестандартный корпус, при этом для замены отдельного дефектного компонента может потребоваться выбраковка системной платы.

Следовательно, те части системы, спецификация которых изменяется наиболее быстро - оперативная память, центральный процессор и графика - целесообразнее размещать в гнездах для облегчения замены. Точно так же обычно удаляются из основной спецификации (чтобы уменьшить затраты) компоненты, используемые не всеми пользователями, например сетевые интерфейсы или SCSI.

Реферат

Тема: ’’Архитектура ЭВМ и ее основные характеристики’’.

Введение

Электронно-вычислительные машины (ЭВМ), или, как их теперь чаще называют, компьютеры, - одно из самых удивительных творений человека. В узком смысле ЭВМ - это приспособления, выполняющие разного рода вычисления или облегчающие этот процесс. Простейшие устройства, служащие подобным целям, появились в глубокой древности, несколько тысячелетий назад. По мере развития человеческой цивилизации они медленно эвоционировали, непрерывно совершенствуясь. Однако только в 40-е годы нашего столетия было положено начало созданию компьютеров современной архитектуры и с современной логикой. Именно эти годы можно по праву считать временем рождения современных (естественно, электронных) вычислительных машин.

Чтобы компьютер был и эффективным, и универсальным инструментом, он должен включать следующие структуры: центральное арифметико-логическое устройство (АЛУ), центральное устройство управления (УУ), " дирижирующее " операциями, запоминающее устройство, или память, а также устройства ввода-вывода информации.

Фон Нейман отмечал, что эта система должна работать с двоичными числами, быть электронным, а не механическим устройством и выполнять операции последовательно, одну за другой.

Принципы , сформированные фон Нейманом, стали общепринятыми и положены в основу как больших ЭВМ первых поколений, так и более поздних мини- и микро-ЭВМ. И хотя в последнее время идут активные поиски вычислительных машин, построенных на принципах, отличных от классических, большинство компьютеров построено согласно принципам, определенным Нейманом.

Архитектура и структура ЭВМ

При рассмотрении компьютерных устройств принято различать их архитектуру и структуру .

Архитектурой компьютера называется его описание на некотором общем уровне, включающее описание пользовательских возможностей программирования, системы команд, системы адресации, организации памяти и т.д. Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера: процессора , оперативного ЗУ, внешних ЗУ и периферийных устройств. Общность архитектуры разных компьютеров обеспечивает их совместимость с точки зрения пользователя.

Структура компьютера - это совокупность его функциональных элементов и связей между ними. Элементами могут быть самые различные устройства - от основных логических узлов компьютера до простейших схем. Структура компьютера графически представляется в виде структурных схем, с помощью которых можно дать описание компьютера на любом уровне детализации.

Наиболее распространены следующие архитектурные решения.

Классическая архитектура (архитектура фон Неймана) - одно арифметико-логическое устройство (АЛУ), через которое проходит поток данных, и одно устройство управления (УУ), через которое проходит поток команд - программа. Это однопроцессорный компьютер. К этому типу архитектуры относится и архитектура персонального компьютера с общей шиной . Все функциональные блоки здесь связаны между собой общей шиной, называемой также системной магистралью.

Физически магистраль представляет собой многопроводную линию с гнездами для подключения электронных схем. Совокупность проводов магистрали разделяется на отдельные группы: шину адреса, шину данных и шину управления.

Периферийные устройства (принтер и др.) подключаются к аппаратуре компьютера через специальные контроллеры - устройства управления периферийными устройствами.

Контроллер - устройство, которое связывает периферийное оборудование или каналы связи с центральным процессором, освобождая процессор от непосредственного управления функционированием данного оборудования.

Многопроцессорная архитектура . Наличие в компьютере нескольких процессоров означает, что параллельно может быть организовано много потоков данных и много потоков команд. Таким образом, параллельно могут выполняться несколько фрагментов одной задачи. Структура такой машины, имеющей общую оперативную память и несколько процессоров, представлена на рисунке.

Архитектура многопроцессорного компьютера

Многомашинная вычислительная система . Здесь несколько процессоров, входящих в вычислительную систему, не имеют общей оперативной памяти, а имеют каждый свою (локальную). Каждый компьютер в многомашинной системе имеет классическую архитектуру, и такая система применяется достаточно широко. Однако эффект от применения такой вычислительной системы может быть получен только при решении задач, имеющих очень специальную структуру: она должна разбиваться на столько слабо связанных подзадач, сколько компьютеров в системе.

Преимущество в быстродействии многопроцессорных и многомашинных вычислительных систем перед однопроцессорными очевидно.

Архитектура с параллельными процессорами . Здесь несколько АЛУ работают под управлением одного УУ. Это означает, что множество данных может обрабатываться по одной программе - то есть по одному потоку команд. Высокое быстродействие такой архитектуры можно получить только на задачах, в которых одинаковые вычислительные операции выполняются одновременно на различных однотипных наборах данных. Структура таких компьютеров представлена на рисунке.

Архитектура с параллельным процессором

В современных машинах часто присутствуют элементы различных типов архитектурных решений. Существуют и такие архитектурные решения, которые радикально отличаются от рассмотренных выше.

Современный персональный компьютер состоит из нескольких основных конструктивных компонентов:

    системного блока;

    монитора ;

    клавиатуры ;

    манипуляторов .


Системный блок

Системный блок – самый главный блок компьютера. К нему подключаются все остальные блоки, называемые внешними или периферийными устройствами. В системном блоке находятся основные электронные компоненты компьютера. ПК построен на основе СБИС (сверхбольших интегральных схем), и почти все они находятся внутри системного блока, на специальных платах (плата - пластмассовая пластина, на которой закреплены и соединены между собой электронные компоненты - СБИСы, микросхемы и др.). Самой важной платой компьютера является системная плата . На ней находятся центральный процессор , сопроцессор, оперативное запоминающее устройство – ОЗУ и разъемы для подключения плат-контроллеров внешних устройств.

В системном блоке размещаются:

    блок питания - устройство, преобразующее переменное напряжение электросети в постоянное напряжение различной полярности и величины, необходимое для питания системной платы и внутренних устройств. Блок питания содержит вентилятор, создающий циркулирующие потоки воздуха для охлаждения системного блока.

    системная плата (материнская плата) ;

    магистраль (системная шина) ;

    процессор ;

    звуковая карта ;

    видеокарта (графическая карта) ;

    накопители на жёстких магнитных дисках ;

    накопители на гибких магнитных дисках ;

    оптические, магнитооптические и пр. накопители ;

    накопитель CD-ROM, DVD-ROM;

Материнская плата

Основной частью любой компьютерной системы является материнская плата с главным процессором и поддерживающими его микросхемами. Функционально материнскую плату можно описать различным образом. Иногда такая плата содержит всю схему компьютера (одноплатные). В противоположность одноплатным, в шиноориентированых компьютерах системная плата реализует схему минимальной конфигурации, остальные функции реализуются с помощью многочисленных дополнительных плат. Все компоненты соединяются шиной . В системной плате нет видеоадаптера, некоторых видов памяти и средств связи с дополнительными устройствами. Эти устройства (платы расширения) добавляются к системной плате путем присоединения к шине расширения, которая является частью системной платы.

Первая материнская плата была разработана фирмой IBM, и показана в августе 1981 года (PC-1). В 1983 году появился компьютер с увеличенной системной платой (PC-2). Максимум, что могла поддерживать PC-1 без использования плат расширения - 64К памяти. PC-2 имела уже 256К, но наиболее важное различие заключалось в программировании двух плат. Системная плата PC-1 не могла без корректировки поддерживать наиболее мощные устройства расширения, таких, как жесткий диск и улучшенные видеоадаптеры.

Материнская плата - это комплекс различных устройств поддерживающий работу системы в целом. Обязательными атрибутами материнской платы являются базовый процессор , оперативная память , системный BIOS, контролер клавиатуры , разъемы расширения.

Материнская плата внутри компьютера - главная монтажная деталь, к которой крепятся остальные компоненты.

При нормальной работе материнской платы о ней не вспоминают, пока не понадобится усовершенствовать компьютер. Обычно хотят поставить более быстрый процессор, что и ведет к замене материнской платы. Нельзя, например, заменить старый Pentium MMX на Pentium III без новой материнской платы.

По внешнему виду материнской платы можно определить, какие нужны процессор , память и дополнительные устройства, вставляемые во внешние порты и гнезда компьютера.

По размерам материнские платы в общем случае можно разделить на три группы. Раньше все материнские платы имели размеры 8,5/11 дюймов. В XT размеры увеличились на 1 дюйм в AT размеры возросли еще больше. Часто речь может идти о “зеленых” платах (green mothеrboard). Сейчас выпускаются только такие платы. Данные системные платы позволяют реализовать несколько экономичных режимов энергопотребления (в том числе, так называемый “sleep”, при котором отключается питание от компонентов компьютера, которые в данный момент не работают).

Американское агентство защиты окружающей среды (EPA) сосредоточила свое внимание на уменьшении потребления энергии компьютерными системами. Оборудование, удовлетворяющее ее (EPA) требованиям должно в среднем (в режиме холостого хода) потреблять не более 30Вт, не использовать токсичные материалы и допускать 100% утилизацию. Поскольку современные микропроцессоры используют напряжение питания 3,3-4В, а на плату подается 5В, на системных
платах монтируют преобразователи напряжение.

Частота процессора, системной шины и шин периферийных устройств

Быстродействие различных компонентов компьютера (процессора, оперативной памяти и контроллеров периферийных устройств) может существенно различаться. Для согласования быстродействия на системной плате устанавливаются специальные микросхемы (чипсеты), включающие в себя контроллер оперативной памяти (так называемый северный мост) и контроллер периферийных устройств (южный мост).

Рис.1. Логическая схема системной платы

Cеверный мост обеспечивает обмен информацией между процессором и оперативной памятью по системной шине. В процессоре используется внутреннее умножение частоты, поэтому частота процессора в несколько раз больше, чем частота системной шины. В современных компьютерах частота процессора может превышать частоту системной шины в 10 раз (например, частота процессора 1 ГГц, а частота шины - 100 МГц).

К северному мосту подключается шина PCI (Peripherial Component Interconnect bus - шина взаимодействия периферийных устройств), которая обеспечивает обмен информацией с контроллерами периферийных устройств. Частота контроллеров меньше частоты системной шины, например, если частота системной шины составляет 100 МГц, то частота шины PCI обычно в три раза меньше - 33 МГц. Контроллеры периферийных устройств (звуковая плата , сетевая плата, SCSI-контроллер, внутренний модем ) устанавливаются в слоты расширения системной платы.

По мере увеличения разрешающей способности монитора и глубины цвета требования к быстродействию шины , связывающей видеоплату с процессором и оперативной памятью, возрастают. В настоящее время для подключения видеоплаты обычно используется специальная шина AGP (Accelerated Graphic Port - ускоренный графический порт), соединенная с северным мостом и имеющая частоту, в несколько раз большую, чем шина PCI.

Южный мост обеспечивает обмен информацией между северным мостом и портами для подключения периферийного оборудования.

Устройства хранения информации (жесткие диски , CD-ROM , DVD-ROM ) подключаются к южному мосту по шине UDMA (Ultra Direct Memory Access - прямое подключение к памяти).

Мышь и внешний модем подключаются к южному мосту с помощью последовательных портов, которые передают электрические импульсы, несущие информацию в машинном коде, последовательно один за другим. Обозначаются последовательные порты как COM1 и COM2, а
аппаратно реализуются с помощью 25-контактного и 9-контактного разъемов, которые выведены на заднюю панель системного блока.

Принтер подключается к параллельному порту, который обеспечивает более высокую скорость передачи информации, чем последовательные порты, так как передает одновременно 8 электрических импульсов, несущих информацию в машинном коде. Обозначается параллельный порт как LTP, а аппаратно реализуется в виде 25-контактного разъема на задней панели системного блока .

Для подключения сканеров и цифровых камер обычно используется порт USB (Universal Serial Bus - универсальная последовательная шина ), который обеспечивает высокоскоростное подключение к компьютеру сразу нескольких периферийных устройств. Клавиатура подключается обычно с помощью порта PS/2.

Основные характеристики вычислительной техники

К основным характеристикам вычислительной техники относятся ее эксплуатационно-технические характеристики, такие, как быстродействие, емкость памяти, точность вычислений и др.

Быстродействие ЭВМ рассматривается в двух аспектах. С одной стороны, оно характеризуется количеством элементарных операций, выполняемых центральным процессором в секунду. Под элементарной операцией понимается любая простейшая операция типа сложения, пересылки, сравнения п т. д. С другой стороны, быстродействие ЭВМ существенно зависит от организации ее памяти. Время, затрачиваемое на поиск необходимой информации в памяти, заметно сказывается на быстродействии ЭВМ.

В зависимости от области применения выпускаются ЭВМ с быстродействием от нескольких сотен тысяч до миллиардов операций в секунду. Для решения сложных задач возможно объединение нескольких ЭВМ в единый вычислительный комплекс с требуемым суммарным быстродействием.

Наряду с быстродействием часто пользуются понятием производительность . Если первое обусловлено, главным образом, используемой в ЭВМ системой элементов, то второе связано с ее архитектурой и разновидностями решаемых задач. Даже для одной ЭВМ такая характеристика, как быстродействие, не является величиной постоянной. В связи с этим различают: пиковое быстродействие, определяемое тактовой частотой процессора без учета обращения к оперативной памяти; номинальное быстродействие, определяемое с учетом времени обращения к оперативной памяти; системное быстродействие, определяемое с учетом системных издержек на организацию вычислительного процесса; эксплуатационное, определяемое с учетом характера решаемых задач (состава операций или их «смеси»).

Емкость, или объем, памяти определяется максимальным количеством информации, которое можно разместить в памяти ЭВМ. Обычно емкость памяти измеряется в байтах. Как уже отмечалось, память ЭВМ подразделяется на внутреннюю и внешнюю. Внутренняя, или оперативная память, по своему объему у различных классов машин различна и определяется системой адресации ЭВМ. Емкость внешней памяти из-за блочной структуры и съемных конструкций накопителей практически неограничена.

Точность вычислений зависит от количества разрядов, используемых для представления одного числа. Современные ЭВМ комплектуются 32- или 64-разрядными микропроцессорами, что вполне достаточно для обеспечения высокой точности расчетов в самых разнообразных приложениях. Однако, если этого мало, можно использовать удвоенную или утроенную разрядную сетку.

Система команд - это перечень команд, которые способен выполнить процессор ЭВМ. Система команд устанавливает, какие конкретно операции может выполнять процессор, сколько операндов требуется указать в команде, какой вид (формат) должна иметь команда для ее распознания. Количество основных разновидностей команд невелико. С их помощью ЭВМ способны выполнять операции сложения, вычитания, умножения, деления, сравнения, записи в память, передачи числа из регистра в регистр, преобразования из одной системы счисления в другую и т. д. При необходимости выполняется модификация команд, учитывающая специфику вычислений. Обычно в ЭВМ используется от десятков до сотен команд (с учетом их модификации). На современном этапе развития вычислительной техники используются два основных подхода при формировании системы команд процессора. С одной стороны, это традиционный подход, связанный с разработкой процессоров с полным набором команд, - архитектура CISC (Complete Instruction Set Computer - компьютер с полным набором команд). С другой стороны, это реализация в ЭВМ сокращенного набора простейших, но часто употребляемых команд, что позволяет упростить аппаратные средства процессора и повысить его быстродействие - архитектура RISC (Reduced Instruction Set Computer - компьютер с сокращенным набором команд).

Стоимость ЭВМ зависит от множества факторов, в частности от быстродействия, емкости памяти, системы команд и т. д. Большое влияние на стоимость оказывает конкретная комплектация ЭВМ и, в первую очередь, внешние устройства, входящие в состав машины. Наконец, стоимость программного обеспечения ощутимо влияет на стоимость ЭВМ.

Надежность ЭВМ - это способность машины сохранять свои свойства при заданных условиях эксплуатации в течение определенного промежутка времени. Количественной оценкой надежности ЭВМ, содержащей элементы, отказ которых приводит к отказу всей машины, могут служить следующие показатели:

Вероятность безотказной работы за определенное время при данных условиях эксплуатации;
наработка ЭВМ на отказ;
среднее время восстановления машины и др.

Для более сложных структур типа вычислительного комплекса или системы понятие «отказ» не имеет смысла. В таких системах отказы отдельных элементов приводят к некоторому снижению эффективности функционирования, а не к полной потере работоспособности в целом.

Важное значение имеют и другие характеристики вычислительной техники, например: универсальность, программная совместимость, вес, габариты, энергопотребление и др. Они принимаются во внимание при оценивании конкретных сфер применения ЭВМ.

Список литературы

    Букчин Л.В., Безрукий Ю.Л. Дисковая система IBM - совместимых компьютеров. - М.: Бином, 1993. - 284 с.

    Лагутенко О.И. Модемы. Справочник пользователя. - СПб.: Лань, 1997. - 364

    Информатика. Базовый курс

    Симонович С.В. и др. - СПб: Издательство «Питер»,2000.

    Угринович Н.Д. Информатика и информационные технологии. Учебное пособие для 10-11 классов. Углубленный курс. - М.: Лаборатория Базовых Знаний, 2000.

    А. А. Смирнов Архитектура вычислительных систем, М. Наука, 1990

Реферат 1

Введение 2

Архитектура и структура ЭВМ 3

ЭВМ ... понятие архитектуры ЭВМ , содержание которого достаточно обширно. Архитектура ЭВМ - ... характеристик ЭВМ , определяющих ее структуру: технические и эксплуатационные характеристики ЭВМ ...

  • Архитектура ЭВМ (9)

    Реферат >> Информатика

    И управляющих клавиш. Наиболее важными характеристиками клавиатуры являются чувствительность ее клавиш к нажатию, мягкость... .). Вопросы по курсу «Оператор ЭВМ» Архитектура ЭВМ ; Основные принципы построения ЭВМ ; Схема устройства компьютера, построенного...

  • Основные характеристики ЭВМ различных поколений

    Реферат >> Информатика

    Телекоммуникации, информационное обслуживание Таблица - Основные характеристики ЭВМ различных поколений Поколение 1 2 ... режимами работы ЭВМ , планированием ее ресурсов, заложивших... возможностями. Усложнилась логическая архитектура ЭВМ и их периферийное...

  • Классификация, структура и основные характеристики микропроцессоров ПК (2)

    Задача >> Информатика

    Классификация, структура и основные характеристики микропроцессоров ПК» ………….3 Практикум... соответствии с результатами ее обработки. Процессор... ЭВМ реализуется основной цикл... связь, 2005 г. Смирнов А. Д. Архитектура вычислительных систем. – М.: "Наука", ...

  • При рассмотрении компьютерных устройств принято различать их ар­хитектуру и структуру. Архитектурой компьютера называется его описание на некотором об­щем уровне, включающее описание пользовательских воз­можностей программиро­вания, системы команд, системы адресации, органи­зации памяти и т.д. Архитектура определяет принципы действия, информа­ционные связи и взаимное соединение ос­новных логических узлов компью­тера: процессора, оперативного ЗУ, внешних ЗУ и периферийных устройств. Общность архитектуры разных компьютеров обеспечи­вает их совместимость с точки зрения пользователя. Структура компьютера - это совокупность его функциональных элементов и связей между ними. Элементами могут быть самые различные устройства - от основных логических узлов компью­тера до простейших схем. Структура компьютера графически представляется в виде структурных схем, с помощью которых можно дать описание компьютера на любом уровне детализации. Наиболее распространены следующие архитек­турные решения.

    1. Классическая архитектура (архитектура фон Неймана ) - одно арифметико-логическое устройство (АЛУ), через которое проходит поток данных, и одно уст­ройство управления (УУ), через которое проходит поток команд. Это однопроцессорный компьютер. К этому типу архитектуры отно­сится и архитектура персонального компьютера с общей шиной. Все функцио­нальные блоки здесь свя­заны между собой общей шиной, называе­мой также системной магистралью. Совокуп­ность проводов магистрали раз­деляется на отдельные группы: шину адреса, шину данных и шину управле­ния. Периферийные устройства подключаются к аппаратуре компьютера че­рез специальные контроллеры - устрой­ство управ­ления, которое связывает периферийное оборудование или каналы связи с центральным процессором, освобождая процессор от непосредствен­ного управле­ния функционирова­нием данного оборудования.




    Общая шина

    2. Многопроцессорная архитектура . Наличие в компьютере несколь­ких про­цессо­ров означает, что параллельно может быть организовано много потоков дан­ных и много потоков команд (параллельно могут обрабаты­ваться не­сколько фраг­ментов одной задачи ). Структура такой машины имеет общую опе­ративную па­мять и несколько процессоров. Такая архи­тек­тура применяется для ре­шения задач с огромным объемом вычислений.



    3. Многомашинная вычислительная система . Здесь несколько про­цессоров, входящих в вычислительную систему, не имеют общей оператив­ной памяти, а имеют каждый свою (локальную ). Отдельный компьютер в много­машинной системе имеет классическую архитектуру и такая система приме­няется достаточно широко. Однако эффект от применения такой вы­числи­тельной системы может быть получен только при решении задач, имеющих специальную структуру: она должна разбиваться на столько слабо связанных подзадач, сколько компьютеров в системе.


    В современных машинах часто присутствуют элементы различных ти­пов архи­тектурных решений. Существуют и такие архитектурные решения, которые ради­кально отличаются от рассмотренных.

    Классификация ВМ

    Многообразие свойств и характеристик порождает различные виды класси­фика­ции вычислительных машин. Их делят: по этапам развития, по принципу дей­ствия, по назначению, по производительности и функциональ­ным возможностям, по усло­виям эксплуатации, по количеству процессоров и т.д. Четких границ между клас­сами компьютеров не существует.По мере со­вершенствования структур и техно­логии производства, появляются новые классы компьютеров (и границы суще­ст­вую­щих классов существенно изменя­ются ).

    1. По принципу действия вычислительные машины делятся на три больших класса: аналого­вые (АВМ), цифровые (ЦВМ) и гибридные (ГВМ). АВМ – вычислительные машины непрерывного действия, работают с ин­формацией, представленной в непрерывной (аналоговой ) форме, т.е. в виде непрерывного ряда значений какой-либо физиче­ской величины(механиче­ского воздействия, перемещения, электрического напряжения и др. ). ЦВМ – вычислитель­ные ма­шины дис­кретного действия, работают с информа­цией, представленной в дискрет­ной, а точнее, в цифровой форме. ГВМ – вычисли­тельные машины ком­бинирован­ного действия, работают с информацией, представ­ленной и в цифро­вой, и в анало­говой форме (совмещают в себе достоинства АВМ и ЦВМ ). Их ис­пользу­ют в управлении сложными техни­ческими ком­плексами.

    2. По назначению вычислительные машины делятся на три группы: универсальные (об­щего на­зна­чения ), проблемно-ориентированные и специа­лизированные.

    Универ­сальные вычислительные машины предназначены для решения самых разных задач: эконо­ми­ческих, математических, информационных и других, от­ли­чающихся сложно­стью ал­горитмов и большим объемом обраба­тываемых данных.

    Характерными чертами универсальных машин являются:

    · высокая производительность;

    · разнообразие форм обрабатываемых данных: двоичных, десятичных, сим­воль­ных, при большом диапазоне их изменения и высокой точности их пред­став­ления;

    · обширная номенклатура выполняемых операций, как арифметических, логи­че­ских, так и специальных;

    · большая емкость оперативной памяти;

    · развитая организация системы ввода-вывода информации.

    Проблемно-ориентированные вычислительные машины служат для ре­шения более узкого круга за­дач, связанных, как правило, с управлением тех­нологическими объ­ектами; реги­стра­цией, накоплением и обработкой относи­тельно небольших объемов данных; выпол­нением расчетов по относительно несложным алго­ритмам. Они обладают ограни­ченными по сравнению с уни­версальными машинами аппаратными и программ­ными ре­сурсами. К про­блемно-ориентированным вычислительным машинам можно отнести, в част­но­сти, всевоз­можные уп­равляющие вычисли­тельные системы (АСУТП, САПР).

    Специализированные вычислительные машины используются для ре­шения узкого круга задач или реа­лизации строго определенной группы функций. Такая их узкая ориентация по­зволяет четко специализировать струк­туру, существенно снизить их слож­ность и стоимость при сохранении высокой производительности и надежности их работы. К специализированным машинам можно отнести, например, программируе­мые микро­про­цессоры специального назначения, выполняющие логические функции управления от­дельными не­сложными техническими устройствами, агре­гатами и процессами.

    3. По размерам и функциональным возможностям вычислитель­ные машины можно разделить на сверх­большие (суперЭВМ ) – многопроцес­сор­ные и (или) многомашинные ком­плексы, которые используются для ре­шения сложных и больших научных задач - в управле­нии, разведке, в каче­стве цен­трализованных хранилищ информации и т.д. Большие (мэйн­фреймы ) - пред­назначены для решения широкого класса на­учно-техниче­ских задач. Малые (конструктивно выполненные в одной стойке ). Сверхма­лые (микро­ЭВМ ).

    Заме­тим, что иногда классификация осуществляется и по иным призна­кам: например, эле­ментной базе, конструктивному исполнению и др.

    Свойства ЭВМ лю­бого типа оцени­вается с помощью их технико-эко­номиче­ских характеристик, основ­ными из ко­торых являются: опера­ционные ресурсы(ха­ракте­ризуются количеством реализуемых опе­раций, формами представ­ления дан­ных, а также спо­собами адресации ), емкость памяти (оп­ределяется общим количе­ством ячеек памяти для хра­не­ния инфор­мации ), быстро­дей­ствие(опреде­ляется числом коротких операций типа сложе­ния, выполняе­мых за 1 сек ), надеж­ность(сред­нее время работы между двумя от­казами ), стоимость(это суммар­ные за­траты на при­обретение аппа­рат­ных и базовых про­граммных средств ЭВМ, а также за­траты на эксплуатацию ).