Контрольные вопросы. Бит - это единица информации

Теоретический минимум

Информация относится к фундаментальным, неопределяемым понятиям науки информатика. Тем не менее, смысл этого понятия должен быть разъяснен. Предпримем попытку рассмотреть это понятие с различных позиций.
Термин информация происходит от латинского слова
informiatio , что означает сведения, разъяснения, изложение. В настоящее время наука пытается найти общие свойства и закономерности, присущие многогранному понятию информация, но пока это понятие во многом остается интуитивным и получает различные смысловые наполнения в различных отраслях человеческой деятельности:

    в быту информацией называют любые данные, сведения, знания, которые кого-либо интересуют. Например, сообщение о каких-либо событиях, о чьей-либо деятельности и т.п.;

    в технике под информацией понимают сообщения, передаваемые в форме знаков или сигналов (в этом случае есть источник сообщений, получатель (приемник) сообщений, канал связи);

    в кибернетике под информацией понимают ту часть знаний, которая используется для ориентирования, активного действия, управления, т.е. в целях сохранения, совершенствования, развития системы;

    в теории информации под информацией понимают сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, которые уменьшают степень неопределенности, неполноты имеющихся о них знаний.

Применительно к компьютерной обработке данных под информацией понимают некоторую последовательность символических обозначений (букв, цифр, закодированных графических образов и звуков и т.п.), несущую смысловую нагрузку и представленную в понятном компьютеру виде. Каждый новый символ в такой последовательности символов увеличивает информационный объем сообщения.

Информация может существовать в виде:

    текстов, рисунков, чертежей, фотографий;

    световых или звуковых сигналов;

    радиоволн;

    электрических и нервных импульсов;

    магнитных записей;

    жестов и мимики;

  • запахов и вкусовых ощущений;

    хромосом, посредством которых передаются по наследству признаки и свойства организмов.

Свойства информации (с точки зрения бытового подхода к определению информации):

релевантность - способность информации соответствовать нуждам (запросам) потребителя;

полнота - свойство информации исчерпывающе (для данного потребителя) характеризовать отображаемый объект или процесс;

своевременность - способность информации соответствовать нуждам потребителя в нужный момент времени;

достоверность - свойство информации не иметь скрытых ошибок. Достоверная информация со временем может стать недостоверной, если устареет и перестанет отражать истинное положение дел;

доступность - свойство информации, характеризующее возможность ее получения данным потребителем;

защищенность - свойство, характеризующее невозможность несанкционированного использования или изменения информации.

эргономичность - свойство, характеризующее удобство формы или объема информации с точки зрения данного потребителя.

1 бит - минимальная единица измерения информации. При вероятностном подходе к измерению информации это количество информации, уменьшающее неопределенность знаний в 2 раза.

Связь между единицами измерения информации:

1 байт = 8 бит;

1 Кб (килобайт) = 2 10 (1024) байт = 2 13 бит;

1 Мб (мегабайт) = 2 10 (1024) Кб *== 2 20 (1 048 576) байт = 2 23 бит;

1 Гб (гигабайт) = 2 10 Мб = 2 20 Кб = 2 30 байт = 2 33 бит;

1 Тб (терабайт) = 2 10 Гб = 2 20 Мб = 2 30 Кб = 2 40 байт = 2 43 бит.

При объемном подходе к измерению информации информативность сообщения определяется количеством символов, его составляющих.

Кодирование информации подразумевает преобразование знаков одной знаковой системы в знаки или группы знаков другой знаковой системы. Обратное преобразование называют декодированием.

Кодирующим отображением называется такое отображение F множества слов в некотором алфавите на множество слов в том же или каком-то другом фиксированном алфавите. Обычно исходное множество для кодирующего отображения F называется входным алфавитом, а результат отображения - выходным алфавитом.

Применение кодирующего отображения F к любому слову из входного алфавита называется кодированием, а само кодирующее отображение F - кодом. То есть код - это правило, по которому осуществляется кодирование.

При кодировании информации для представления ее в памяти ЭВМ используется двоичный способ, т.е. любая информация - будь то числа, текст, графическое изображение, звук или видео - представляется универсальным двоичным кодом. Алфавит этого кода составляют символы 0 и 1. Почему был выбран именно этот способ кодирования? В некоторых из первых ЭВМ предпринимались попытки внедрить десятичный или троичный код, но ни один из этих вариантов кодирования не дожил до современности. Причина проста: два существенно различных состояния, представляющих, соответственно, 0 или 1, технически реализовать значительно проще, чем три или десять. Действительно, отсутствие напряжения может обозначать 0, наличие - 1; отсутствие намагниченности участка носителя информации - 0, присутствие намагниченности - 1 и т.д. Поэтому другие варианты были просто изжиты. Каждая цифра машинного кода несет 1 бит информации.

Числовая информация была первым видом информации, который начали обрабатывать ЭВМ, и долгое время она оставалась единственным видом. Поэтому неудивительно, что в современном компьютере существует большое разнообразие типов чисел.

Целые числа. Целые числа могут представляться в компьютере со знаком или без знака.

Целые числа без знака. Обычно занимают в памяти компьютера один или два байта. В однобайтовом формате принимают значения от 00000000 2 до 11111111 2 . В двухбайтовом формате - от 00000000 00000000 2 до 11111111 11111111 2 .

Диапазоны значений целых чисел без знака

Формат числа в байтах

Диапазон

Запись с порядком

Обычная запись

0 ... 2 8 -1

0 ... 255

0 ... 2 16 -1

0 ... 65535

Целые числа со знаком. Обычно занимают в памяти компьютера один, два или четыре байта, при этом самый левый (старший) разряд содержит информацию о знаке числа.

Диапазоны значений целых чисел со знаком

Формат числа в байтах

Диапазон

Запись с порядком

Обычная запись

2 7 ... 2 7 -1

128 ... 127

2 15 ... 2 15 -1

32768 ... 32767

2 31 ... 2 31 -1

2147483648 ... 2147483647

Для того чтобы различать положительные и отрицательные числа, в их двоичном представлении выделяется знаковый разряд. По традиции используется самый старший (левый) бит, причем нулевое значение в нем соответствует знаку плюс, а единичное - минусу.

Из сказанного следует, что положительные числа представляют собой обычное двоичное изображение числа (с нулем в знаковом бите). А вот для записи отрицательных чисел используется специальный код, называемый в литературе дополнительным. Для практического получения кода отрицательных чисел используется следующий алгоритм:

модуль числа перевести в двоичную форму;

проинвертировать каждый разряд получившегося кода, т.е. заменить единицы нулями, а нули - единицами;

к полученному результату обычным образом прибавить единицу.

Вещественные числа. Для хранения этого типа данных в памяти современных ЭВМ обычно использу-ется представление чисел с плавающей запятой. Оно фактически взято из математики, где любое число А в системе счисления с основанием Q предлагается записывать в виде

А= (±М) * Q ±р ,

Где М называют мантиссой, а показатель степени Р - порядком числа. Для обозначения операции умножения мы используем компьютерный вариант - "*".

Если "плавающая" точка расположена в мантиссе перед первой значащей цифрой, то при фиксированном количестве разрядов, отведённых под мантиссу, обеспечивается запись максимального количества значащих цифр числа, то есть максимальная точность представления числа в машине. Из этого следует:

Мантисса должна быть правильной дробью, у которой первая цифра после точки (запятой в обычной записи) отлична от нуля: 0.1 2 <= |M | < 1. Если это требование выполнено, то число называется нормализованным

Мантиссу и порядок q -ичного числа принято записывать в системе с основанием q , а само основание - в десятичной системе. Примеры нормализованного представления:

Десятичная система Двоичная система

753.15 = 0.75315 . 10 3 ; -101.01 = -0.10101 . 2 11 (порядок 11 2 = 3 10)

0.000034 = - 0.34 . 10 -4 ; 0.000011 = 0.11 . 2 -100 (порядок -100 2 =-4 10).

Вещественные числа в компьютерах различных типов записываются по-разному, тем не менее, все компьютеры поддерживают несколько международных стандартных форматов, различающихся по точности, но имеющих одинаковую структуру следующего вида:

Здесь порядок n -разрядного нормализованного числа задается в так называемой смещенной форме :

если для задания порядка выделено k разрядов, то к истинному значению порядка, представленного в дополнительном коде , прибавляют смещение, равное (2 k-1 - 1). Например, порядок, принимающий значения в диапазоне от -128 до +127, представляется смещенным порядком, значения которого меняются от 0 до 255.

Использование смещенной формы позволяет производить операции над порядками, как над беззнаковыми числами, что упрощает операции сравнения, сложения и вычитания порядков, а также упрощает операцию сравнения самих нормализованных чисел.

Чем больше разрядов отводится под запись мантиссы, тем выше точность представления числа. Чем больше разрядов занимает порядок, тем шире диапазон от наименьшего отличного от нуля числа до наибольшего числа, представимого в машине при заданном формате.

Стандартные форматы представления вещественных чисел:

1) одинарный - 32-разрядное нормализованное число со знаком, 8-разрядным смещенным порядком и 24-разрядной мантиссой (старший бит мантиссы, всегда равный 1, не хранится в памяти, и размер поля, выделенного для хранения мантиссы, составляет только 23 разряда).

2) двойной - 64-разрядное нормализованное число со знаком, 11-разрядным смещенным порядком и 53-разрядной мантиссой (старший бит мантиссы не хранится, размер поля, выделенного для хранения мантиссы, составляет 52 разряда).

3) расширенный - 80-разрядное число со знаком, 15-разрядным смещенным порядком и 64-разрядной мантиссой. Позволяет хранить ненормализованные числа.

Следует отметить, что вещественный формат с m -разрядной мантиссой позволяет абсолютно точно представлять m -разрядные целые числа, т. е. любое двоичное целое число, содержащее не более m разрядов, может быть без искажений преобразовано в вещественный формат.

Таким образом, при использовании метода представления вещественных чисел с плавающей запятой в памяти фактически хранятся два числа: мантисса и порядок. Разрядность первой части определяет точность вычислений, а второй - диапазон представления чисел.

К описанным выше общим принципам представления вещественных чисел необходимо добавить правила кодирования мантиссы и порядка. Эти правила могут отличаться для различных машин. Системой счисления называется совокупность приемов наименования и записи чисел. В любой системе счисления для представления чисел выбираются некоторые символы (их называют цифрами) , и числа получаются в результате каких-либо операций над цифрами данной системы счисления.

Если значение цифры не зависит от ее местоположения в записи числа, то такая система счисления называется непозиционной. Наиболее известным примером непозиционной системы счисления является римская.

Система называется позиционной, если значение каждой цифры (ее вес) изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число.

Число единиц какого-либо разряда, объединяемых в единицу более старшего разряда, называют основанием позиционной системы счисления. Если количество таких цифр равно Р, то система счисления называется Р-ичной. Основание системы счисления совпадает с количеством цифр, используемых для записи чисел в этой системе счисления.

Запись произвольного числа х в Р-ичной позиционной системе счисления основывается на представлении этого числа в виде многочлена

где P – основание системы счисления; n – количество цифр в целой части числа, m – в дробной части.

Например,

Десятичная система счисления: P =10, алфавит системы: {0,1,2,3,4,5,6,7,8,9};

Двоичная система счисления: P =2, алфавит системы: {0, 1};

Восьмеричная система счисления: P =8, алфавит системы: {0,1,2,3,4,5,6,7};

Шестнадцатеричная система счисления: P =16, алфавит системы: 0,1,2,3,4,5,6,7,8,9, A , B , C , D , E , F }.

Таблица соотношения чисел вышеперечисленных систем счисления:

P=10

P=16

1000

1001

1010

1011

1100

1101

1110

1111

10000

При переводе чисел из десятичной системы счисления в систему с основанием Р > 1 обычно используют следующий алгоритм:

если переводится целая часть числа, то она делится на Р, после чего запоминается остаток от деления. Полученное частное вновь делится на Р, остаток запоминается. Процедура продолжается до тех пор, пока частное не станет равным нулю. Остатки от деления на Р выписываются в порядке, обратном их получению;

если переводится дробная часть числа, то она умножается на Р, после чего целая часть запоминается и отбрасывается. Вновь полученная дробная часть ум-ножается на Р и т.д. Процедура продолжается до тех пор, пока дробная часть не станет равной нулю. Целые части выписываются после двоичной запятой в порядке их получения. Результатом может быть либо конечная, либо периодическая двоичная дробь. Поэтому, когда дробь является периодической, приходится обрывать умножение на каком-либо шаге и довольствоваться приближенной записью исходного числа в системе с основанием Р.

Например:

1) число 118 10 перевести в двоичную, восьмеричную и шестнадцатеричную системы счисления.

Таким образом, 118 10 =1110110 2 , 118 10 =166 8 , 118 10 =76 16 .

2) перевести десятичные дроби 0,5625 10 и 0,8 10 в двоичную систему счисления

5625

1250

2500

5000

0000

Для смешанных чисел (имеющих целую и дробную части) каждая часть переводится по своему правилу, затем выписывается общий ответ.

При переводе чисел из системы счисления с основанием Р в десятичную систему счисления необходимо пронумеровать разряды целой части справа налево, начиная с нулевого, и в дробной части, начиная с разряда сразу после запятой слева направо (начальный номер - 1). Затем вычислить сумму произведений соответствующих значений разрядов на основание системы счисления в степени, равной номеру разряда. Это и есть представление исходного числа в десятичной системе счисления.

Например, перевести числа 1100111 2 и 10011,11 2 в 10-ю систему счисления.

1100111 2 =1 × 2 6 +1 × 2 5 +0 × 2 4 +0 × 2 3 +1 × 2 2 +1 × 2 1 +1 × 2 0 =103 10

10011,11 2 =1 × 2 4 +0 × 2 3 +0 × 2 2 +1 × 2 1 +1 × 2 0 +1 × 2 -1 +1 × 2 -2 =19,75 10

Перевод чисел из двоичной системы в восьмеричную производится «делением» двоичного числа на группы по 3 цифры (триады) с конца. Каждая группа преобразуется числом в новой системе счисления, например: 10.000.101 2 =205 8 . При переводе чисел из двоичной вшестнадцатеричную, аналогично, «делим» двоичное число на тетрады, то есть на группы по 4 цифры, например, 110.0110.1011=66 B .

Арифметические действия над числами в любой позиционной системе счисления производятся по тем же правилам, что и в десятичной системе, так как все они основываются на правилах выполнения действий над соответствующими многочленами. При этом нужно только пользоваться теми таблицами сложения и умножения, которые соответствуют данному основанию Р системы счисления.

Cтраница 1


Бит информации в принципе может быть считан при размере порядка 10 нм. Поэтому для высокогототной записи материалы должны быть нанокристаллическими. Но уже при размере частиц порядка нескольких десятков нанометров наблюдается суперпарамагнитный эффект - из-за тепловых колебаний вектор намагниченности мелкой частицы не способен сохранять свою ориентацию достаточно долгое время. Другими словами, термические флуктуации разрушают хранимую информацию.  

Сколько бит информации содержит произвольное трехзначное число.  


Один бит информации, таким образом, имеет достаточно ограниченную емкость.  

Один бит информации стоит от fcB In 2 и больше. Прием и передача информации связаны с необратимыми затратами энтропии, не зависящими от температуры. Ни одна самая хитроумная конструкция не может позволить нам обойти второе начало термодинамики. Если информационную систему подпитывать данными, то ее энтропия всегда будет возрастать, поскольку энтропия является мерой внутреннего беспорядка. Следовательно, в стационарном режиме энтропию необходимо отводить от системы, например, путем теплопроводности или излучения, что может создать определенные проблемы. Информационные системы должны экспортировать энтропию, и поэтому она соответствует процессам самоорганизации. К счастью, внутренние переходы в информационной системе могут протекать обратимо или почти обратимо, поэтому никаких принципиальных ограничений здесь не возникает.  

Понятие бита информации можно наглядно продемонстрировать на следующем примере. Железнодорожная станция имеет 8 путей: I, II, III, IV, V, VI, VII, VIII. Предположим, к станции приближается поезд. У диспетчера под рукой три переключателя (А, Б, С), каждый из которых может быть поставлен либо в левое, либо в правое положение. Переключатель А подает управляющий сигнал на входную стрелку а. Если на стрелку подается сигнал 0, она открывает перед поездом левый путь, а если подается сигнал 1, то правый путь. Ставя переключатель в левое либо правое положение, диспетчер всякий раз посылает управляющий сигнал (0 или 1), содержащий информацию в 1 бит. Поставив в соответствующие положения все три переключателя, диспетчер сформирует управляющий сигнал, который направит поезд на тот или иной из восьми путей. Восемь путей - восемь управляющих сигналов, каждый из которых содержит 3 бита информации.  

Определенное число битов информации, хранимых в одной ячейке, называется словом памяти. Слово памяти может не совпадать с машинным словом, являющимся информационной единицей. Так, при длине слова в 32 двоичных разряда слово памяти может иметь длину 16 или 64 бит. В первом случае машинное слово размещается в двух ячейках памяти, во втором - в одной ячейке памяти хранится два машинных слова.  

При считывании бита информации на адресную шину X подается уровень напряжения - UC4 (U UC4), который открывает транзистор VT3, но не может открыть транзистор V7V При считывании 1 емкость Сп будет разряжаться через открытые транзисторы VT2 и VT3 на заземленную шину.  

Для передачи бита информации (двоичной переменной) необходима одна цепь. Совокупность цепей, используемых для передачи слова, называется шиной. Примем, что шина получает наименование передаваемого по ней слова и цепи шины нумеруются так же, как разряды слова.  

Что касается классического бита информации, то она представляет собой ячейку с двумя возможными состояниями. Если из двух состояний фиксируется только одно, то создается один бит классической информации. Квантовая частица со спином 1 / 2 также имеет два возможных состояния, т.е. появляется некоторая аналогия между такой частицей и классической ячейкой памяти емкостью в один бит. В отличие от классического бита, имеющего только одно из двух состояний, например, или, квантовый кубит может существовать в произвольной комплексной суперпозиции таких состояний.  

Группа из 8 битов информации называется байтом. Если бит - минимальная единица информации, то байт ее основная единица.  

Они могут хранить 16 бит информации Основа этих ЗУ - матрица из 16 триггеров, образующих четыре ряда и четыре колонки.  

Информационная скорость измеряется количеством битов информации, переданных в единицу времени. Именно бодовая скорость определяется полосой пропускания линии. Если одно изменение значения дискретного сигнала соответствует нескольким битам, то информационная скорость превышает бодовую. Например, при числе градаций 16 и скорости 1200 бод одному боду соответствует 4 бит / с и информационная скорость составляет 4800 бит / с. С ростом длины линии связи увеличивается затухание сигнала и, следовательно, уменьшаются полоса пропускания и информационная скорость.  

Отчет по лабораторным работам

ИНФОРМАТИКА

Курс 1 ЗЭЭ

Выполднил

Багинский М.Н

Мойсюк А.В

Проверил

Костюкевич В.М

Петрозаводск 2015

1.1. Что означает термин "информатика " и каково его происхождение?. 3

1.2. Какие области знаний и административно-хозяйственной деятельности официально закреплены за понятием «информатика» с 1978года. 3

1.3. Какие сферы человеческой деятельности и в какой степени затрагивает информатика? 3

1.4. Назовите основные составные части информатики и основные направления её применения. 3

1.5. Что подразумевается под понятием "информация" в бытовом, естественно-научном и техническом смыслах?. 4

1.6. Приведите примеры знания фактов и знания правил. Назовите новые факты и новые правила, которые Вы узнали за сегодняшний день. 5

1.7. От кого (или чего) человек принимает информацию? Кому передает информацию? 5

1.8. Где и как человек хранит информацию?. 5

1.9. Что необходимо добавить в систему "источник информации - приёмник информации", чтобы осуществлять передачу сообщений?. 6

1.10. Какие типы действий выполняет человек с информацией?. 6

1.11. Приведите примеры ситуаций, в которых информация. 6

1.12. Приведите примеры обработки информации человеком. Что является результатами этой обработки?. 7

1.13. Список использованной литературы…………………………………………...17

1.1. Что означает термин "информатика " и каково его происхождение?

Термин "информатика " (франц. informatique) происходит от французских слов information (информация ) и automatique (автоматика ) и дословно означает "информационная автоматика

Инфоpматика - это основанная на использовании компьютерной техники дисциплина, изучающая структуру и общие свойства информации, а также закономерности и методы её создания, хранения, поиска, преобразования, передачи и применения в различных сферах человеческой деятельности.

1.2. Какие области знаний и административно-хозяйственной деятельности официально закреплены за понятием «информатика» с 1978года

1978 году международный научный конгресс официально закрепил за понятием "информатика" области, связанные с разработкой, созданием, использованием и материально-техническим обслуживанием систем обработки информации, включая компьютеры и их программное обеспечение, а также организационные, коммерческие, административные и социально-политические аспекты компьютеризации - массового внедрения компьютерной техники во все области жизни людей.

1.3. Какие сферы человеческой деятельности и в какой степени затрагивает информатика?

Роль информатики в развитии общества чрезвычайно велика. С ней связано начало революции в области накопления, передачи и обработки информации. Эта революция, следующая за революциями в овладении веществом и энергией, затрагивает и коренным образом преобразует не только сферу материального производства, но и интеллектуальную, духовную сферы жизни

1.4. Назовите основные составные части информатики и основные направления её применения.

Инфоpматика - комплексная научная дисциплина с широчайшим диапазоном применения. Её приоритетные направления:

Pазpаботка вычислительных систем и пpогpаммного обеспечения;

Теоpия инфоpмации, изучающая процессы, связанные с передачей, приёмом, преобразованием и хранением информации;

Математическое моделирование, методы вычислительной и прикладной математики и их применение к фундаментальным и прикладным исследованиям в различных областях знаний;

Методы искусственного интеллекта, моделирующие методы логического и аналитического мышления в интеллектуальной деятельности человека (логический вывод, обучение, понимание речи, визуальное восприятие, игры и др.);

Системный анализ, изучающий методологические средства, используемые для подготовки и обоснования решений по сложным проблемам различного характера;

Биоинформатика, изучающая информационные процессы в биологических системах;

Социальная информатика, изучающая процессы информатизации общества;

Методы машинной графики, анимации, средства мультимедиа;

Телекоммуникационные системы и сети, в том числе, глобальные компьютерные сети, объединяющие всё человечество в единое информационное сообщество;

Разнообразные пpиложения, охватывающие производство, науку, образование, медицину, торговлю, сельское хозяйство и все другие виды хозяйственной и общественной деятельности.

1.5. Что подразумевается под понятием "информация" в бытовом, естественно-научном и техническом смыслах?

Термин "информация" происходит от латинского слова "informatio", что означает сведения, разъяснения, изложение. Несмотря на широкое распространение этого термина, понятие информации является одним из самых дискуссионных в науке. В настоящее время наука пытается найти общие свойства и закономерности, присущие многогранному понятию информация, но пока это понятие во многом остается интуитивным и получает различные смысловые наполнения в различных отраслях человеческой деятельности:

В обиходе информацией называют любые данные или сведения, которые кого-либо интересуют. Например, сообщение о каких-либо событиях, о чьей-либо деятельности и т.п. "Информировать" в этом смысле означает "сообщить нечто, неизвестное раньше";

В технике под информацией понимают сообщения, передаваемые в форме знаков или сигналов;

В кибернетике под информацией понимает ту часть знаний, которая используется для ориентирования, активного действия, управления, т.е. в целях сохранения, совершенствования, развития системы

1.6. Приведите примеры знания фактов и знания правил. Назовите новые факты и новые правила, которые Вы узнали за сегодняшний день.

1.7. От кого (или чего) человек принимает информацию? Кому передает информацию?

Информация передаётся в форме сообщений от некоторого источника информации к её приёмнику посредством канала связи между ними. Источник посылает передаваемое сообщение, которое кодируется в передаваемый сигнал. Этот сигнал посылается по каналу связи. В результате в приёмнике появляется принимаемый сигнал, который декодируется и становится принимаемым сообщением.

канал связи

ИСТОЧНИК ----------- ПРИЁМНИК

1. Cообщение, содержащее информацию о прогнозе погоды, передаётся приёмнику (телезрителю) от источника - специалиста-метеоролога посредством канала связи - телевизионной передающей аппаратуры и телевизора.

2. Живое существо своими органами чувств (глаз, ухо, кожа, язык и т.д.) воспринимает информацию из внешнего мира, перерабатывает её в определенную последовательность нервных импульсов, передает импульсы по нервным волокнам, хранит в памяти в виде состояния нейронных структур мозга, воспроизводит в виде звуковых сигналов, движений и т.п., использует в процессе своей жизнедеятельности.

Передача информации по каналам связи часто сопровождается воздействием помех, вызывающих искажение и потерю информации.

1.8. Где и как человек хранит информацию?

Текстов, рисунков, чертежей, фотографий;

Световых или звуковых сигналов;

Радиоволн;

Электрических и нервных импульсов;

Магнитных записей;

Жестов и мимики;

Запахов и вкусовых ощущений;

Хромосом, посредством которых передаются по наследству признаки и свойства организмов и т.д

1.9. Что необходимо добавить в систему "источник информации - приёмник информации", чтобы осуществлять передачу сообщений?

Информация передаётся в форме сообщений от некоторого источника информации к её приёмнику посредством канала связи между ними.

1.10. Какие типы действий выполняет человек с информацией?

Информацию можно:

1. создавать;

2. передавать

3. воспринимать

4. использовать

5. запоминать

6. принимать

7. копировать

8. преобразовывать

9. комбинировать

10. обрабатывать

11. делить на части

12. упрощать

13. хранить

14. искать

15. измерять

16. разрушать

1.11. Приведите примеры ситуаций, в которых информация

а) создается: книга

б) копируется: ксерокс

в) передается: радио

г) обрабатывается: компьютерные программы

д) воспринимается: глаза уши

е) разрушается: помехи в радиосигнале

ж) запоминается: головной мозг человека

з) измеряется: бит

и) ищется: сми интернет

к) принимается: скачивание фильма с интернета

л) делится на части: книга в двух томах

1.12. Приведите примеры обработки информации человеком. Что является результатами этой обработки?

А) Сбор информации в библиотеке, Б) анализ и выбор нужной информации,в) написание реферата по своей теме.

1.13. Приведите примеры информации:

· а) достоверной и недостоверной

· б) полной и неполной

Выпал снег (неполная инфо).

· в) ценной и малоценной;

Курс евро на сегодня равен 40 р (ценная инфо).

В Токио сегодня идет дождь (малоценная инфо).

· г) своевременной и несвоевременной

Начинается гроза (своевременная инфо).

Вчера в магазине была распродажа (несвоевременная инфо).

· д) понятной и непонятной

Понятная информация - на русском языке.

Непонятная информация - на китайском языке.

· е) доступной и недоступной для усвоения;

Человеку, знающему английский язык дали почитать книгу, написанную на английском языке – инфо будет доступна ему, а если он не знает английского, то информация будет не доступна.

· ж) краткой и пространной

Лук - это овощ.

Лук – это огородное или дикорастущее растение семейства лилейных с острым вкусом луковицы и съедобными трубчатыми листьями.

1.14. Назовите системы сбора и обработки информации в теле человека.

Головной мозг. Органы обоняния, осязания, слух, зрение.

1.15. Приведите примеры технических устройств и систем, предназначенных для сбора и обработки информации.

Видео камера, фотоаппарат, диктофон, компьютер, и др.

1.16. От чего зависит информативность сообщения, принимаемого человеком?

Сообщение информативно, если он содержит новые и понятные сведенья для принимающего его человека.

1.17. Почему количество информации в сообщении удобнее оценивать не по степени увеличения знания об объекте, а по степени уменьшения неопределённости наших знаний о нём?

Количество информации зависит от новизны сведений об интересном для получателя информации явлении. Иными словами, неопределенность (т.е. неполнота знания) по интересующему нас вопросу с получением информации уменьшается. Если в результате получения сообщения будет достигнута полная ясность в данном вопросе (т.е. неопределенность исчезнет), говорят, что была получена исчерпывающая информация. Это означает, что необходимости в получении дополнительной информации на эту тему нет. Напротив, если после получения сообщения неопределенность осталась прежней (сообщаемые сведения или уже были известны, или не относятся к делу), значит, информации получено не было (нулевая информация).

1.18. Как определяется единица измерения количества информации?

1 бит – количество информации в сообщении, уменьшающем неопределенность знаний человека в 2 раза.

1.19. В каких случаях и по какой формуле можно вычислить количество информации, содержащейся в сообщении?

Подходы к определению количества информации. Формулы Хартли и Шеннона.

Американский инженер Р. Хартли в 1928 г. процесс получения информации рассматривал как выбор одного сообщения из конечного наперёд заданного множества из N равновероятных сообщений, а количество информации I, содержащееся в выбранном сообщении, определял как двоичный логарифм N.

Допустим, нужно угадать одно число из набора чисел от единицы до ста. По формуле Хартли можно вычислить, какое количество информации для этого требуется: I = log 2 100  6,644. Таким образом, сообщение о верно угаданном числе содержит количество информации, приблизительно равное 6,644 единицы информации.

Приведем другие примеры равновероятных сообщений :

1. при бросании монеты: "выпала решка" , "выпал орел" ;

2. на странице книги: "количество букв чётное" , "количество букв нечётное" .

Определим теперь, являются ли равновероятными сообщения "первой выйдет из дверей здания женщина" и "первым выйдет из дверей здания мужчина" . Однозначно ответить на этот вопрос нельзя . Все зависит от того, о каком именно здании идет речь. Если это, например, станция метро, то вероятность выйти из дверей первым одинакова для мужчины и женщины, а если это военная казарма, то для мужчины эта вероятность значительно выше, чем для женщины.

Для задач такого рода американский учёный Клод Шеннон предложил в 1948 г. другую формулу определения количества информации, учитывающую возможную неодинаковую вероятность сообщений в наборе .

Легко заметить, что если вероятности p 1 , ..., p N 1 / N

Помимо двух рассмотренных подходов к определению количества информации, существуют и другие. Важно помнить, что любые теоретические результаты применимы лишь к определённому кругу случаев, очерченному первоначальными допущениями .

1.20. Почему в формуле Хартли за основание логарифма взято число 2?

Бит, единица информации имеет 2 состояния.

1.21. При каком условии формула Шеннона переходит в формулу Хартли?

Если вероятности p 1 , ..., p N равны, то каждая из них равна 1 / N , и формула Шеннона превращается в формулу Хартли.

1.22. Что определяет термин "бит" в теории информации и в вычислительной технике?

Бит в теории информации - количество информации, необходимое для различения двух равновероятных сообщений (типа "орел"-"решка", "чет"-"нечет" и т.п.).

В вычислительной технике битом называют наименьшую "порцию" памяти компьютера, необходимую для хранения одного из двух знаков "0" и "1", используемых для внутримашинного представления данных и команд.

1.23. Приведите примеры сообщений, информативность которых можно однозначно определить.

Прогноз погоды на завтра: ожидается переменная облачность, небольшой снег, возможен туман; ночью -11..13°, днем -9..-11°, ветер западный, умеренный.

Курс евро на завтра составит 40 руб.13 коп.

1.24. Приведите примеры сообщений, содержащих один (два, три) бит информации.

Пример 1: Вы бросаете монету, загадывая, что выпадет: орел или решка?

Решение: Есть два варианта возможного результата бросания монеты. Ни один из этих вариантов не имеет преимущества перед другим (равновероятны ). Перед подбрасыванием монеты неопределенность знаний о результате равна двум.

После совершения действия неопределенность уменьшилась в 2 раза. Получили 1 бит информации.

Ответ: Результат подбрасывания монеты принес 1 бит информации.

Пример 2 : Студент на экзамене может получить одну из четырех оценок: 5, 4, 3, 2. Учится неровно и с одинаковой вероятностью может получить любую оценку. После сдачи экзамена, на вопрос: «Что получил?» - ответил: «Четверку». Сколько бит информации содержится в его ответе?

Решение: Если сразу сложно ответить на вопрос, то можно отгадать оценку, задавая вопросы, на которые можно ответить только «да» или « нет», т.е. поиск осуществляется отбрасыванием половины вариантов.

Вопросы будем ставить так, чтобы каждый ответ уменьшал количество вариантов в два раза и, следовательно, приносил 1 бит информации.

1 вопрос: -Оценка выше тройки? - ДА

(число вариантов уменьшилось в два раза.) Получен 1 бит информации.

2 вопрос: -Ты получил пятерку? - НЕТ

(выбран один вариант из двух оставшихся: оценка – «четверка».) Получен еще 1 бит.

В сумме имеем 2 бита.

Ответ: Сообщение о том, что произошло одно из четырех равновероятностных событий несет 2 бита информарции.

Пример 3: На книжном стеллаже восемь полок. Книга может быть поставлена на любую из них. Сколько информации содержит сообщение о том, где находится книга?

1 вопрос: - Книга лежит выше четвертой полки? - НЕТ (1, 2, 3, 4) - 1 бит

2 вопрос: - Книга лежит ниже третьей полки? - ДА (1, 2) - 1 бит

3 вопрос: - Книга – на второй полке? - НЕТ (1) - 1 бит


Похожая информация.


Лекция 2. Свойства информации. Количество информации. Понятие алгоритма.

Краткие итоги

В лекции были рассмотрены понятии информатика и информатизация. Описано как передается и в каком виде существует информация.

Контрольные вопросы

1. Что изучает Информатика?

2. Что понимается под информацией?

3. Что называется информационными процессами?

4. Дайте определение, что такое технические средства.

5. Дайте определение, что такое программное обеспечение и что оно в себя включает.

6. Что означает термин Brainware?

7. Дайте определение Информационным объектам.

8. Дайте примеры передачи сообщений.

9. Опишите процесс передачи сообщений.


Лекция 2. Свойства информации. Количество информации. Понятие алгоритма.

В лекции рассматривается общий смысл понятий алгоритма, количество информации, какими свойствами обладает информация. Понятия информатизация общества

Цель лекции: Понять, как измеряется количество информации. В лекции рассматривается понятия бита и байта информации.

Какими свойствами обладает информация?

Свойства информации:

Информация достоверна, если она отражает истинное положение дел. Недостоверная информация может привести к неправильному пониманию или принятию неправильных решений.

Достоверная информация со временем может стать недостоверной, так как она обладает свойством устаревать, то есть перестаёт отражать истинное положение дел.

Информация полна, если её достаточно для понимания и принятия решений. Как неполная, так и избыточная информация сдерживает принятие решений или может повлечь ошибки.

Точность информации определяется степенью ее близости к реальному состоянию объекта, процесса, явления и т.п.

Ценность информации зависит от того, насколько она важна для решения задачи, а также от того, насколько в дальнейшем она найдёт применение в каких-либо видах деятельности человека.

Только своевременно полученная информация может принести ожидаемую пользу. Одинаково нежелательны как преждевременная подача информации (когда она ещё не может быть усвоена), так и её задержка.

Если ценная и своевременная информация выражена непонятным образом, она может стать бесполезной.

Информация становится понятной, если она выражена языком, на котором говорят те, кому предназначена эта информация.

Информация должна преподноситься в доступной (по уровню восприятия) форме. Поэтому одни и те же вопросы по разному, излагаются в школьных учебниках и научных изданиях.

Информацию по одному и тому же вопросу можно изложить кратко (сжато, без несущественных деталей) или пространно (подробно, многословно). Краткость информации необходима в справочниках, энциклопедиях, учебниках, всевозможных инструкциях

Как измеряется количество информации?

Возможно, ли объективно измерить количество информации? На этот вопрос ученые до сих пор не могут дать точный ответ. Как, например можно измерить информацию, которая содержится в литературных произведениях Пушкина, Лермонтова, Достоевского. Важнейшим результатом теории информации является следующий вывод: В определенных, весьма широких условиях можно пренебречь качественными особенностями информации, выразить её количество числом, а также сравнить количество информации, содержащейся в различных группах данных.

В настоящее время получили распространение подходы к определению понятия «количество информации», основанные на том, что информацию, содержащуюся в сообщении, можно нестрого трактовать в смысле её новизны или, иначе, уменьшения неопределённости наших знаний об объекте. Эти подходы используют математические понятия вероятности и логарифма.

Допустим, нужно угадать одно число из набора чисел от единицы до ста. По формуле Хартли можно вычислить, какое количество информации для этого требуется: I = log 2 100  6,644. Таким образом, сообщение о верно угаданном числе содержит количество информации, приблизительно равное 6,644 единицы информации.

Приведем другие примеры равновероятных сообщений :

1. при бросании монеты: «выпала решка» , «выпал орел»;

2. на странице книги: «количество букв чётное» , «количество букв нечётное» .

Определим теперь, являются ли равновероятными сообщения "первой выйдет из дверей здания женщина" и "первым выйдет из дверей здания мужчина" . Однозначно ответить на этот вопрос нельзя. Все зависит от того, о каком именно здании идет речь. Если это, например, станция метро, то вероятность выйти из дверей первым одинакова для мужчины и женщины, а если это военная казарма, то для мужчины эта вероятность значительно выше, чем для женщины.

Для задач такого рода американский учёный Клод Шеннон предложил в 1948 г. другую формулу определения количества информации, учитывающую возможную неодинаковую вероятность сообщений в наборе.

Легко заметить, что если вероятности p 1 , ..., p N равны, то каждая из них равна 1 / N , и формула Шеннона превращается в формулу Хартли.

Помимо двух рассмотренных подходов к определению количества информации, существуют и другие. Важно помнить, что любые теоретические результаты применимы лишь к определённому кругу случаев, очерченному первоначальными допущениями.

В качестве единицы информации Клод Шеннон предложил принять один бит (англ . bit - binary digit - двоичная цифра).

Бит в теории информации - количество информации, необходимое для различения двух равновероятных сообщений (типа «орел»-«решка», «чет»-«нечет» и т.п.).

В вычислительной технике битом называют наименьшую "порцию" памяти компьютера, необходимую для хранения одного из двух знаков "0" и "1", используемых для внутримашинного представления данных и команд.

Бит - слишком мелкая единица измерения. На практике чаще применяется более крупная единица - байт , равная восьми битам. Именно восемь битов требуется для того, чтобы закодировать любой из 256 символов алфавита клавиатуры компьютера (256=2 8).



Широко используются также ещё более крупные производные единицы информации:

· 1 Килобайт (Кбайт) = 1024 байт = 210 байт,

· 1 Мегабайт (Мбайт) = 1024 Кбайт = 220 байт,

· 1 Гигабайт (Гбайт) = 1024 Мбайт = 230 байт.

В последнее время в связи с увеличением объёмов обрабатываемой информации входят в употребление такие производные единицы, как:

· 1 Терабайт (Тбайт) = 1024 Гбайт = 240 байт,

· 1 Петабайт (Пбайт) = 1024 Тбайт = 250 байт.

За единицу информации можно было бы выбрать количество информации, необходимое для различения, например, десяти равновероятных сообщений. Это будет не двоичная (бит ), а десятичная (дит ) единица информации.

При этом важно отличать двоичные кратные приставки от соответствующих десятичных:

«один К» – 1 К=210=1024 от «один кило» – 103=1000,

«один М» – 1 М=220=1048576 от «один мега» – 106=1000000 и т.д.

Этим часто злоупотребляют производители компьютерной техники, в частности, производители жестких магнитных дисков, которые при указании их информативной емкости используют меньшую единицу измерения с тем, чтобы результирующее значение выражалось большим числом (как в известном мультфильме – "А в попугаях-то я длиннее!").

Если в результате получения сообщения достигнута полная ясность в данном вопросе (т.е. неопределенность исчезнет), говорят, что получена исчерпывающая информация. Это означает, что нет необходимости в дополнительной информации на эту тему. Напротив, если после получения сообщения неопределенность осталась прежней (сообщаемые сведения или уже были известны, или не относятся к делу), значит, информации получено не было (нулевая информация).

Бит – наименьшая единица представления информации. В информатике часто используется величина, называемая байтом (byte) и равная 8 битам.

Байт – наименьшая единица обработки и передачи информации.

Бит позволяет выбрать один вариант из двух возможных; байт, соответственно, 1 из 256 (2 8).

Наряду с байтами для измерения количества информации используются более крупные единицы:

1 Кбайт (один килобайт) = 2 10 байт = 1024 байт;

1 Мбайт (один мегабайт) = 2 10 Кбайт = 1024 Кбайт;

1 Гбайт (один гигабайт) = 2 10 Мбайт = 1024 Мбайт.

В последнее время в связи с увеличением объёмов обрабатываемой информации входят в употребление такие производные единицы, как:

1 Терабайт (Тб) = 1024 Гбайт = 2 40 байта,

1 Петабайт (Пб) = 1024 Тбайт = 2 50 байта.

Пример . Упорядочите по возрастанию следующую последовательность:

1024 Мбайт, 11 Петабайт, 2224 Гбайт, 1 Терабайт.

Решение . Сначала приведем величины измерения количества информации к единой величине, удобной для данной последовательности. В данном случае – это Гбайт.

1024 Мбайт = 1 Гбайт, что меньше 1 Терабайт = 1024 Гбайт, что, в свою очередь меньше 2224 Гбайт и меньше 11 Петабайт,

Следовательно, последовательность, упорядоченная по возрастанию, имеет вид:

1024 Мбайт, 1 Терабайт, 2224 Гбайт, 11 Петабайт

II. Кодирование информации.

Компьютер может обрабатывать только информацию, представленную в числовой форме. Вся другая информация (тексты, звуки, изображения, показания приборов и т.д.) для обработки на компьютере должна быть преобразована в числовую форму.

Переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки, называется кодированием информации.

Кодирование – это операция преобразования знаков или групп знаков одной знаковой системы в знаки или группы знаков другой знаковой системы.

Как правило, все числа в компьютере представляются с помощью нулей и единиц, т.е. работа производится в двоичной системе счисления, поскольку при этом устройства для их обработки получаются значительно более простыми.

1. Кодирование текста.

При вводе в компьютер каждая буква кодируется определенным числом, а при выводе на внешние устройства (экран или печать) для восприятия человеком по этим числам строятся изображения букв. Соответствие между набором букв и числами называется кодировкой символов.

Алфавитный подход основан на том, что всякое сообщение можно закодировать с помощью конечной последовательности символов некоторого алфавита. Множество символов, используемых при записи текста, называется алфавитом . Количество символов в алфавите называется его мощностью .

Существует двоичный алфавит, который содержит только 2 символа, и его мощность равна двум.

Для представления текстовой информации в компьютере чаще всего используется алфавит мощностью 256 символов. Один символ из такого алфавита несет 8 бит информации, т.к. 2 8 = 256.

8 бит составляют один байт, следовательно, двоичный код каждого символа занимает 1 байт памяти ЭВМ. Традиционно для кодирования одного символа используется количество информации, равное 1 байту (8 битам). Все символы такого алфавита пронумерованы от 0 до 255, а каждому номеру соответствует 8-разрядный двоичный код от 00000000 до 11111111.

Для разных типов ЭВМ и операционных систем используются различные таблицы кодировки, отличающиеся порядком размещения символов алфавита в кодовой таблице. Международным стандартом на персональных компьютерах является таблица кодировки ASCII. Сообщения, записанные с помощью символов ASCII, используют алфавит из 256 символов.

Кроме того, в настоящее время существует еще ряд кодовых таблиц для русских букв. К ним относится таблица кодировки КОИ8, использующая алфавит из 256 символов.

Широкое распространение получил новый международный стандарт UNICODE, который отводит на каждый символ не один байт, а два, поэтому с его помощью можно закодировать не 256 символов, а 2 16 = 65536 различных символов.

Информативность последовательности символов не зависит от содержания сообщения.

Чтобы определить объем информации в сообщении при алфавитном подходе, нужно последовательно решить задачи:

    Определить количество информации (i) в одном символе по формуле 2i = N, где N – мощность алфавита,

    Определить количество символов в сообщении, учитывая знаки препинания и пробелы (m),

    Вычислить объем информации по формуле: V = i * m.

Пример . Закодировано текстовое сообщение «Десять букв», определить его информационный объем по системе ASCII и UNICODE.

Решение . Сообщение содержит 11 символов. Один символ из алфавита ASCII несет 8 бит информации, поэтому информационный объем по системе ASCII составит 11*8 бит = 88 бита = 11 байт.

Один символ из алфавита UNICODE несет 16 бит информации или 2 байта, поэтому информационный объем по системе UNICODE составит 11*16 бит = 176 бит = 22 байта.

Для двоичного сообщения той же длины информационный объем составляет 11 бит, т.к. N = 2, i = 1 бит, m = 11, V = 11 бит.