Колебательный контур. Формула Томсона. Электрический колебательный контур. Затухающие колебания

Колебательный контур представляет собой простую электрическую цепь, состоящую из катушки индуктивности и емкости конденсатор. В такой схеме могут возникать колебания тока или напряжения. Резонансная частота таких колебаний определяется по формуле Томсона.

Эта разновидность LC колебательного контура (КК) простейший пример резонансной колебательной цепи. Состоит из последовательно соединенных катушки индуктивности и емкости. При протекание через такую схему переменного тока, величина его определяется по : I = U / Х Σ , где Х Σ - сумма реактивных сопротивлений катушки индуктивности и емкости.

Напомню зависимости реактивного сопротивления емкости и индуктивности от частоты напряжения их формулы выглядят вот так:

Из формул хорошо видно, что с ростом частоты, реактивное сопротивление индуктивности увеличивается. В отличии от катушки, у конденсатора при увеличении частоты, реактивное сопротивление снижается. На рисунке ниже приведены графические зависимости реактивных сопротивлений катушки индуктивности X L и емкости Х C от циклической частоты омега ω , и график зависимости ω от их алгебраической суммы Х Σ . График показывает зависимость от частоты общего реактивного сопротивления последовательного колебательного контура состоящего из конденсатора и индуктивности.

Из графика хорошо видно, что на определенной частоте ω=ω р , реактивные сопротивления индуктивности и емкости совпадают по значению, но противоположны по знаку, а общее сопротивление цепи равно нулю. На этой частоте в контуре будет протекать максимально возможный ток, ограниченный только омическими потерями в индуктивности (т.е. активным сопротивлением катушки) и внутренним активным сопротивлением источника тока. Эту частоту, при которой происходит это явление называют частотой резонанса. Кроме того из графика можно сделать следующий вывод: на частотах, ниже резонансной частоты реактивное сопротивление последовательного КК имеет емкостной фактор, а на более высоких частотах носит индуктивный характер. Резонансная частоты, может быть найдена при помощи формулы Томсона, которая легко выводится из формул реактивных сопротивлений обоих компонентов КК, приравняв их реактивные сопротивления:

На рисунке ниже, отобразим эквивалентную схему последовательного резонансного контура с учетом активных омических потерь R , при идеальном источнике тока гармонического напряжения с определенной амплитудой U . Полное сопротивление, или его еще называют импедансом схемы вычисляется: Z = √(R 2 +X Σ 2) , где X Σ = ω L-1/ωC . На частоте резонанса, когда обои реактивные сопротивления X L = ωL и Х С = 1/ωС равны по модулю, X Σ стремится к нулю и носит только активный характер, а ток в схеме вычисляется отношением амплитуды напряжения источника тока к сопротивлению потерь по закону Ома: I= U/R . При этом на катушке и емкости, в которых имеется запас реактивных составляющих энергии, падает одинаковое значение напряжения, т.е U L = U С = IX L = IX С .

На любой частоте, кроме резонансной, напряжения на индуктивности и емкости отличаются - они зависят от амплитуды тока в схеме и номиналами модулей реактивных сопротивлений X L и X С .Поэтому резонанс в последовательном колебательном контуре называют резонансом напряжений .

Очень важными характеристиками КК также являются его волновое сопротивление ρ и добротность КК Q . Волновым сопротивлением ρ считают величину реактивного сопротивления обоих компонентов (L,C) на резонансной частоте: ρ = Х L = Х C при ω =ω р . Волновое сопротивление можно рассчитать по следующей формуле: ρ = √(L/C) . Волновое сопротивление ρ считается количественной мерой оценки энергии, сохраненными реактивными компонентами контура - W L = (LI 2)/2 и W C =(CU 2)/2 . Отношение энергии, сохраненными реактивными элементами КК, к энергии резистивных потерь за период называют добротностью Q КК. Добротность колебательного контура - величина, определяющая амплитуду и ширину амплитудно частотной характеристики резонанса и говорящая о том, во сколько раз сохраненной энергии в КК больше, чем потери энергии за единичный период колебаний. Добротность кроме того учитывает и активного сопротивление R . Для последовательного КК в RLC цепях, в котором все три пассивных компонента соединены последовательно, добротность вычисляется по выражению:

где R , L и C - сопротивление, индуктивность и ёмкость резонансной цепи КК.

Величину, обратную добротности d = 1 / Q физики назвали затуханием КК. Для определения добротности обычно применяют выражение Q = ρ / R , где R -сопротивление омических потерь КК, характеризующее мощность активных потерь КК Р = I 2 R . Добротность большинства колебательных контуров варьируется от нескольких единиц до сотни и выше. Добротность таких колебательных систем, как пьезоэлектрические или может быть нескольких тысяч и даже больше.

Частотные свойства КК обычно оценивают с помощью АЧХ, при этом сами схемы рассматривают как четырёхполюсники. На рисунках ниже отображены элементарные четырехполюсники, содержащие последовательный КК и АЧХ этих цепей. По оси Х графиков отложен коэффициент передачи схемы по напряжению К, или отношение выходного напряжения к входному.

Для пассивных схем (не имеющих усилительных элементов и источников энергии), величина К никогда не выше единицы. Сопротивление переменному току, будет минимально при резонансной частоте. Тогда коэффициент передачи стремится к единице. На частотах, отличных от резонансной, сопротивление КК переменному току велико и коэффициент передачи будет близок к нулевым значениям.

При резонансе источник входного сигнала практически замкнут накоротко низким сопротивлением КК, поэтому коэффициент передачи падает почти до нуля. Наоборот, при частотах входного воздействия, отстоящих от резонансной, коэффициент стремится к единице. Свойство КК изменять коэффициент передачи на частотах, около резонансных, широко применяется в радиолюбительской практике, когда необходимо выделить сигнал с требуемой частотой из множества подобных, но на других частотах. Так, в любом радиоприемнике при помощи КК выполняется настройка на частоту требуемой радиостанции. Свойство выделять из множества частот только одну называют селективностью. При этом интенсивность изменения коэффициента передачи при настройке частоты воздействия от резонанса описывают полосой пропускания. За нее берется диапазон частот, в диапазонах которого уменьшение (увеличение) коэффициента передачи относительно его значения на резонансной частоте, не выше 0,7 (дБ).

Пунктирными линиями на рисунках обозначены АЧХ подобных цепей, КК которых имеют такие же резонансы, но обладающие меньшей добротностью. Как видим из графиков, при этом увеличивается полоса пропускания и уменьшается ее селективность.

В данной цепи параллельно соединены два реактивных элемента с разным уровнем реактивности. На рисунке ниже рассмотрены графические зависимости реактивных проводимостей индуктивности B L = 1/ωL и емкости конденсатора В C = -ωC , а также общей проводимости В Σ . И в этом колебательном контуре, имеется резонансная частота на которой реактивные сопротивления обоих компонентов одинаковы. Это говорит о том, что на этой частоте параллельный КК обладает огромным сопротивлением переменному току.


Сопротивление реального параллельного КК (с потерями), разумеется, не стремится к бесконечности - оно тем ниже, чем выше омическое сопротивление потерь в контуре, т.е снижается прямо пропорционально уменьшению добротности.

Рассмотрим простейшую цепь, состоящую из источника гармонических колебаний и параллельного КК. Если, собственная частота колебаний генератора (источника напряжения) совпадает с резонансной частотой контура, то индуктивная и емкостная ветви оказывают одинаковое сопротивление переменному току, и токи в ветвях будут совершенно одинаковыми. Поэтому уверенно скажем, что в этой схеме имеет место резонанс токов . Реактивности обоих компонентов вполне успешно компенсируют друг друга, и сопротивление КК протекающему току становится полностью активным (имеет только резистивную составляющую). Величина этого сопротивления, вычисляется произведением добротности КК на характеристическое сопротивление R экв = Q·ρ . На других частотах сопротивление параллельного КК падает и приобретает реактивный характер на более низких индуктивный, а на более высоких - емкостной.

Рассмотрим, зависимость коэффициентов передачи четырехполюсников от частоты в данном случае.


Четырехполюсник, на частоте резонанса представляет собой достаточно большое сопротивление протекающему переменному току, поэтому при ω=ω р его коэффициент передачи стремится к нулю (и это даже с учетом реальных омических потерь). На прочих частотах, отличных от резонансной, сопротивление КК будет падать, а коэффициент передачи четырехполюсника - увеличиваться. Для четырехполюсника второго варианта, ситуация будет диаметрально противоположной - на резонансной частоте КК будет оказывать очень большое сопротивление, т.е коэффициент передачи будет максимален и стремится к единице). При существенном отличии частоты от резонансной, источник сигнала, окажется практически зашунтированным, а коэффициент передачи будет стремится к нулю.

Предположим нам нужно изготовить параллельный КК, с частотой резонанса 1 МГц. Осуществим предварительный упрощенный расчет такого КК. То есть, вычислим необходимые значения емкости и индуктивности. Воспользуемся упрощенной формулой:

L=(159,1/F) 2 / C где:

L индуктивность катушки в мкГн; С емкость конденсатора в пФ; F резонансная частота в МГц

Зададимся частотой в 1 МГц и емкостью 1000 пФ. Получим:

L=(159,1/1) 2 /1000 = 25 мкГн

Таким образом если в нашей радиолюбительской самоделки используется КК на частоту 1 МГц, то нам необходимо взять емкость на 1000 пФ и индуктивность на 25 мкГн. Конденсатор достаточно легко подобрать, а вот индуктивность ИМХО проще изготовить самостоятельно.

Для этого рассчитаем число витков для катушки без сердечника

N=32 *v(L/D) где:

N необходимое число витков; L заданная индуктивность в мкГн; D диаметр каркаса катушки.

Предположим, диаметр каркаса 5 мм, тогда:

N=32*v(25/5) = 72 витка

Данная формула считается приближенной, она совершенно не учитывает собственную межвитковую емкость индуктивности. Формула служит для предварительного расчета параметров катушки, которые затем подстраиваются при регулировке контура в устройстве.

В радиолюбительской практике очень часто применяются катушки с подстроечным сердечником из феррита, обладающие длиной 12-14 мм и диаметром 2,5 - 3 мм. Такие сердечники, активно используются в колебательных контурах приемников.

Чтобы понять причину возникновения резонанса необходимо разобраться как течёт ток через конденсатор и катушку индуктивности.
При протекании тока через катушку индуктивности напряжение опережает ток. Давайте рассмотрим этот процесс подробнее, когда напряжение на концах катушки максимально, ток через катушку не течет, по мере уменьшения напряжения, ток увеличивается и когда напряжение на концах катушки равно нулю, ток через катушку максимален. Далее, напряжение уменьшается и достигает минимума, ток при этом равен нулю. Из этого можно сделать вывод, что ток через катушку максимален, когда напряжение на её концах равно нулю и ток равен нулю, когда напряжение на её концах максимально. Таким образом, если сопоставить графики изменения напряжения и тока, создаётся впечатление, что напряжение опережает ток на 90 градусов. Это можно увидеть на рисунке ниже.

Совсем противоположно катушке индуктивности ведет себя конденсатор. Когда напряжение на концах конденсатора равно нулю, ток через него максимален, по мере зарядки конденсатора ток через него уменьшается, это связано с тем, что разность потенциалов между конденсатором и источником напряжения уменьшается, а чем меньше разность потенциалов, тем меньше ток. Когда конденсатор полностью заряжен ток через него не течет так, как нет разности потенциалов. Напряжение начинает уменьшаться и становится равно нулю, при этом ток максимален только течет в другом направлении, далее напряжение достигает минимума и ток через конденсатор снова не течет. Делаем вывод, что ток через конденсатор максимальный когда напряжение на его обкладках равно нулю и ток равен нулю когда напряжение на конденсаторе минимально. Если сопоставить графики изменения тока и напряжение, создается впечатление, что ток опережает напряжение на 90 градусов. Это можно увидеть на рисунке ниже.


На резонансной частоте для контура, состоящего из конденсатора и катушки индуктивности, неважно параллельный он или последовательный, их сопротивления равны и сдвиг фаз между напряжением и током равен нулю. Ведь действительно если подумать, то в конденсаторе ток опережает напряжение на 90 градусов, то есть +90 градусов, а в катушке индуктивности ток отстает от напряжения на 90 градусов, то есть -90 градусов и если сложить их получится нуль. Для пары, конденсатор и катушка индуктивности параллельный и последовательный резонанс возникают на одной и той же частоте.

Давайте рассмотрим резонанс в последовательном колебательном контуре.


На верхнем графике изображена зависимость тока от времени, протекающего через контур, ниже два графика это напряжения, на конденсаторе и катушке, самый нижний это сумма напряжений на катушке и конденсаторе. Видно, что суммарное напряжение на конденсаторе и катушке индуктивности равно нулю, также говорят, что сопротивление последовательного колебательного контура на резонансной частоте стремится к нулю.
Давайте соберем простую схему, изображенную на рисунке.


Сопротивление резистора должно быть больше выходного сопротивления генератора, то есть больше 50 Ohm, я взял первый попавшийся.
Расчетная резонансная частота такого контура 270 KHz, но так как номиналы имеют определенный допуск, который обычно указывается в процентах, придется ее подобрать. Подбирать будем исходя из того, что сопротивления катушки индуктивности и конденсатора на резонансной частоте равны, а так как они соединены последовательно, то равны и падения напряжений. Первый канал показывает напряжение на контуре, второй канал напряжение на катушке, канал Math показывает разность между первым и вторым каналом, а по сути напряжение на конденсаторе. Причина по которой, я не подключил щуп осциллографа параллельно конденсатору, будет подробно описана в следующей статье. Если кратко, то есть правило подключать земляной крокодил только к земле, если осциллограф и исследуемая схема питаются от бытовой сети и имеют заземление. Делается это, для того чтобы не спалить исследуемую схему и осциллограф.



На осциллограммах видно, что на резонансной частоте падение напряжения на катушке и конденсаторе равны и противоположны по знаку, а суммарное падение напряжения на контуре стремится к нулю. В последовательном колебательном контуре на резонансной частоте напряжение на катушке и конденсаторе выше чем на генераторе. Давайте увеличим частоту и посмотри что изменится.


Видим, что напряжение на катушке увеличилось потому, что увеличилось её сопротивление, так как оно прямо пропорционально зависит от частоты. Напряжение на конденсаторе уменьшилось потому, что его сопротивление с ростом частоты уменьшается. Теперь уменьшим частоту.


Видим, что напряжение на конденсаторе увеличилось, а на катушке уменьшилось, также надо отметить, что разность фаз между сигналами равна 180 градусам.

Давайте теперь рассмотрим резонанс в параллельном контуре, ситуация аналогичная с последовательным контуром, только в последовательном мы рассматривали напряжения, а в параллельном будем рассматривать токи.


Видим, что токи сдвинуты относительно друг друга на 180 градусов, а их сумма равна нулю, то есть ток через контур не течет, а его сопротивление стремится к бесконечности. Параллельный колебательный контур используют как полосно-заграждающий фильтр, радиолюбители называют его фильтр- пробка. Он не пропускает напряжение частота которого равна его резонансной частоте. Давайте соберем простую схему, изображенную на картинке ниже и посмотрим как будет изменяться напряжение на концах контура в зависимости от частоты.


Так как конденсатор и индуктивность те же, что и в прошлом эксперименте резонансная частота контура та же.


На резонансной частоте сопротивление контура стремится к бесконечности, следовательно и напряжение будет максимально. Давайте уменьшим частоту.


Видим, что напряжение на контуре уменьшилось, произошло это потому, что сопротивление катушки уменьшилось и она зашунтировала конденсатор.
Теперь давайте увеличим частоту.


С ростом частоты сопротивление конденсатора уменьшилось и он зашунтировал катушку.
Пожалуй, это всё, что хотелось рассказать про резонанс. f 0 = 1 2 π L C {\displaystyle f_{0}={1 \over 2\pi {\sqrt {LC}}}}

Энциклопедичный YouTube

  • 1 / 5

    Например, при начальных условиях φ = 0 {\displaystyle \varphi =0} и амплитуде начального тока решение сведётся к:

    i (t) = I a sin ⁡ (ω t) {\displaystyle i(t)=I_{a}\sin({\omega }t)}

    Решение может быть записано также в виде

    i (t) = I a 1 sin ⁡ (ω t) + I a 2 cos ⁡ (ω t) {\displaystyle i(t)=I_{a1}\sin({\omega }t)+I_{a2}\cos({\omega }t)}

    где I a 1 {\displaystyle I_{a1}} и I a 2 {\displaystyle I_{a2}} - некоторые константы, которые связаны с амплитудой I a {\displaystyle I_{a}} и фазой φ {\displaystyle \varphi } следующими тригонометрическими соотношениями:

    I a 1 = I a cos ⁡ (φ) {\displaystyle I_{a1}=I_{a}\cos {(\varphi)}} , I a 2 = I a sin ⁡ (φ) {\displaystyle I_{a2}=I_{a}\sin {(\varphi)}} .

    Комплексное сопротивление (импеданс) колебательного контура

    Колебательный контур может быть рассмотрен как двухполюсник , представляющий собой параллельное включение конденсатора и катушки индуктивности. Комплексное сопротивление такого двухполюсника можно записать как

    z ^ (i ω) = i ω L 1 − ω 2 L C {\displaystyle {\hat {z}}(i\omega)\;={\frac {i\omega L}{1-\omega ^{2}LC}}}

    Для такого двухполюсника может быть определена т. н. характеристическая частота (или резонансная частота), когда импеданс колебательного контура стремится к бесконечности (знаменатель дроби стремится к нулю).

    Эта частота равна

    ω h = 1 L C {\displaystyle \omega _{h}={\frac {1}{\sqrt {LC}}}}

    и совпадает по значению с собственной частотой колебательного контура.

    Из этого уравнения следует, что на одной и той же частоте может работать множество контуров с разными величинами L и C, но с одинаковым произведением LC. Однако выбор соотношения между L и C зачастую не бывает полностью произвольным, так как обуславливается требуемым значением добротности контура.

    Для последовательного контура добротность растёт с увеличением L:

    Q = 1 R L C {\displaystyle Q={\frac {1}{R}}{\sqrt {\frac {L}{C}}}} , где R - активное сопротивление контура.

    Для параллельного контура:

    Q = R e C L {\displaystyle Q=R_{e}{\sqrt {\frac {C}{L}}}} ,

    где R e = L C R L + C {\displaystyle R_{e}={\frac {L}{CR_{L+C}}}} , которое в последовательном контуре включено последовательно с L и C, а в параллельном - параллельно им. Малые потери (то есть высокая добротность) означают, что в последовательном контуре мало, а в параллельном - велико. В низкочастотном последовательном контуре R e {\displaystyle R_{e}} легко обретает физический смысл - это в основном активное сопротивление провода катушки и проводников цепи.

    Подвозбудителя генератора (сам генератор при этом выдаёт 400 Гц). При отклонении частоты от номинальной реактивное сопротивление одного из контуров становится больше, чем другого, и БРЧ выдаёт на привод постоянных оборотов генератора управляющий сигнал для коррекции оборотов генератора. Если частота поднялась выше номинальной - сопротивление второго контура станет меньше, чем первого, и БРЧ выдаст сигнал на уменьшение оборотов генератора, если частота упала - то наоборот. Так поддерживается постоянство частоты напряжения генератора при изменении оборотов двигателя .

    Последовательный колебательный контур — это цепь, состоящая их катушки индуктивности и конденсатора, которые соединяются последовательно. На схемах идеальный последовательный колебательный контур обозначается вот так:

    Реальный колебательный контур имеет сопротивление потерь катушки и конденсатора. Это суммарное суммарное сопротивление потерь обозначается буквой R. В результате, реальный последовательный колебательный контур будет иметь такой вид:


    R — это суммарное сопротивление потерь катушки и конденсатора

    L — собственно сама индуктивность катушки

    С — собственно сама емкость конденсатора

    Колебательный контур и генератор частоты

    Давайте проведем классический эксперимент, который есть в каждом учебнике по электронике. Для этого соберем вот такую схему:


    Генератор у нас будет выдавать синус.

    Для того, чтобы снять осциллограмму через последовательный колебательный контур, мы подключим в схему шунтовый резистор с малым сопротивлением в 0,5 Ом и с него уже будем снимать напряжение. То есть в данном случае мы шунт используем для наблюдения силы тока в цепи.


    А вот и сама схема в реальности:


    Слева-направо: шунтовый резистор, катушка индуктивности и конденсатор. Как вы уже поняли, сопротивление R — это суммарное сопротивление потерь катушки и конденсатора, так как нет идеальных радиоэлементов. Оно «прячется» внутри катушки и конденсатора, поэтому в реальной схеме отдельным радиоэлементом мы его не увидим.

    Теперь нам осталось подцепить эту схему к генератору частоты и осциллографу , и прогнать по некоторым частотам, снимая осциллограмму с шунта U ш , а также снимая осциллограмму с самого генератора U ГЕН .


    С шунта мы будем снимать напряжение , которое у нас отображает поведение силы тока в цепи, а с генератора собственно сам сигнал генератора. Давайте прогоним нашу схемку по некоторым частотам и глянем что есть что.

    Влияние частоты на сопротивление колебательного контура

    Итак, погнали. В схеме я взял конденсатор на 1мкФ и катушку индуктивности на 1 мГн. На генераторе настраиваю синус размахом в 4 Вольта. Вспоминаем правило: если в цепи соединение радиоэлементов идет последовательно друг за другом, значит, через них течет одинаковая сила тока.

    Красная осциллограмма — это напряжение с генератора частоты, а желтая осциллограмма — отображение силы тока через напряжение на шунтовом резисторе.

    Частота 200 Герц с копейками:


    Как мы видим, при такой частоте ток в этой цепи есть, но очень слабый

    Добавляем частоту. 600 Герц с копейками


    Здесь мы уже отчетливо видим, что сила тока возросла, а также видим, что осциллограмма силы тока опережает напряжение. Попахивает конденсатора.

    Добавляем частоту. 2 Килогерца


    Сила тока стала еще больше.

    3 Килогерца


    Сила тока увеличилась. Заметьте также, что сдвиг фаз стал уменьшаться.

    4,25 Килогерц


    Осциллограммы почти уже сливаются в одну. Сдвиг фаз между напряжением и силой тока становится почти незаметным.

    И вот на какой-то частоте у нас сила тока стала максимальной, а сдвиг фаз стал равен нулю. Запомните этот момент. Для нас он будет очень важен.



    Еще совсем недавно ток опережал напряжение, а сейчас уже стал запаздывать после того, как выровнялся с ним по фазе. Так как ток уже отстает от напряжения, здесь уже попахивает реактивным сопротивлением катушки индуктивности.

    Увеличиваем частоту еще больше


    Сила тока начинает падать, а сдвиг фаз увеличивается.

    22 Килогерца


    74 Килогерца


    Как вы видите, с увеличением частоты, сдвиг приближается к 90 градусов, а сила тока становится все меньше и меньше.

    Резонанс

    Давайте подробнее рассмотрим тот самый момент, когда сдвиг фаз был равен нулю и сила тока, проходящая через последовательный колебательный, контур была максимальна:

    Это явление носит название резонанса .

    Как вы помните, если у нас сопротивление становится малым, а в данном случае сопротивления потерь катушки и конденсатора очень маленькие, то в цепи начинает течь большая сила тока согласно закону Ома : I=U/R . Если генератор мощный, то напряжение на нем не меняется, а сопротивление становится пренебрежимо малым и вуаля! Ток растет как грибы после дождя, что мы и увидели, посмотрев на желтую осциллограмму при резонансе.

    Формула Томсона

    Если при резонансе у нас реактивное сопротивление катушки равняется реактивному сопротивлению конденсатора X L =X C , то можно уравнять их реактивные сопротивления и уже отсюда вычислить частоту, на которой произошел резонанс. Итак, реактивное сопротивление катушки у нас выражается формулой:

    Реактивное сопротивление конденсатора вычисляется по формуле:

    Приравниваем обе части и вычисляем отсюда F :

    В данном случае мы получили формулу резонансной частоты . Это формула по другому называется формулой Томсона , как вы поняли, в честь ученого, который ее вывел.

    Давайте по формуле Томсона посчитаем резонансную частоту нашего последовательного колебательного контура. Для этого я буду использовать свой RLC-транзисторметр .

    Замеряем индуктивность катушки:


    И замеряем нашу емкость:


    Высчитываем по формуле нашу резонансную частоту:

    У меня получилось 5, 09 Килогерц.

    С помощью регулировки частоты и осциллографа я поймал резонанс на частоте 4,78 Килогерц (написано в нижнем левом углу)

    Спишем погрешность в 200 с копейками Герц на погрешность измерений приборов. Как вы видите, формула Томпсона работает.

    Резонанс напряжений

    Давайте возьмем другие параметры катушки и конденсатора и посмотрим, что у нас происходит на самих радиоэлементах. Нам ведь надо досконально все выяснить;-). Беру катушку индуктивности с индуктивностью в 22 микрогенри:


    и конденсатор в 1000 пФ


    Итак, чтобы поймать резонанс, я не буду в схему добавлять . Поступлю более хитрее.

    Так как мой генератор частоты китайский и маломощный, то при резонансе у нас в цепи остается только активное сопротивление потерь R. В сумме получается все равно маленькое значение сопротивления, поэтому ток при резонансе достигает максимальных значений. В результате этого, на внутреннем сопротивлении генератора частоты падает приличное напряжение и выдаваемая амплитуда частоты генератора падает. Я буду ловить минимальное значение этой амплитуды. Следовательно это и будет резонанс колебательного контура. Перегружать генератор — это не есть хорошо, но что не сделаешь ради науки!

    Ну что же, приступим;-). Давайте сначала посчитаем резонансную частоту по формуле Томсона. Для этого я открываю онлайн калькулятор на просторах интернета и быстренько высчитываю эту частоту. У меня получилось 1,073 Мегагерц.

    Ловлю резонанс на генераторе частоты по его минимальным значениям амплитуды. Получилось как-то вот так:


    Размах амплитуды 4 Вольта

    Хотя на генераторе частоты размах более 17 Вольт! Вот так вот сильно просело напряжение. И как видите, резонансная частота получилась чуток другая, чем расчетная: 1,109 Мегагерц.


    Теперь небольшой прикол;-)

    Вот этот сигнал мы подаем на наш последовательный колебательный контур:


    Как видите, мой генератор не в силах выдать большую силу тока в колебательный контур на резонансной частоте, поэтому сигнал получился даже чуть искаженным на пиках.

    Ну а теперь самое интересное. Давайте замеряем падение напряжения на конденсаторе и катушке на резонансной частоте. То есть это будет выглядеть вот так:


    Смотрим напряжение на конденсаторе:


    Размах амплитуды 20 Вольт (5х4)! Откуда? Ведь подавали мы на колебательный контур синус с частотой в 2 Вольта!


    Ладно, может с осциллографом что-то произошло?. Давайте замеряем напряжение на катушке:


    Народ! Халява!!! Подали 2 Вольта с генератора, а получили 20 Вольт и на катушке и на конденсаторе! Выигрыш энергии в 10 раз! Успевай только снимать энергию или с конденсатора или с катушки!

    Ну ладно раз такое дело… беру лампочку от мопеда на 12 Вольт и цепляю ее к конденсатору или катушке. Лампочке ведь вроде как по-барабану на какой частоте работать и какой ток кушать. Выставляю амплитуду, чтобы на катушке или конденсаторе было где то Вольт 20 так как среднеквадратичное напряжение будет где-то Вольт 14, и цепляю поочередно к ним лампочку:



    Как видите — полный ноль. Лампочка гореть не собирается, так что побрейтесь фанаты халявной энергии). Вы ведь не забыли, что мощность определяется произведением силы тока на напряжение? Напряжения вроде как-бы хватает, а вот силы тока — увы! Поэтому последовательный колебательный контур носит также название узкополосного (резонансного) усилителя напряжения , а не мощности!

    Давайте обобщим, что у нас получилось в этих опытах.

    При резонансе напряжение на катушке и на конденсаторе оказались намного больше, чем то, которое мы подавали на колебательный контур. В данном случае у нас получилось в 10 раз больше. Почему же напряжение на катушке при резонансе равняется напряжению на конденсаторе. Это легко объясняется. Так как в последовательном колебательном контуре катушка и кондер идут друг за другом, следовательно, в цепи протекает одна и та же сила тока.

    При резонансе реактивное сопротивление катушки равняется реактивному сопротивлению конденсатора. Получаем по правилу шунта, что на катушке у нас падает напряжение U L = IX L , а на конденсаторе U C = IX C . А так как при резонансе у нас X L = X C , то получаем что U L = U C , ток ведь в цепи один и тот же;-). Поэтому резонанс в последовательном колебательном контуре называют также резонансом напряжений , так как напряжение на катушке на резонансной частоте равняется напряжению на конденсаторе .

    Добротность

    Ну раз уж мы начали задвигать тему колебательных контуров, поэтому мы не можем обойти стороной такой параметр, как добротность колебательного контура. Так как мы уже провели некоторые опыты, то нам будет проще определить добротность, исходя из амплитуды напряжений. Добротность обозначается буквой Q и вычисляется по первой простой формуле:


    Давайте посчитаем добротность в нашем случае.

    Так как цена деления одного квадратика по вертикали 2 Вольта, следовательно, амплитуда сигнала генератора частоты 2 Вольта.

    А это то, что мы имеем на зажимах конденсатора или катушки. Здесь цена деления одного квадратика по вертикали 5 Вольт. Считаем квадратики и умножаем. 5х4=20 Вольт.

    Считаем по формуле добротности:


    Q=20/2=10 . В принципе немного и не мало. Пойдет. Вот так вот на практике можно найти добротность.

    Есть также вторая формула для вычисления добротности.

    где

    R — сопротивление потерь в контуре, Ом

    L — индуктивность, Генри

    С — емкость, Фарад

    Зная добротность, можно легко найти сопротивление потерь R последовательного колебательного контура.

    Также хочу добавить пару слов о добротности. Добротность контура — это качественный показатель колебательного контура. В основном его стараются всегда увеличить различными всевозможными способами. Если взглянуть на формулу выше, то можно понять, для того, чтобы увеличить добротность, нам надо как-то уменьшить сопротивление потерь колебательного контура. Львиная доля потерь относится к катушке индуктивности, так как она уже конструктивно имеет большие потери. Она намотана из провода и в большинстве случаев имеет сердечник. На высоких частотах в проводе начинает проявляться скин-эффект, который еще больше вносит потери в контур.

    Резюме

    Последовательный колебательный контур состоит из катушки индуктивности и конденсатора, соединенных последовательно.

    На какой-то частоте реактивное сопротивление катушки становится равным реактивному сопротивлению конденсатора и в цепи последовательного колебательного контура наступает такое явление, как резонанс .

    При резонансе реактивные сопротивления катушки и конденсатора хоть и равны по модулю, но противоположны по знаку, поэтому они вычитается и в сумме дают ноль. В цепи остается только активное сопротивление потерь R.

    При резонансе сила тока в цепи становится максимальной, так как сопротивление потерь катушки и конденсатора R в сумме дают малое значение.

    При резонансе напряжение на катушке равняется напряжению на конденсаторе и превышает напряжение на генераторе.

    Коэффициент, показывающий во сколько раз напряжение на катушке либо на конденсаторе превышает напряжение на генераторе, называется добротностью Q последовательного колебательного контура и показывает качественную оценку колебательного контура. В основном стараются сделать Q как можно больше.

    На низких частотах колебательный контур имеет емкостную составляющую тока до резонанса, а после резонанса — индуктивную составляющую тока.

    электрическая цепь, состоящая из последовательно соединённых конденсатора с ёмкостью , катушки с индуктивностью и электрического сопротивления .

    Идеальный колебательный контур — цепь, состоящая только из катушки индуктивности (не имеющей собственного сопротивления) и конденсатора ( -контур). Тогда в такой системе поддерживаются незатухающие электромагнитные колебания силы тока в цепи, напряжения на конденсаторе и заряда конденсатора. Давайте разберём контур и подумаем, откуда возникают колебания. Пусть изначально заряженный конденсатор помещён в описываемую нами цепь.

    Рис. 1. Колебательный контур

    В начальный момент времени весь заряд сосредоточен на конденсаторе, на катушке тока нет (рис. 1.1). Т.к. на обкладках конденсатора внешнего поля тоже нет, то электроны с обкладок начинают «уходить» в цепь (заряд на конденсаторе начинает уменьшаться). При этом (за счёт освобождённых электронов) возрастает ток в цепи. Направление тока, в данном случае, от плюса к минусу (впрочем, как и всегда), и конденсатор представляет собой источник переменного тока для данной системы. Однако при росте тока на катушке, вследствие , возникает обратный индукционный ток (). Направление индукционного тока, согласно правилу Ленца, должно нивелировать (уменьшать) рост основного тока. Когда заряд конденсатора станет равным нулю (весь заряд стечёт), сила индукционного тока в катушке станет максимальной (рис. 1.2).

    Однако текущий заряд в цепи пропасть не может (закон сохранения заряда), тогда этот заряд, ушедший с одной обкладки через цепь, оказался на другой обкладке. Таким образом, происходит перезарядка конденсатора в обратную сторону (рис. 1.3). Индукционный ток на катушке уменьшается до нуля, т.к. изменение магнитного потока также стремится к нулю.

    При полной зарядке конденсатора электроны начинают двигаться в обратную сторону, т.е. происходит разрядка конденсатора в обратную сторону и возникает ток, доходящий до своего максимума при полной разрядке конденсатора (рис. 1.4).

    Дальнейшая обратная зарядка конденсатора приводит в систему в положение на рисунке 1.1. Такое поведение системы повторяется сколь угодно долго. Таким образом, мы получаем колебание различных параметров системы: тока в катушке, заряд на конденсаторе, напряжение на конденсаторе. В случае идеальности контура и проводов (отсутствие собственного сопротивления), эти колебания — .

    Для математического описания этих параметров этой системы (в первую очередь, периода электромагнитных колебаний) вводится рассчитанная до нас формула Томсона :

    Неидеальным контуром является всё тот же идеальный контур, который мы рассмотрели, с одним небольшим включением: с наличием сопротивления ( -контур). Данное сопротивление может быть как сопротивлением катушки (она не идеальна), так и сопротивлением проводящих проводов. Общая логика возникновения колебаний в неидеальном контуре аналогична той, что и в идеальном. Отличие только в самих колебаниях. В случае наличия сопротивления, часть энергии будет рассеиваться в окружающую среду — сопротивление будет нагреваться, тогда энергия колебательного контура будет уменьшаться и сами колебания станут затухающими .

    Для работы с контурами в школе используется только общая энергетическая логика. В данном случае, считаем, что полная энергия системы в начале сосредоточена на и/или , и описывается.