Как вычислить скорость падения. Как рассчитать скорость падения. Формулы для расчетов

Скорость падения тела в газе или жидкости стабилизируется по достижении телом скорости, при которой сила гравитационного притяжения уравновешивается силой сопротивления среды.

При движении в вязкой среде более крупных объектов, однако, начинают преобладать иные эффекты и закономерности. При достижении дождевыми каплями диаметра всего лишь в десятые доли миллиметра вокруг них начинают образовываться так называемые завихрения в результате срыва потока. Вы их, возможно, наблюдали весьма наглядно: когда машина осенью едет по дороге, засыпанной опавшей листвой, сухие листья не просто разметаются по сторонам от машины, но начинают кружиться в подобии вальса. Описываемые ими круги в точности повторяют линии вихрей фон Кармана , получивших свое название в честь инженера-физика венгерского происхождения Теодора фон Кармана (Theodore von Kármán, 1881-1963), который, эмигрировав в США и работая в Калифорнийском технологическом институте, стал одним из основоположников современной прикладной аэродинамики. Этими турбулентными вихрями обычно и обусловлено торможение — именно они вносят основной вклад в то, что машина или самолет, разогнавшись до определенной скорости, сталкиваются с резко возросшим сопротивлением воздуха и дальше ускоряться не в состоянии. Если вам доводилось на большой скорости разъезжаться на своем легковом автомобиле с тяжелым и быстрым встречным фургоном и машину начинало «водить» из стороны в сторону, знайте: вы попали в вихрь фон Кармана и познакомились с ним не понаслышке.

При свободном падении крупных тел в атмосфере завихрения начинаются практически сразу, и предельная скорость падения достигается очень быстро. Для парашютистов, например, предельная скорость составляет от 190 км/ч при максимальном сопротивлении воздуха, когда они падают плашмя, раскинув руки, до 240 км/ч при нырянии «рыбкой» или «солдатиком».

Он взял две стеклянные трубки, которые получили название трубки Ньютона и откачал из них воздух (рис. 1). После чего измерял время падения тяжелого шарика и легкого перышка в этих трубках. Оказалось, что падают они за одно и то же время.

Мы видим, что если убрать сопротивление воздуха, то ни перышку, ни шарику ничего не будет мешать падать - они будут падать свободно. Именно это свойство и легло в основу определения свободного падения.

Свободным падением называют движение тела только под действием силы тяжести, в отсутствие действия других сил .

Каким же является свободное падение? Если поднять любой предмет и отпустить, то скорость предмета будет меняться, значит, движение является ускоренным, даже равноускоренным.

Впервые о том, что свободное падение тел является равноускоренным, заявил и доказал Галилео Галилей. Он измерил ускорение, с которым двигаются такие тела, оно так и называется - ускорение свободного падения, и равно приблизительно 9,8 м/с 2 .

Таким образом, свободное падение - это частный случай равноускоренного движения. Значит, для этого движения справедливы все уравнения, которые были получены:

для проекции скорости: V x = V 0х + а х t

для проекции перемещения: S х = V 0х t + а х t 2 /2

определение положения тела в любой момент времени: х(t) = х 0 + V 0х t + а х t 2 /2

х обозначает, что движение у нас прямолинейное, вдоль оси х, которую мы традиционно выбирали горизонтально.

Если тело будет двигаться вертикально, то принято обозначать ось у и мы получим (рис. 2):

Рис. 2. Вертикальное движение тела ()

Уравнения приобретают следующий абсолютно идентичный вид, где g - ускорение свободного падения, h - перемещение по высоте. Эти три уравнения описывают, как решать главную задачу механики для случая свободного падения.

Тело подброшено вертикально вверх с начальной скоростью V 0 (Рис. 3). Найдем высоту, на которую подброшено тело. Запишем уравнение движения этого тела:

Рис. 3. Пример задачи ()

Знание простейших уравнений позволило нам найти высоту, на которую мы можем подбросить тело.

Величина ускорения свободного падения зависит от географической широты местности, на полюсах она максимальна и на экваторе минимальна. Кроме этого, ускорение свободного падения зависит от того, какой состав земной коры под тем местом, где мы находимся. Если там залежи тяжелых ископаемых, величина g будет немногим больше, если там пустоты, то она будет немногим меньше. Этот способ используют геологи для определения месторождений тяжелых руд или газов, нефти, он называется гравиметрия.

Если мы хотим точно описать движение падающего на поверхность Земли тела, то необходимо помнить, что сопротивление воздуха все же присутствует.

Парижский физик Ленорман в XVIII веке, закрепив концы спиц на обычном зонте, прыгнул с крыши дома. Ободренный успехом, он изготовил специальный зонт с сидением и прыгнул с башни в городе Монтелье. Свое изобретение он назвал парашют, что в переводе с французского обозначает «против падения».

Галилео Галилей первым показал то, что время падения тела на Землю не зависит от его массы, а определяется характеристиками самой Земли. В качестве примера он приводил рассуждение о падении тела с определенной массой за промежуток времени. При разделении этого тела на две одинаковые половинки они начинают падать, но если скорость падения тела и время падения зависит от массы, то они должны падать медленнее, но как? Ведь их общая масса не изменилась. Почему? Может, одна половина мешает падать другой половине? Мы приходим к противоречию, а это значит, что допущение о том, что скорость падения зависит от массы тела, несправедливо.

Поэтому приходим к корректному определению свободного падения.

Свободное падение - это движение тела только под действием силы тяжести. Никакие другие силы на тело не действуют.

Мы привыкли к тому, что используем величину ускорения свободного падения равной 9,8 м/с 2 , это наиболее удобное значение для нашей физиологии. Мы знаем, что от географического местонахождения будет изменяться ускорение свободного падения, но эти изменения незначительны. Какие же значения принимает ускорение свободного падения на других небесных телах? Как спрогнозировать, возможно ли там комфортное существование человека? Вспомним формулу свободного падения (рис. 4):

Рис. 4. Таблица ускорения свободного падения на планетах ()

Чем массивнее небесное тело, тем больше ускорение свободного падения на нем, тем невозможнее факт нахождения на нем человеческого организма. Зная ускорение свободного падения на различных небесных телах, мы можем определять среднюю плотность этих небесных тел, а зная среднюю плотность, можно предсказывать то, из чего состоят эти тела, то есть определять их строение.

Речь идет о том, что измерения ускорения свободного падения в различных точках Земли являются мощнейшим способом геологической разведки. Таким способом, не роя ям, не буря скважин, шахт можно определять наличие полезных ископаемых в толще земной коры. Первый способ - это измерение ускорения свободного падения с помощью геологических пружинных весов, они обладают феноменальной чувствительностью, до миллионных долей грамма (рис. 5).

Второй способ - при помощи очень точного математического маятника, ведь, зная период колебания маятника, можно вычислить ускорение свободного падения: чем период меньше, тем больше ускорение свободного падения. Это значит, что, измеряя при помощи очень точного маятника ускорении свободного падения в разных точках Земли, можно увидеть, стало оно больше или меньше.

Что же является нормой для величины ускорения свободного падения? Земной шар представляет собой не идеальную сферу, а геоид, то есть немного сплюснут у полюсов. Это значит, что у полюсов значение ускорения свободного падения будет больше, чем на экваторе, на экваторе оно минимально, но на одной и той же географической широте оно должно быть одинаково. Значит, измеряя в рамках одной широты ускорение свободного падения в различных точках, мы можем судить по его изменению о наличии тех или иных ископаемых. Этот способ называется гравиметрической разведкой, благодаря ему были обнаружены залежи нефти в Казахстане и Западной Сибири.

Наличие полезных ископаемых, залежи тяжелых веществ или пустот могут оказывать влияние не только на величину ускорения свободного падения, но и на его направление. Если проводить измерение ускорения свободного падения вблизи большой горы, то это массивное тело будет оказывать влияние на направление ускорения свободного падения, ведь оно тоже будет притягивать математический маятник, методом которого мы измеряем ускорение свободного падения.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.

Домашнее задание

  1. К какому виду движения относится свободное падение?
  2. Каковы особенности свободного падения?
  3. Какой опыт показывает, что все тела на Земле падают с одинаковым ускорением?
  1. Интернет-портал Class-fizika.narod.ru ().
  2. Интернет-портал Nado5.ru ().
  3. Интернет-портал Fizika.in ().

Что такое свободное падение? Это падение тел на Землю при отсутствии сопротивления воздуха. Иначе говоря - падение в пустоте. Конечно, отсутствие сопротивления воздуха - это вакуум, который нельзя встретить на Земле в нормальных условиях. Поэтому мы не будем брать силу сопротивления воздуха во внимание, считая ее настолько малой, что ей можно пренебречь.

Ускорение свободного падения

Проводя свои знаменитые опыты на Пизанской башне Галилео Галилей выяснил, что все тела, независимо от их массы, падают на Землю одинаково. То есть, для всех тел ускорение свободного падения одинаково. По легенде, ученый тогда сбрасывал с башни шары разной массы.

Ускорение свободного падения

Ускорение свободного падения - ускорение, с которым все тела падают на Землю.

Ускорение свободного падения приблизительно равно 9 , 81 м с 2 и обозначается буквой g . Иногда, когда точность принципиально не важна, ускорение свободного падения округляют до 10 м с 2 .

Земля - не идеальный шар, и в различных точках земной поверхности, в зависимости от координат и высоты над уровнем моря, значение g варьируется. Так, самое большое ускорение свободного падения - на полюсах (≈ 9 , 83 м с 2) , а самое малое - на экваторе (≈ 9 , 78 м с 2) .

Свободное падение тела

Рассмотрим простой пример свободного падения. Пусть некоторое тело падает с высоты h с нулевой начальной скоростью. Допустим мы подняли рояль на высоту h и спокойно отпустили его.

Свободное падение - прямолинейное движение с постоянным ускорением. Направим ось координат от точки начального положения тела к Земле. Применяя формулы кинематики для прямолинейного равноускоренного движения, можно записать.

h = v 0 + g t 2 2 .

Так как начальна скорость равна нулю, перепишем:

Отсюда находится выражение для времени падения тела с высоты h:

Принимая во внимание, что v = g t , найдем скорость тела в момент падения, то есть максимальную скорость:

v = 2 h g · g = 2 h g .

Аналогично можно рассмотреть движение тела, брошенного вертикально вверх с определенной начальной скоростью. Например, мы бросаем вверх мячик.

Пусть ось координат направлена вертикально вверх из точки бросания тела. На сей раз тело движется равнозамедленно, теряя скорость. В наивысшей точки скорость тела равна нулю. Применяя формулы кинематики, можно записать:

Подставив v = 0 , найдем время подъема тела на максимальную высоту:

Время падения совпадает со временем подъема, и тело вернется на Землю через t = 2 v 0 g .

Максимальная высота подъема тела, брошенного вертикально:

Взглянем на рисунок ниже. На нем приведены графики скоростей тел для трех случаев движения с ускорением a = - g . Рассмотрим каждый из них, предварительно уточнив, что в данном примере все числа округлены, а ускорение свободного падения принято равным 10 м с 2 .

Первый график - это падение тела с некоторой высоты без начальной скорости. Время падения t п = 1 с. Из формул и из графика легко получить, что высота, с которой падало тело, равна h = 5 м.

Второй график - движение тела, брошенного вертикально вверх с начальной скоростью v 0 = 10 м с. Максимальная высота подъема h = 5 м. Время подъема и время падения t п = 1 с.

Третий график является продолжением первого. Падающее тело отскакивает от поверхности и его скорость резко меняет знак на противоположный. Дальнейшее движение тела можно рассматривать по второму графику.

С задачей о свободном падении тела тесно связана задача о движении тела, брошенного под определенным углом к горизонту. Так, движение по параболической траектории можно представить как сумму двух независимых движений относительно вертикальной и горизонтальной осей.

Вдоль оси O Y тело движется равноускоренно с ускорением g , начальная скорость этого движения - v 0 y . Движение вдоль оси O X - равномерное и прямолинейное, с начальной скоростью v 0 x .

Условия для движения вдоль оси О Х:

x 0 = 0 ; v 0 x = v 0 cos α ; a x = 0 .

Условия для движения вдоль оси O Y:

y 0 = 0 ; v 0 y = v 0 sin α ; a y = - g .

Приведем формулы для движения тела, брошенного под углом к горизонту.

Время полета тела:

t = 2 v 0 sin α g .

Дальность полета тела:

L = v 0 2 sin 2 α g .

Максимальная дальность полета достигается при угле α = 45 ° .

L m a x = v 0 2 g .

Максимальная высота подъема:

h = v 0 2 sin 2 α 2 g .

Отметим, что в реальных условиях движение тела, брошенного под углом к горизонту, может проходить по траектории, отличной от параболической вследствие сопротивления воздуха и ветра. Изучением движения тел, брошенных в пространстве, занимается специальная наука - баллистика.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

В классической механике состояние объекта, который свободно движется в гравитационном поле, называется свободным падением . Если объект падает в атмосфере, на него действует дополнительная сила сопротивления и его движение зависит не только от гравитационного ускорения, но и от его массы, поперечного сечения и других факторов. Однако на тело, падающее в вакууме, действует только одна сила, а именно сила тяжести.

Примерами свободного падения являются космические корабли и спутники на околоземной орбите, потому что на них действует единственная сила - земное притяжение. Планеты, вращающиеся вокруг Солнца, также находятся в свободном падении. Предметы, падающие на землю с небольшой скоростью, также могут считаться свободно падающими, так как в этом случае сопротивление воздуха незначительно и им можно пренебречь. Если единственной силой, действующей на предметы, является сила тяжести, а сопротивление воздуха отсутствует, ускорение одинаково для всех предметов и равно ускорению свободного падения на поверхности Земли 9,8 метров в секунду за секунду second (м/с²) или 32,2 фута в секунду за секунду (фут/ с²). На поверхности других астрономических тел ускорение свободного падения будет другим .

Парашютисты, конечно, говорят, что перед раскрытием парашюта они в свободном падении, но на самом деле в свободном падении парашютист не может быть никогда, даже если парашют еще не раскрыт. Да, на парашютиста в «свободном падении» действует сила притяжения, но на него также действует противоположная сила - сопротивление воздуха, причем сила сопротивления воздуха лишь слегка меньше силы земного притяжения.

Если бы не было сопротивления воздуха, скорость тела, находящегося в свободном падении, каждую секунду увеличивалась бы на 9,8 м/с.

Скорость и расстояние свободно падающего тела вычисляется так:

v ₀ - начальная скорость (м/с).

v - конечная вертикальная скорость (м/с).

h ₀ - начальная высота (м).

h - высота падения (м).

t - время падения (с).

g - ускорение свободного падения (9,81 м/с2 у поверхности Земли).

Если v ₀=0 и h ₀=0, имеем:

если известно время свободного падения:

если известно расстояние свободного падения:

если известна конечная скорость свободного падения:

Эти формулы и используются в данном калькуляторе свободного падения.

В свободном падении, когда нет силы для поддержания тела, возникает невесомость . Невесомость - это отсутствие внешних сил, действующих на тело со стороны пола, стула, стола и других окружающих предметов. Иными словами - сил реакции опоры. Обычно эти силы действуют в направлении, перпендикулярном поверхности соприкосновения с опорой, и чаще всего вертикально вверх. Невесомость можно сравнить с плаванием в воде, но так, что кожа воду не ощущает. Все знают это ощущение собственного веса, кода выходишь на берег после долгого купания в море. Именно поэтому для имитации невесомости при тренировках космонавтов и астронавтов используются бассейны с водой.

Само по себе гравитационное поле не может создать давление на ваше тело. Поэтому если вы находитесь в состоянии свободного падения в большом объекте (например, в самолете), который также находится в этом состоянии, на ваше тело не действуют никакие внешние силы взаимодействия тела с опорой и возникает ощущение невесомости, почти такое же, как и в воде.

Самолет для тренировок в условиях невесомости предназначен для создания кратковременной невесомости с целью тренировки космонавтов и астронавтов, а также для выполнения различных экспериментов. Такие самолеты использовались и в настоящее время эксплуатируются в нескольких странах. В течение коротких периодов времени, которые длятся около 25 секунд в течение каждой минуты полета самолет находится в состоянии невесомости, то есть для находящихся в нем людей отсутствует реакция опоры.

Для имитации невесомости использовались различные самолеты: в СССР и в Росси для этого с 1961 года использовались модифицированные серийные самолеты Ту-104АК, Ту-134ЛК, Ту-154МЛК и Ил-76МДК. В США астронавты тренировались с 1959 г. на модифицированных AJ-2, C-131, KC-135 и Boeing 727-200. В Европе Национальным центром космических исследований (CNES, Франция) для тренировок в невесомости используют самолет Airbus A310. Модификация заключается в доработке топливной, гидравлической и некоторых других систем с целью обеспечения их нормальной работы в условиях кратковременной невесомости, а также усиления крыльев для того чтобы самолет мог выдерживать повышенные ускорения (до 2G).

Несмотря на то, что иногда при описании условий свободного падения во время космического полета на орбите вокруг Земли говорят об отсутствии гравитации, конечно сила тяжести присутствует в любом космическом аппарате. Что отсутствует, так это вес, то есть сила реакции опоры на объекты, находящиеся в космическом корабле, которые движутся в пространстве с одинаковым ускорением свободного падения, которое только немного меньше, чем на Земле. Например, на околоземной орбите высотой 350 км, на которой Международная космическая станция (МКС) летает вокруг Земли, гравитационное ускорение составляет 8,8 м/с², что всего на 10% меньше, чем на поверхности Земли.

Для описания реального ускорения объекта (обычно летательного аппарата) относительно ускорения свободного падения на поверхности Земли обычно используют особый термин - перегрузка . Если вы лежите, сидите или стоите на земле, на ваше тело действует перегрузка в 1 g (то есть ее нет). Если же вы находитесь в самолете на взлете, вы испытываете перегрузку примерно в 1,5 g. Если тот же самолет выполняет координированный поворот с малым радиусом, то пассажиры, возможно, испытают перегрузку до 2 g, означающую, что их вес удвоился.

Люди привыкли жить в условиях отсутствия перегрузок (1 g), поэтому любая перегрузка сильно влияет на человеческий организм. Как и в самолетах-лабораториях для создания невесомости, в которых все системы, работающие с жидкостями, должны быть модифицированы для того, чтобы они правильно работали в условиях нулевой (невесомость) и даже отрицательной перегрузки, люди также нуждаются в помощи и аналогичной «модификации», чтобы выжить в таких условиях. Нетренированный человек может потерять сознание при перегрузке 3–5 g (в зависимости от направления действия перегрузки), так как такая перегрузка достаточна для того, чтоб лишить мозг кислорода, потому что сердце не может подать в него достаточно крови. В связи с этим военные пилоты и космонавты тренируются на центрифугах в условиях высоких перегрузок , чтобы предотвратить потерю сознания при них. Для предотвращения кратковременной потери зрения и сознания, которые, по условиям работы, могут оказаться фатальными, пилоты, космонавты и астронавты надевают высотно-компенсирующие костюмы, который ограничивает отток крови от мозга во время перегрузок путем обеспечения равномерного давления на всю поверхность тела человека.

Вторник, а это значит, что сегодня мы снова решаем задачи. На это раз, на тему «свободное падение тел».

Вопросы с ответами на свободное падение тел

Вопрос 1. Как направлен вектор ускорения свободного падения?

Ответ: можно просто сказать, что ускорение g направлено вниз. На самом деле, если говорить точнее, ускорение свободного падения направлено к центру Земли.

Вопрос 2. От чего зависит ускорение свободного падения?

Ответ: на Земле ускорение свободного падения зависит от географической широты, а также от высоты h подъема тела над поверхностью. На других планетах эта величина зависит от массы M и радиус R небесного тела. Общая формула для ускорения свободного падения:


Вопрос 3. Тело бросают вертикально вверх. Как можно охарактеризовать это движение?

Ответ: В этом случае тело движется равноускоренно. Причем время подъема и время падения тела с максимальной высоты равны.

Вопрос 4. А если тело бросают не вверх, а горизонтально или под углом к горизонту. Какое это движение?

Ответ: можно сказать, что это тоже свободное падение. В данном случае движение нужно рассматривать относительно двух осей: вертикальной и горизонтальной. Относительно горизонтальной оси тело движется равномерно, а относительно вертикальной – равноускоренно с ускорением g .

Баллистика – наука, изучающая особенности и законы движения тел, брошенных под углом к горизонту.

Вопрос 5. Что значит «свободное» падение.

Ответ: в данном контексте понимается, что тело при падении свободно от сопротивления воздуха.

Свободное падение тел: определения, примеры

Свободное падение – равноускоренное движение, происходящее под действием силы тяжести.

Первые попытки систематизированно и количественно описать свободное падение тел относятся к средневековью. Правда, тогда было широко распространено заблуждение, что тела разной массы падают с разной скоростью. На самом деле, в этом есть доля правды, ведь в реальном мире на скорость падения сильно влияет сопротивление воздуха.

Однако, если им можно пренебречь, то скорость падающих тел разной массы будет одинакова. Кстати, скорость при свободном падении возрастает пропорционально времени падения.

Ускорение свободно падающих тел не зависит от их массы.

Рекорд свободного падения для человека на данный момент принадлежит австрийскому парашютисту Феликсу Баумгартнеру, который в 2012 году прыгнул с высоты 39 километров и находился в свободном падении 36 402,6 метра.

Примеры свободного падения тел:

  • яблоко летит на голову Ньютона;
  • парашютист выпрыгивает из самолета;
  • перышко падает в герметичной трубке, из которой откачан воздух.

При свободном падении тела возникает состояние невесомости. Например, в таком же состоянии находятся предметы на космической станции, движущейся по орбите вокруг Земли. Можно сказать, что станция медленно, очень медленно падает на планету.

Конечно, свободное падение возможно не только не Земле, но и вблизи любого тела, обладающего достаточной массой. На других комических телах падения также будет равноускоренным, но величина ускорения свободного падения будет отличаться от земной. Кстати, раньше у нас уже выходил материал про гравитацию .

При решении задач ускорение g принято считать равным 9,81 м/с^2. В реальности его величина варьируется от 9,832 (на полюсах) до 9,78 (на экваторе). Такая разница обусловлена вращением Земли вокруг своей оси.

Нужна помощь в решении задач по физике? Обращайтесь в