Из чего состоит сенсорный экран. Что такое тачскрин на смартфоне

Статья:

Устройство дисплея мобильного телефона (смартфона) и планшета. Устройство жидкокристаллического экрана. Типы дисплеев, их отличия.

Предисловие

В этой статье мы разберем устройство дисплеев современных мобильных телефонов, смартфонов и планшетов. Экраны крупных устройств (мониторов, телевизоров и т.п.), за исключением небольших нюансов, устроены аналогично.

Разборку будем проводить не только теоретически, но и практически, со вскрытием дисплея "жертвенного" телефона.

Рассматривать, как устроен современный дисплей, мы будем на примере наиболее сложного их них - жидкокристаллического (LCD - liquid crystal display ). Иногда их называют TFT LCD , где сокращение TFT расшифровывается "thin-film transistor" - тонкопленочный транзистор; поскольку управление жидкими кристаллами осуществляется благодаря таким транзисторам, нанесенным на подложку вместе с жидкими кристаллами.

В качестве "жертвенного" телефона, дисплей которого будет вскрыт, выступит дешевенький Nokia 105.

Основные составные части дисплея

Жидкокристаллические дисплеи (TFT LCD , и их модификации - TN, IPS, IGZO и т.д.) состоят укрупненно из трех составных частей: сенсорной поверхности, устройства формирования изображения (матрица) и источника света (лампы подсветки).Между сенсорной поверхностью и матрицей расположен еще один слой, пассивный. Он представляет собой прозрачный оптический клей или просто воздушный промежуток. Существование этого слоя связано с тем, что в ЖК-дисплеях экран и сенсорная поверхность представляют собой совершенно разные устройства, совмещенные чисто механически.

Каждая из "активных" составных частей имеет достаточно сложную структуру.

Начнем с сенсорной поверхности (тачскрин, touchscreen). Она располагается самым верхним слоем в дисплее (если она есть; а в кнопочных телефонах, например, ее нет).
Её наиболее распространенный сейчас тип - ёмкостная. Принцип действия такого тачскрина основан на изменении электрической емкости между вертикальными и горизонтальными проводниками при прикосновении пальца пользователя.
Соответственно, чтобы эти проводники не мешали рассматривать изображение, они делаются прозрачными из специальных материалов (обычно для этого используется оксид индия-олова).

Существуют также и сенсорные поверхности, реагирующие на силу нажатия (т.н. резистивные), но они уже "сходят с арены".
В последнее время появились и комбинированные сенсорные поверхности, реагирующие одновременно и на емкость пальца, и на силу нажатия (3D-touch -дисплеи). Их основу составляет емкостной сенсор, дополненный датчиком силы нажатия на экран.

Тачскрин может быть отделен от экрана воздушным промежутком, а может быть и склеен с ним (так называемое "решение с одним стеклом", OGS - one glass solution).
Такой вариант (OGS) имеет значительное преимущество по качеству, поскольку уменьшает уровень отражения в дисплее от внешних источников света. Это достигается за счет уменьшения количества отражающих поверхностей.
В "обычном" дисплее (с воздушным промежутком) таких поверхностей - три. Это - границы переходов между средами с разным коэффициентом преломления света: "воздух-стекло", затем - "стекло-воздух", и, наконец, снова "воздух-стекло". Наиболее сильные отражения - от первой и последней границ.

В варианте же с OGS отражающая поверхность - только одна (внешняя), "воздух-стекло".

Хотя собственно для пользователя дисплей с OGS очень удобен и имеет хорошие характеристики; есть у него и недостаток, который "всплывает", если дисплей разбить. Если в "обычном" дисплее (без OGS) при ударе разбивается только сам тачскрин (чувствительная поверхность), то при ударе дисплея с OGS может разбиться и весь дисплей целиком. Но происходит это не всегда, поэтому утверждения некоторых порталов о том, что дисплеи с OGS абсолютно не ремонтируемые - не верно. Вероятность того, что разбилась только внешняя поверхность - довольно велика, выше 50%. Но ремонт с отделением слоев и приклейкой нового тачскрина возможен только в сервис-центре; отремонтировать своими руками крайне проблематично.

Экран

Теперь переходим к следующей части - собственно экрану.

Он состоит из матрицы с сопутствующими слоями и лампы подсветки (тоже многослойной!).

Задача матрицы и относящихся к ней слоев - изменить количество проходящего через каждый пиксель света от лампы подсветки, формируя тем самым изображение; то есть в данном случае регулируется прозрачность пикселей.

Немного детальнее об этом процессе.

Регулировка "прозрачности" осуществляется за счет изменения направления поляризации света при прохождении через жидкие кристаллы в пикселе под воздействием на них электрического поля (или наоборот, при отсутствии воздействия). При этом само по себе изменение поляризации еще не меняет яркости проходящего света.

Изменение яркости происходит при прохождении поляризованного света через следующий слой - поляризационную пленку с "фиксированным" направлением поляризации.

Схематично структура и работа матрицы в двух состояниях ("есть свет" и "нет света") изображена на следующем рисунке:


(использовано изображение из нидерландского раздела Википедии с переводом на русский язык)

Поворот поляризации света происходит в слое жидких кристаллов в зависимости от приложенного напряжения.
Чем больше совпадут направления поляризации в пикселе (на выходе из жидких кристаллов) и в пленке с фиксированной поляризацией, тем больше в итоге проходит света через всю систему.

Если направления поляризации получатся перпендикулярными, то свет теоретически вообще проходить не должен - должен быть черный экран.

На практике такое "идеальное" расположение векторов поляризации создать невозможно; причем как из-за "неидеальности" жидких кристаллов, так и не идеальной геометрии сборки дисплея. Поэтому и абсолютно-черного изображения на TFT экране не может быть. На лучших LCD экранах контрастность белое/черное может быть свыше 1000; на средних 500...1000, на остальных - ниже 500.

Только что была описана работа матрицы, изготовленной по технологии LCD TN+film. Жидкокристаллические матрицы по другим технологиям имеют схожие принципы работы, но другую техническую реализацию. Наилучшие результаты по цветопередаче получаются по технологиям IPS, IGZO и *VA (MVA, PVA и т.п.).

Подсветка

Теперь переходим к самому "дну" дисплея - лампе подсветки. Хотя современная подсветка собственно ламп и не содержит.

Несмотря на простое название, лампа подсветки имеет сложную многослойную структуру.

Связано это с тем, что лампа подсветки должна быть плоским источником света с равномерной яркостью всей поверхности, а таких источников света в природе крайне мало. Да и те, что есть, не очень подходят для этих целей из-за низкого КПД, "плохого" спектра излучения, или же требуют "неподходящего" типа и величины напряжения свечения (например, электролюминесцентные поверхности, см. Википедию ).

В связи с этим сейчас наиболее распространены не чисто "плоские" источники света, а "точечная" светодиодная подсветка с применением дополнительных рассеивающих и отражающих слоев.

Рассмотрим такой тип подсветки, проведя "вскрытие" дисплея телефона Nokia 105.

Разобрав систему подсветки дисплея до её среднего слоя, мы увидим в левом нижнем углу единственный светодиод белого свечения, который направляет свое излучение внутрь почти прозрачной пластины через плоскую грань на внутреннем "срезе" угла:

Пояснения к снимку. В центре кадра - разделенный по слоям дисплей мобильного телефона. В середине на переднем плане снизу - покрытая трещинами матрица (повреждена при разборке). На переднем плане вверху - срединная часть системы подсветки (остальные слои временно удалены для обеспечения видимости излучающего белого светодиода и полупрозрачной "световодной" пластины).
Сзади дисплея видна материнская плата телефона (зеленого цвета) и клавиатура (снизу с круглыми отверстиями для передачи нажатия от кнопок).

Эта полупрозрачная пластина является одновременно и световодом (за счет внутренних переотражений), и первым рассеивающим элементом (за счет "пупырышков", создающих препятствия для прохождения света). В увеличенном виде они выглядят так:


В нижней части изображения левее середины виден яркий излучающий белый светодиод подсветки.

Форма белого светодиода подсветки лучше различима на снимке с пониженной яркостью его свечения:

Снизу и сверху этой пластины подкладывают обыкновенные белые матовые пластиковые листы, равномерно распределяющие световой поток по площади:

Его условно можно назвать "лист с полупрозрачным зеркалом и двойным лучепреломлением". Помните, на уроках физики нам рассказывали про исландский шпат, при прохождении через который свет раздваивался? Вот это похоже на него, только еще и немного с зеркальными свойствами.

Вот так выглядят обычные наручные часы, если часть их прикрыть этим листом:

Вероятное назначение этого листа - предварительная фильтрация света по поляризации (сохранить нужную, отбросить ненужную). Но не исключено, что и в плане направления светового потока в сторону матрицы эта пленка тоже имеет какую-то роль.

Вот так устроена "простенькая" лампа подсветки в жидкокристаллических дисплеях и мониторах.

Что касается "больших" экранов, то их устройство - аналогично, но светодиодов в устройстве подсветки там больше.

В более старых жидкокристаллических мониторах вместо светодиодной подсветки использовали газосветные лампы с холодным катодом (CCFL, Cold Cathode Fluorescent Lamp) .

Структура дисплеев AMOLED

Теперь - несколько слов об устройстве нового и прогрессивного типа дисплеев - AMOLED (Active Matrix Organic Light-Emitting Diode ).

Устройство таких дисплеев значительно проще, так как там нет лампы подсветки.

Эти дисплеи образованы массивом светодиодов и светится там каждый пиксель в отдельности. Достоинствами дисплеев AMOLED являются "бесконечная" контрастность, отличные углы обзора и высокая энергоэффективность; а недостатками - уменьшенный срок "жизни" синих пикселей и технологические сложности изготовления больших экранов.

Также надо отметить, что, несмотря на более простую структуру, стоимость производства дисплеев AMOLED пока что выше, чем дисплеев TFT LCD.

Универсальный тип сенсорных экранов еще не разработали, а используемые сейчас технологии имеют как свои преимущества, так и недостатки. О плюсах и минусах основных типов сенсорных экранов читайте в этом материале.

Применение сенсорных экранов наиболее целесообразно в небольших портативных устройствах. Во-первых, это связано с неудобством использования мышки, клавиатуры и прочих устройств ввода в телефонах и другой небольшой электронике. Во-вторых, отказ от аппаратных кнопок позволяет серьезно увеличить площадь экрана. В-третьих, производство сенсорных панелей обходится недешево, и их использование в больших экранах пока как минимум экономически невыгодно.

Тем не менее, начав с таких небольших устройств как КПК, сенсорные экраны уже добрались до среднего формата (планшетов и некоторых ноутбуков), и их появление на большом экране лишь вопрос времени.

Существует всего несколько типов сенсорных экранов. Ниже речь пойдет о трех наиболее распространенных технологиях, а также нескольких ее разновидностях.

РЕЗИСТИВНЫЕ ПАНЕЛИ

Сенсорная часть таких экранов состоит из двух слоев, разделенных небольшим пространством, каждый из которых имеет массив резистивных или проводящих элементов (в зависимости от конкретной реализации).

При нажатии пальцем, стилусом (или любым другим предметом) на поверхность экрана эти слои соприкасаются, элементы замыкаются, и экран «понимает», в каком месте к нему дотронулись.

Учитывая, что контакт между двумя слоями возможен только при использовании гибкого материала, который будет прогибаться под давлением, резистивные экраны, как правило, покрывают специальной гибкой пленкой, а не стеклом. Это приводит к появлению царапин и более частым повреждениям экрана при чрезмерном надавливании стилусом.

Технология является одной из наиболее простых, поэтому она первой появилась в сенсорных устройствах. У нее до сих пор есть определенные преимущества, однако недостатков больше, чем в других типах сенсорных экранов.

Преимущества

Помимо низкой цены (стоимость таких дисплеев приблизительно в два раза ниже емкостных), точность резистивных экранов также мало зависит от состояния верхнего слоя, поэтому в случае его загрязнения или намокания отзывчивость сенсора практически не меняется.

Несмотря на возраст технологии, она до сих пор позволяет делать самые точные сенсорные панели. В правильно откалиброванном дисплее фактически можно попадать стилусом в конкретный пиксель благодаря густой решетке резистивных элементов.

Недостатки

Несмотря на то что из этого правила есть исключения, большинство резистивных экранов не распознают мультитач, то есть экран понимает лишь одно касание (самое первое, либо самое сильное), что существенно ограничивает возможности управления интерфейсом. Даже в устройствах, где мультитач реализован, все равно распознается меньше одновременных касаний, чем в самых обычных емкостных экранах.

Использование нескольких слоев снижает контрастность и яркость экрана. Коэффициент прохождения света составляет ~75%, что на ~15% ниже, чем в емкостных экранах. Таким образом, в устройствах с резистивным сенсором содержимое экрана сложнее рассматривать под прямыми солнечными лучами или при сильном искусственном освещении.

Использование двух слоев, разделенных небольшим зазором, является косвенной причиной снижения точности работы сенсора. Если держать стилус перпендикулярно экрану, то точность может быть одной, однако под углом, расхождение будет составлять несколько пикселей за счет того, что точка, на которую давит стилус, находится не непосредственно над нужным пикселем (эффект параллакса).

Защитой от случайного ввода в резистивных экранах является определенное давление, которое необходимо преодолеть для того чтобы устройство засчитало команду. Следовательно, резистивные экраны сложнее оборудовать дополнительным защитным покрытием, которое лишь увеличит порог срабатывания. В паре с пластиковым покрытием, которое необходимо для гибкости сенсорного слоя, резистивные экраны более других подвержены повреждениям, особенно царапинам, а при неправильном обращении (сильном нажатии острым предметом), могут и попросту треснуть.

Несмотря на то что количество нажатий в каждой конкретной точке оценивается в 30 млн., резистивные экраны все же раньше других типов выходят из строя и являются самыми ненадежными по этому показателю.

Вывод

Небольшая стоимость и устойчивость к загрязнениям (а точнее, сохранению точности ввода при загрязнении), в паре со всеми вышеперечисленными недостатками стали причиной того, что резистивные экраны медленно вытесняются из обихода, хотя и смогли закрепиться в некоторых нишах, например, в секторе терминалов для быстрой оплаты.

Стилусы

Характерной особенностью устройств с резистивным сенсором является распространенное использование стилуса, площадь контакта которого с поверхностью меньше, чем у пальца, а сила давления больше, что является причиной более точного ввода.

Наличие стилуса желательно, хоть и необязательно для экранов с небольшой диагональю (в основном это телефоны, а несколько лет назад и КПК), однако в планшетах достаточной точности можно добиться и с помощью пальцев.

После того как несколько лет назад КПК были полностью вытеснены смартфонами и другими устройствами, казалось, что вместе с ними навсегда сцену покинули и стилусы, однако сейчас все чаще можно встретить их реинкарнацию, особенно в устройствах промежуточных размеров между смартфонами и планшетами.

Поскольку резистивные экраны сейчас используются все реже, стилусы тоже немного изменились. Подстраиваясь под современные реалии, они стали выпускаться со специальными насадками на конце, которые распознаются емкостными экранами.

ЕМКОСТНЫЕ ПАНЕЛИ

Принцип работы емкостных экранов заключается в том, что на специальный слой электропроводника, находящегося на внешней поверхности экрана, подается небольшое напряжение, формирующее однородное электростатическое поле. Когда к экрану прикладывается палец, являющийся проводником электричества, свойства поля меняются вследствие появления утечки (пользователь работает как заземлитель и «крадет» ток у экрана). По изменению емкости можно определить наличие контакта и его координаты.

Для определения координат в углах экрана установлены электроды, измеряющие силу тока утечки, и чем она сильнее на каждом конкретном датчике, тем ближе произошло нажатие. Определив конкретные значения, можно очень точно вычислить координаты нажатия.

Подклассом емкостных экранов являются проекционно-емкостные экраны, принцип работы которых также заключается в измерении емкости, однако базовые элементы в них расположены не на внешней стороне экрана, а на внутренней, что повышает защищенность сенсора. Именно такие экраны сейчас и используются повсеместно в смартфонах.

В отличие от резистивных панелей, где используется гибкий материал, емкостные сенсоры покрывают стеклом. Это лучше защищает их от царапин, хотя с большей вероятностью станет причиной появления трещины при сильном ударе или падении.

Достоинства

Отсутствие нескольких слоев дополнительных материалов не только увеличивает яркость экрана (прозрачность для света составляет приблизительно 90%), но также снижает расстояние между поверхностью экрана и изображением, что позволяет точнее попадать в нужные пиксели. Пускай выигрыш и не большой, но он все же заметен, особенно когда устройство находится под некоторым углом относительно оси зрения, то есть в те моменты, когда разница между реальным положением нужного пикселя на экране и точкой, в которую нужно попасть, смещаются максимально друг относительно друга.

Дисплеи Super AMOLED компании Samsung позволяют еще больше снизить толщину экрана за счет отказа от дополнительного слоя емкостных элементов. В этом типе экранов они встраиваются непосредственно в матрицу.

Емкостные экраны гораздо долговечнее резистивных (практически на порядок) когда речь заходит о количестве нажатий до выхода сенсорных элементов из строя. Число таких повторений оценивается в 200+ млн раз.

Недостатки

Емкостные экраны обходятся дороже резистивных в производстве и требуют, чтобы материал, касающийся их поверхности, обязательно обладал свойствами проводника. Следовательно, использовать любой удобный предмет или работать в обычных перчатках с емкостными экранами не получится. В связи с этим широкое распространение приобретают специальные емкостные стилусы и перчатки для работы с сенсорными панелями в холодную погоду.

Точность емкостных экранов несколько ниже чем, у резистивных, хотя в практических задачах эта разница не сильно заметна, поскольку составляет буквально 1-3 пикселя, и учитывая, что в большинстве случаев интерфейс программ уже и так заточен под устранение этих погрешностей, недостатком это назвать сложно.

Вывод

Емкостные панели по своим характеристикам и цене лучше всего подошли для экранов мобильных устройств, поэтому и доминируют сейчас в этом секторе.

ИНФРАКРАСНЫЕ ПАНЕЛИ

Несмотря на то что инфракрасные сенсоры начали появляться в устройствах позже других типов панелей, их не стоит считать более совершенными. Несколько преимуществ у них есть, однако, скорее всего, как и резистивные экраны, они останутся нишевыми и не смогут потеснить емкостные панели.

Оптические

Главное отличие инфракрасных сенсоров от всех остальных заключается в том, что специальные датчики расположены не на поверхности экрана, а по краям от него и формируют серию горизонтальных и вертикальных инфракрасных лучей непосредственно над дисплеем. Когда предмет касается экрана, лучи разрываются и таким образом определяется место контакта.

Тепловые

Разновидностью инфракрасных экранов являются экраны с тепловыми сенсорами. Для того, чтобы они реагировали на касания, предмет должен быть теплым.

Как и в емкостных панелях, устройства с инфракрасными датчиками используют защитное покрытие из стекла, что является причиной тех же преимуществ и недостатков: лучшая устойчивость к появлению царапин, но большая вероятность возникновения трещины при сильном ударе.

Достоинства

Расположение сенсоров по бокам от матрицы позволяет отказаться от промежуточного слоя на LCD матрице, что улучшает яркость картинки (прозрачность покрытия составляет практически 100%), уменьшает зазор между реальным изображением и поверхностью экрана, делает дисплей более устойчивым к повреждениям, а также позволяет работать с загрязненным экраном, но при условии, что загрязнения не мешают свободному распространению инфракрасных лучей.

Инфракрасными (оптическими) экранами можно управлять в перчатках, либо используя любые другие удобные предметы.

Недостатки

Любые загрязнения по краям матрицы, заслоняющие инфракрасные источники сигналов, приводят к сбоям в работе сенсоров. Проблемы возникают и при небольших искривлениях устройства, когда лучи покидают плоскость, параллельную экрану.

Однако одной из наиболее распространенных проблем с инфракрасными датчиками является ложное срабатывание. Поскольку пользователям не обязательно физически касаться экрана, то иногда сенсоры активируются и при достаточном приближении пальца к экрану или во время его движения от одной точки к другой.

Несмотря на то что инфракрасные сенсоры часто используются в устройствах с относительно небольшой стоимостью (например, в электронных книгах), сами экраны с инфракрасным сенсором дороже как резистивных, так и емкостных экранов.

Вывод

Если резистивные и емкостные экраны можно было условно отнести к соответственно отмирающим и доминирующими типам экранов, то инфракрасные сенсоры — технология устройств-маргиналов, поскольку они используются в малоизвестных моделях портативной электроники. Исключение составляют электронные книги, например Nook Touch.

ВМЕСТО ЭПИЛОГА

Сенсорные и обычные дисплеи в ближайшее время ждет еще много инноваций (гибкая матрица, новые защитные покрытия), однако когда речь заходит о технологиях, отвечающих за распознавание ввода, то здесь на горизонте не видно никаких революционных альтернатив, поэтому и дальше доминировать будут емкостные сенсоры, как самые удобные и относительно недорогие по сравнению с другими типами сенсоров.

1

Строение сенсорного экрана (тачскрина) и проблемы связанные с его заменой

Сенсорный экран — устройство ввода и вывода информации, представляющее собой экран, реагирующий на прикосновения к нему.

Резистивный сенсорный экран


Резистивный сенсорный экран состоит из стеклянной панели и гибкой пластиковой мембраны. И на панель, и на мембрану нанесено резистивное покрытие. Пространство между стеклом и мембраной заполнено микроизоляторами, которые равномерно распределены по активной области экрана и надёжно изолируют проводящие поверхности. Когда на экран нажимают, панель и мембрана замыкаются, и контроллер с помощью аналогово-цифрового преобразователя регистрирует изменение сопротивления и преобразует его в координаты прикосновения (X и Y).


В общих чертах алгоритм считывания таков:
1.На верхний электрод подаётся напряжение +5В, нижний заземляется. Левый с правым соединяются накоротко и проверяется напряжение на них. Это напряжение соответствует Y-координате экрана.
2.Аналогично на левый и правый электрод подаётся +5В и «земля», с верхнего и нижнего считывается X-координата.

Ёмкостные сенсорные экраны

Ёмкостный (или поверхностно-ёмкостный) экран использует тот факт, что предмет большой ёмкости проводит переменный ток.

Ёмкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом (обычно применяется сплав оксида индия и оксида олова). Электроды, расположенные по углам экрана, подают на проводящий слой небольшое переменное напряжение (одинаковое для всех углов). При касании экрана пальцем или другим проводящим предметом появляется утечка тока. При этом чем ближе палец к электроду, тем меньше сопротивление экрана, а значит, сила тока больше. Ток во всех четырёх углах регистрируется датчиками и передаётся в контроллер, вычисляющий координаты точки касания.

В более ранних моделях ёмкостных экранов применялся постоянный ток — это упрощало конструкцию, но при плохом контакте пользователя с землёй приводило к сбоям.
Ёмкостные сенсорные экраны надёжны, порядка 200 млн нажатий (около 6 с половиной лет нажатий с промежутком в одну секунду), не пропускают жидкости и отлично терпят не проводящие загрязнения. Прозрачность на уровне 90 %. Впрочем, проводящее покрытие всё ещё уязвимо. Поэтому ёмкостные экраны широко применяются в автоматах, установленных в охраняемом помещении. Не реагируют на руку в перчатке.

Мультитач (англ. multi-touch) — функция сенсорных систем ввода, осуществляющая одновременное определение координат двух и более точек касания. Мультитач может применяться, например, для изменения масштаба изображения: при увеличении расстояния между точками касания происходит увеличение изображения. Кроме того, мультитач-экраны позволяют работать с устройством одновременно нескольким пользователям. Они часто используются для осуществления других, более простых функций сенсорных дисплеев, таких как single touch или квази мультитач.
Мультитач позволяет не просто определить взаимное расположение нескольких точек касания в каждый момент времени, он определяет пару координат для каждой точки касания, независимо от их положения относительно друг друга и границ сенсорной панели. Правильное распознавание всех точек касания увеличивает возможности интерфейса сенсорной системы ввода. Круг решаемых задач при использовании функции мультитач зависит от скорости, эффективности и интуитивности её применения.

Наиболее распространённые мультитач-жесты

Сдвинуть пальцы — мельче
Раздвинуть пальцы — крупнее
Двигать несколькими пальцами — прокрутка
Поворот двумя пальцами — поворот объекта/изображения/видео

Проблемы, связанные с установкой резистивного сенсорного экрана

Иногда нет под рукой полного аналога нужного тача, или распиновка шлейфа другая, могут возникнуть следующие проблемы:
1.Тач повёрнут на 90,270 градусов
- Поменять местами X-Y



2.Перевёрнут тач по горизонтали
- Поменять местами X+ , X-


3.Перевёрнуть тач вверх ногами
- Поменять местами Y+ , Y-


Данные решения нужно осуществлять если после калибровки сенсорного экрана проблема не пропала.

Замена сенсорного экрана не помогла.
- Перепрошить телефон

Сопротивление на контактах ТАЧСКРИНА
Y-,Y+=550 Om Без нажатия
X-,X+=350 Om Без нажатия

Y+,X+=от 0,5-до 1,35 kOm Замеры производились в разных углах тачскрина при нажатии.Не косаясь тачскрина сопротивление равно бесконечности.
Y-,X-=от 1,35-до 0,5 kOm Замеры производились в разных углах тачскрина при нажатии.Не косаясь тачскрина сопротивление равно бесконечности.

В разных моделях сенсорных экранов сопротивление может колебаться. Данные замеры производились на сенсорном экране с телефона I9+++.

Когда пора менять сенсорный экран?

Сенсорный экран пора менять в следующих случаях:
- если он не реагирует на прикосновения
- вы обнаружили на нём "маслянистое пятно"(разноцверные разводы)
- невозможно откалибровать сенсорный экран
- войдя в сообщение и выбрав режим ввода английского текста,попробуйте поставить точки по всей площади,если вместо точек появляються чёрточки то пора менять
- войдя в сервис-разное-Touch Screen ,попробуйте поставить точки по всей площади,если вместо крестиков появляються зелёные полоски - пора менять
- если пытаясь нажать на иконку- перелистываються рабочие столы или иконки опадают(вертикальное осыпание иконок в айфоноподобных телефонах)
- если через 5 минут после калибровки вы опять не попадаете по иконке на которую нажимаете



Если вы не относитесь к числу подкованных в техническом плане пользователей и перед вами в скором будущем станет вопрос выбора мобильного телефона или смартфона с сенсорным экраном, наверняка, читая спецификации мобильных устройств вы встретите такие термины, как «емкостный экран» или «резистивный экран». И тут вам в голову придет вполне логичный вопрос – какой из них лучше: резистивный или емкостный? Давайте выясним, чем отличаются сенсорные дисплеи, какие их виды существуют и в чем заключаются их преимущества и недостатки.

РЕЗИСТИВНЫЕ ЭКРАНЫ

Если говорить доступным языком, избегая мудрых технических терминов и оборотов, то резистивный сенсорный экран представляет собой гибкую прозрачную мембрану, на которую нанесено токопроводящее (иначе говоря – резистивное) покрытие. Под мембраной находится стекло, также покрытое токопроводящим слоем. Принцип действия резистивного экрана состоит в том, что при нажатии на экран пальцем или стилусом происходит замыкание стекла с мембраной в конкретной точке. Микропроцессор фиксирует изменение напряжения мембраны и вычисляет координаты касания. Чем точнее нажатие, тем процессору проще вычислить точные координаты. Поэтому с резистивными экранами на много проще работать со стилусом.

Основные преимущества резистивных экранов заключаются в том, что они сравнительно дешевы в производстве, а также в том, что данный тип дисплея реагирует на нажатие любыми предметами. Это очень полезно при проведении презентаций, тем более что цены на проекторы сегодня падают с каждым днем.

Недостатки резистивных экранов таковы: невысокая прочность; небольшая долговечность (порядка 35 млн. нажатий на точку); невозможность реализации ; большое число ошибок при обработке таких жестов, как скольжение, перелистывание.

Так какой экран лучше: резистивный или емкостный?

Если вы внимательно прочитали данную статью, то без проблем сможете и сами сделать вывод. Я же лишь скажу о том, что спор это обречен на провал. Некоторым пользователям нравится работать со стилусом и они не приемлют емкостные дисплеи. Но все же большинству комфортнее управлять устройством, оборудованным емкостным экраном – это удобнее, да и возможность мультитача решает многое. Ведь не спроста все современные смартфоны и планшеты, работающие под управлением Android, имеют именно емкостные дисплеи.

Статьи по теме:

Существует много ситуаций, когда необходимо быстро и эффективно почистить память телефона. Но как это сделать. Давайте рассмотрим процедуру очистк...

Вчера на почту пользователь Grigoriy прислал просьбу выложить инструкцию по получению прав Root для смартфона LG Optimus L7. Вообще, Google – велика...

В настоящее время уже никого не удивишь сенсорным экраном. Более того, уже странно видеть устройства без сенсора, особенно, когда речь идет о мобильных гаджетах. Это обусловлено стремлением увеличить площадь рабочей поверхности. Но часто ли мы задумываемся о том, какой тип дисплея используется в том или ином устройстве? Случалось ли такое, что, купив новый планшет или смартфон, мы пытаемся управлять им с помощью привычно цифрового пера, но вот незадача, устройство попросту не реагирует на его прикосновение. Видимо, экран выполнен по другой технологии, емкостной, которая постепенно начинает вытеснять своего предшественника, дисплей резистивного типа.

Можно встретить большое количество сенсорных дисплеев, отличающихся не только конструктивными особенностями, но и принципом работы. На сегодняшний день существуют следующие типы сенсорных экранов: резистивный, емкостной, проекционно-емкостной, матричный, сенсорный экран на поверхностно-акустических волнах, инфракрасный, тензометрический, индуктивный.

В настоящий момент в электронной технике используются два основных типа сенсорных экранов: резистивный и емкостной. О них мы и поговорим подробней, а также попытаемся выделить сильные и слабые стороны каждого.

Вначале рассмотрим принцип работы резистивного сенсорного экрана. Он состоит из стеклянной панели и гибкой пластиковой мембраны, на которые нанесено резистивное покрытие. Пространство между стеклом и мембраной заполнено микроизоляторами, которые в свою очередь надежно изолируют проводящие поверхности, равномерно распределившись по активной области экрана. При нажатии на дисплей, панель и мембрана замыкаются, а контроллер с помощью аналогово-цифрового преобразователя регистрирует изменение сопротивления, преобразовывая его в координаты касания. Именно по этой причине на такой экран можно нажимать любым твердым предметом, это может быть, как ноготь, так и специальный стилус, и даже обычный карандаш. Как следствие такого строения, резистивные экраны постепенно изнашиваются, из-за чего и возникает необходимость в периодической калибровке экрана, чтобы при нажатии на дисплей происходила правильная обработка координат точки касания.

Бывают четырех-, восьми-, пяти-, шести- или семиэлектродные экраны. Самыми простыми в изготовлении, следовательно, и самыми дешевыми, являются четырехэлектродные. Они выдерживают всего 3 миллиона нажатий в одну точку. Пятипроводные уже будут значительно надежнее - до 35 миллионов нажатий, в них четыре электрода расположены на панели, а пятый находится на мембране, которая покрыта токопроводящим составом. Стоит отметить, что пятипроводные и последующие версии шести- и семипроводные экраны продолжают работать даже при повреждении части мембраны.

Преимущества

К достоинствам резистивного экрана можно отнести невысокую стоимость его производства, а, следовательно, и устройства, в котором он используется. Кроме этого, стоит отметить, что отзыв сенсора здесь не зависит от состояния поверхности экрана, даже в случае загрязнения, тачскрин остается таким же чувствительным. Следует также выделить точность попадания в нужную точку, т.к. используется густая решетка резистивных элементов.

Недостатки

В качестве недостатков резистивных экранов выделим низкое светопропускание, не более 70% или 85%, поэтому требуется повышенная яркость подсветки. Также это низкая чувствительность, т.е. просто прикасаться пальцем не достаточно, требуется надавливание, так что без цифрового пера или длинных ногтей не обойтись. Данный тип в большинстве случаев не поддерживает мультитач, т. е. экран понимает лишь одно касание. При взаимодействии с экраном нужно прилагать определенные усилия, чтобы передать какую-либо команду, а переусердствовав можно не только поцарапать, но и повредить дисплей. Как уже было сказано выше, для правильного функционирования периодически необходимо производить калибровку экрана.

Емкостной сенсорный экран

Емкостной экран представляет собой стеклянную панель, которая покрыта прозрачным резистивным материалом, в котором, как правило, используется сплав оксида индия и оксида олова. По углам панели установлены электроды, подающие на проводящий слой низковольтное переменное напряжение, они следят за течением зарядов в экране, и передают данные в контроллер, определяя, таким образом, координаты точки касания. До прикосновения экран обладает некоторым электрическим зарядом; при касании пальцем на проводящем слое появляется точка, потенциал которой меньше, чем потенциалы электрода, т. к. тело человека обладает способностью проводить электрический ток и имеет некоторую емкость. На экране нет никаких гибких мембран, что обеспечивает высокую надежность и позволяет снизить яркость подсветки. Данный тип экрана способен одновременно определять координаты двух и более точек касания, что и означает поддержку мультитач.

Подвидом емкостных стали проекционно-емкостные экраны. Работают они по схожему принципу. Отличие заключается в том, что базовые элементы в них расположены не на внешней стороне экрана, а на внутренней, благодаря чему сенсор получается более защищенным. В основном дисплеи такого типа используются в современных мобильных устройствах.

Взаимодействие с емкостным экраном должно осуществляться только проводящим предметом, голым пальцем или специальным стилусом, который обладает электрической емкостью. Количество нажатий до выхода сенсорных элементов из строя достигает более 200 млн раз.

Преимущества

Из плюсов емкостных экранов выделим, что даже на ярком солнце видимость остается достаточно хорошей, чего нельзя сказать о резистивном экране, т. к. он отражает много окружающего света. Преимуществом также стала возможность быстрого и точного распознавания касания без использования дополнительных аксессуаров. Несомненным достоинством экранов этого типа является более длительное время службы сенсора, по сравнению с предыдущим типом. Также появился «многопальцевый» интерфейс или мультитач, хотя далеко не во всех устройствах с экраном такого типа он реализован в полной мере.

Недостатки

К негативным сторонам использования емкостного сенсорного экрана можем отнести более высокую стоимость по причине сложности производства. Взаимодействие с дисплеем возможно только при касании с материалом, который является проводником. По этой причине для работы с ним приобретаются специальные емкостные стилусы или перчатки, особенно это становится актуальным в холодную погоду, а это еще одна статья расходов.

Подводя итог, напомним, что резистивные экраны чувствительны к нажатию, а емкостные реагируют на касание. Точность емкостных дисплеев сравнима с точностью резистивных, но емкостной тип отличается более высокой надежностью за счет отсутствия гибкой мембраны, а меньшее количество слоев делает их более прозрачными.

Бытует мнение, что резистивные дисплеи уже отжили свое, а будущее - за емкостными. Действительно, переход от механико-электрического ввода к электрическому уже много значит, т. к. возросла точность определения координат, и появился мультитач.

Тем не менее, сегодня на рынке электронной техники еще остается большое количество устройств с резистивными экранами, но они потихоньку начинают вытесняться гаджетами с емкостными сенсорами. Наблюдая эту тенденцию, можно предположить, что первые в скором времени и вовсе исчезнут.