Цифровой двойник или кибер физическая система. Эра трансформеров: «цифровые близнецы» уже рядом. Какие виды «цифровых близнецов» уже существуют

Пожалуй, любой, кто смотрел фильмы о терминаторе или «Матрицу», задумывался, когда же искусственный интеллект станет частью нашей повседневной жизни, и смогут ли люди и роботы сосуществовать в мире и гармонии. Такое будущее гораздо ближе, чем вы думаете. Сегодня мы вам расскажем о такой технологии, как «цифровые близнецы», которая уже повсеместно применяется в промышленности и, возможно, в скором времени станет и частью нашей повседневной жизни.

Кто такие цифровые близнецы?

Ошибочно полагать, что термин «цифровые близнецы» относится к роботам и искусственному интеллекту в обличии некоего человекоподобного существа. Сам термин применяется в настоящее время по большей части к промышленному производству. Впервые понятие «цифровые близнецы» появилось в 2003 году. В употребление термин вошел после публикации статьи профессора и помощника директора Центра управления жизненным циклом и инновациями в Технологическом институте Флориды Майкла Гривса «Цифровые близнецы: превосходство в производстве на основе виртуального прототипа завода». Само понятие придумал инженер NASA, который был коллегой профессора.

1971yes / bigstock.com

По своей сути «цифровые близнецы» – это понятие, объединяющее искусственный интеллект, компьютерное обучение и программное обеспечение со специальными данными для создания живых цифровых моделей. Эти «цифровые близнецы» постоянно обновляются вслед за изменением физических прототипов.

Откуда берут данные «цифровые близнецы» для самообновления?

Цифровая копия, как и положено искусственному интеллекту, постоянно самообучается и самосовершенствуется. С этой целью «цифровой близнец» использует знания от людей, других подобных машин, из более крупных систем и среды, частью которой он является.

Майкл Гривс предложил три своих требования, которым должны соответствовать «цифровые близнецы». Первое – соответствие внешнему виду исходного объекта. Нужно понимать, что аналогичный внешний вид – это не только целая картинка, но и соответствие отдельных частей реальному «близнецу». Второе требование связано с поведением двойника при проведении испытаний. Последнее и самое сложное – это информация, которую получают от искусственного интеллекта о достоинствах и недостатках реального продукта.

1971yes / bigstock.com

Как отмечает Майкл Гривс, когда цифровые копии ввели в использование, даже критерий внешнего сходства считался трудно выполнимым. Сегодня же, как только цифровой двойник идентичен по первым параметрам, его уже можно использовать для решения практических задач.

Зачем нужны «цифровые близнецы»?

Цифровые копии создаются с той целью, чтобы оптимизировать работу физических прототипов, целых систем и производственных процессов.

По словам Колина Дж. Пэрриса, доктора философских наук, вице-президента по исследованиям программного обеспечения «GE Global Research Center», «цифровые близнецы» – это гибридная модель (одновременно физическая и цифровая), которая создается специально для определенных целей бизнеса, например, предсказать неудачи, снизить затраты на обслуживание, предотвратить незапланированные отключения.

1971yes / bigstock.com

Колин Дж. Пэррис заявляет, что когда мы говорим о «цифровых близнецах», то эта система работает в три этапа: видеть, думать и делать. На стадии «видения» речь идет о получении данных о ситуации. Это информация двух видов: эксплуатационные данные (например, температура кипения) и данные из окружающей среды. Следующий шаг, который Колин Дж. Пэррис условно назвал «думать», связан с тем, что на этом этапе «цифровой двойник» на разные запросы может предоставлять варианты, как лучше действовать в той или иной ситуации или какие опции предпочтительнее для целей бизнеса. Искусственный интеллект использует для анализа, например, историческую информацию, прогнозы по выручке и расходам и предоставляет несколько опций, которые основаны на рисках и уверенности, что эти предложения смогут снизить их. Последний шаг – «делать» – связан непосредственно с реализацией того, что необходимо сделать.

1971yes / bigstock.com

С помощью «цифровых близнецов», например, можно увидеть изнутри проблемы физического объекта.

На производстве нам уже необязательно видеть перед собой, например, всю турбину целиком, для того чтобы обнаружить пробоину. Технология «цифровых близнецов» позволит увидеть проблему в реальном времени с помощью компьютерной визуализации.

Как заявил исполнительный вице-президент по разработке программного обеспечения Siemens Зви Фейер, цифровой двойник - это решение в рамках PLM на пути к переходу к Промышленности 4.0.

Какие виды «цифровых близнецов» уже существуют?

Как мы уже сказали ранее, «цифровые близнецы» активно используются в промышленности: близнецы-части (которые строятся для конкретной производственной части), близнецы-продукты (связаны с выпуском продукта, их основная задача – снизить стоимость технического обслуживания), близнецы-процессы (целью их может быть, например, увеличение срока обслуживания), системные близнецы (оптимизация всей системы в целом).

1971yes / bigstock.com

Как считает исследовательское и консалтинговое агентство в области высоких технологий Gartner, в ближайшее время сотни миллионов «цифровых близнецов» заменят человеческий труд. В некоторых компаниях это уже применяется. Необязательно в штате иметь сотрудника, который бы занимался диагностикой неполадок на производстве. В режиме реального времени с помощью «цифровых двойников» можно получать все нужные данные и заранее быть готовым к ремонту оборудования.

А что насчет «цифрового близнеца» самого человека?

chagpg / bigstock.com

Для тех, кто хочет иметь друга-терминатора, который бы думал, как вы, помогал во всем, был братом и другом, у нас есть хорошие новости. По словам футуролога и технолога-теоретика Джона Смита, такое будущее уже близко. Он считает, что в ближайшее время появятся так называемые программные агенты, которые будут заранее предугадывать пожелания, поведение своей реальной копии и будут выполнять некоторые действия за своего человеческого двойника.

«Цифровой близнец» сможет совершать покупки, принимать бизнес-решения, заниматься общественной деятельностью – в общем, сможет делать все, на что у нас, порой, не хватает времени.

Также мы сможем переложить на своего двойника всю рутинную работу. Кроме того, как считает Джон Смит, наши цифровые клоны будут знать наши интересы, предпочтения, политические взгляды и при необходимости смогут их отстаивать, так как будут обладать более полным историческим контекстом и видеть современную картину мира целиком. И даже чувство сострадания. Например, «цифровой близнец» будет к нам проявлять , так как сможет угадывать наше эмоциональное состояние.

Все это звучит как сценарий фильма-утопии. Я чувствую какой-то подвох. В чем минусы «цифровых близнецов»?

Недостатки «цифровых близнецов» очевидны. В первую очередь возникает вопрос о нашей безопасности. Цифровые клоны будут использовать все возможные ресурсы для пополнения информации о нас. Это и алгоритмы, которые собирают данные из аккаунтов социальных сетей, и наши личные переписки, и любые документы и файлы, которые, так или иначе, касаются нас. Безусловно, это не может не настораживать: как мы уже выяснили, «цифровые близнецы» способны постоянно обновляться и совершенствоваться. Поэтому одной из первоочередных задач должно стать создание юридической базы для определения «границ дозволенности» искусственного интеллекта.

chagpg / bigstock.com

Однако не стоит впадать в панику по этому поводу. Берите пример с Джона Смита: он сохраняет оптимизм и верит, что «цифровые близнецы» не смогут заменить человечество. Они просто станут другими версиями человека, которые смогут спокойно сосуществовать с нами.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Есть способ лучше. Выявление путей повышения эффективности процессов конструкторско-технологического проектирования

Аарон Френкель, Ян Ларссен

Производство изделия — несомненно, наиболее важная часть из всех процессов жизненного цикла. На этом этапе идеи превращаются в реальность. Более того, без скоординированных процессов проектирования и изготовления, гарантирующих успешную сборку изделия в цехе, идеи так и останутся всего лишь красивыми чертежами либо не будут реализованы в полной мере. Многие годы способы конструирования и разработки технологических процессов оставались неизменными, сохраняя все традиционные недостатки, приводящие к росту себестоимости и сроков. Учитывая, что сегодня инновации стали жизненно необходимыми для выживания машиностроительных предприятий, компания Siemens PLM Software про-анализировала процессы подготовки производства c целью выявления путей их дальнейшей оптимизации. В настоящей статье Аарон Френкель (Aaron Frankel), старший директор по маркетингу решений для машиностроения, и Ян Ларссен (Jan Larsson), старший директор по маркетингу в Европе, на Ближнем Востоке и в Африке компании Siemens PLM Software, обсуждают, какие источники неэффективности необходимо устранить, чтобы внедрить концепцию «цифрового двойника изделия», и как это повлияет на способы выпуска изделий.

Прекрасная симфония

Если вы окажетесь на современном предприятии, то увидите потрясающую симфонию труда людей, роботов и станков, движения материалов и деталей — и все это делается с точностью до секунды, чтобы не отстать от графика. Картина получается просто фантастическая.

Но за кулисами мы увидим устаревшие процессы конструкторско-техноло-гичес-кой подготовки производства. Мы не собираемся кого-либо критиковать. Разработка конструкции изделия — само по себе немалое достижение. Проектирование может оказаться очень сложной задачей. В некоторых случаях изделие состоит из миллионов деталей, а над его созданием трудятся тысячи сотрудников и партнеров, причем нередко по всему миру. Более того, в таких важнейших отраслях, как электронная промышленность (более быстрые процессоры, миниатюризация), автомобилестроение (вопросы экологичности и снижения выбросов) и авиационно-космическая отрасль (экологичность и внедрение композитных материалов), наблюдается постоянное стремление к оптимизации и ускорению процессов создания новых изделий. С учетом высокой сложности решаемых задач вполне понятно нежелание отходить от проверенных на практике процессов подготовки производства. Однако при этом наши заказчики сообщают об общих для всех проблемах при проектировании и изготовлении продукции, которые в ряде случаев приводят к дорогостоящим задержкам.

Общие проблемы

Одна из наиболее серьезных трудностей, которую мы наблюдаем, заключается в том, что конструкторы и технологи применяют различные системы. На практике это приводит к тому, что конструкторы передают свои разработки технологам, которые пытаются создавать технологические процессы в компьютерных системах, к которым они привыкли. При таком сценарии — а он встречается очень часто — происходит рассинхронизация информации, что затрудняет контроль над ситуацией. Кроме того, возрастает вероятность возникновения ошибок.

Проблемы регулярно возникают и в ходе разработки цеховых планировок. Их причина состоит в том, что планировки обычно создаются в виде двумерных поэтажных планов и бумажных чертежей. Это длительный и трудоемкий процесс. Двумерные чертежи — важная составляющая процесса, но у них нет нужной гибкости. Нередко случается, что перестановка оборудования в цехе не фиксируется на чертеже. Проблема особенно обостряется при работе на быстро изменяющихся рынках (например, бытовой электроники), когда требуется постоянное расширение и модернизация производственных систем. Почему? Потому, что у двумерных планировок отсутствуют интеллектуальность и ассоциативность. Они не позволяют технологам узнать, что именно происходит в цехах, и быстро принять умные решения.

После создания планировки разрабатывается технологический маршрут. Как правило, затем он проходит этап контроля. Здесь лежит еще одно существенное препятствие росту эффективности. Технологам, чтобы оценить характеристики оборудования, обычно приходится ждать, пока оно не будет установлено. При этом если характеристики оказываются ниже ожидаемых, то разрабатывать альтернативную технологию бывает уже поздно. Наш опыт показывает, что такая ситуация приводит к значительным задержкам.

Наконец, заказчики сообщают о еще двух проблемах, возникающих в конце цикла подготовки производства. Это оценка производительности отдельных операций и всего технологического процесса в целом.

Из-за высокой сложности современного производства и нередкого отсутствия координации между различными системами технологического проектирования выявить, какие именно операции или производственные участки вызывают задержки работы всей линии, оказывается непросто. А когда дело доходит до собственно изготовления изделия, заказчики сообщают, что оценить производительность и степень соответствия реальных процессов запланированным, как правило, крайне сложно. И снова проблема заключается в высокой сложности, а также в отсутствии обратной связи между производством, конструкторами и технологами.

Цифровой двойник

Цифровой двойник представляет собой виртуальную копию реального объекта, которая ведет себя так же, как реальный объект. Не углубляясь здесь в технические подробности наших продуктов, достаточно сказать, что наши средства управления жизненным циклом изделия (PLM) обеспечивают создание полноценной цифровой платформы. Она поддерживает применение цифровых двойников, точно моделирующих сквозные процессы проектирования и изготовления изделий.

Что же все это означает на практике? Давайте еще раз посмотрим на вышеперечисленные этапы и покажем основные возможности, предоставляемые новым подходом.

Конструирование

В системе NX (и других CAD-системах) создается модель изделия, передаваемая в Teamcenter в 3D-формате JT. За считаные секунды приложение создает тысячи различных виртуальных исполнений изделия, точно соответствующих реальной продукции. При этом для выявления потенциальных проблем применяются технологии обработки больших данных, конструкторско-технологическая информация (PMI), содержащаяся в моделях (допуски, посадки, связи между деталями и узлами), а также базовое описание технологического процесса. Этот подход уже был проверен на практике при создании выпускаемых нашей компанией электронных изделий. Например, мы смогли сразу установить, что резьбовые отверстия на разъеме видеовыхода неточно совпадают с отверстиями под винты на печатной плате. Если бы ошибка осталась незамеченной, это привело бы к гарантийным претензиям от заказчиков: разъем мог бы отделиться от печатной платы. Выявление ошибок в конструкции на ранних этапах существенно экономит время и деньги — как при разработке технологии, так и в ходе производства.

Проектирование технологических процессов

Цифровой двойник позволяет улучшить совместную работу конструкторов и технологов, оптимизировать выбор места и технологии изготовления, а также выделение необходимых ресурсов. Рассмотрим пример внесения изменений в процесс сборки. Используя наши программные средства, инженеры-технологи на основе новой конструкторской спецификации добавляют новые операции в рабочую 3D-модель технологического процесса. Можно моделировать любую производственную систему, находясь при этом в любой точке земного шара: скажем, технологи в Париже подготавливают производство на заводе в Рио. Обладая информацией времени на каждую добавленную операцию, технологи проверяют, соответствует ли новый технологический маршрут заданным показателям производительности. Если это не так, то технологические операции заменяются или переставляются. Затем снова выполняется численное моделирование, пока выбранный технологический маршрут не будет удовлетворять требованиям. К новому технологическому процессу немедленно получают доступ все разработчики, чтобы его утвердить. Если выявляются какие-либо проблемы, то конструкторы и технологи вместе работают над их устранением.

Цеховые планировки

При работе над планировками мы рекомендуем создавать цифровой двойник, содержащий механическое оборудование, системы автоматизации и ресурсы, причем четко связанные со всей «экосистемой» конструкторско-технологической подготовки производства. При помощи набора PLM-инструментов технологические операции можно менять местами путем перетаскивания. Столь же легко выполняется размещение оборудования и персонала на производственной линии и моделирование ее работы. Это очень простой, но в то же время исключительно эффективный способ создания и редактирования технологичес-ких процессов. При внесении изменений в конструкцию, требующих применения нового промышленного робота, специалис-ты по численному моделированию проверяют, например, возможно ли установить робот таких габаритов, не задев конвейер. Разработчик цеховых планировок вносит необходимые поправки и подготавливает извещение об изменениях, на основании которого отдел закупок закупает новое оборудование. Такой анализ последствий вносимых изменений позволяет избежать ошибок и, при необходимости, сразу уведомлять поставщиков.

Контроль технологических проектных решений

На этапе контроля цифровой двойник применяется для виртуальной проверки процесса сборки. Виртуальное моделирование и количественный анализ позволяют оценить все факторы, связанные с ручным трудом на сборке, и выявить такие проблемы, как неудобная поза рабочего. Это дает возможность избежать утомления и получения производственных травм. На основе результатов моделирования создаются учебные видеоролики и инструкции.

Оптимизация производительности

Цифровой двойник применяется для статистического моделирования и оценки проектируемой технологической системы. С его помощью легко установить, что следует применять — ручной труд, роботов или комбинацию роботов и рабочих. Можно выполнить численное моделирование всех процессов — вплоть до энергопотребления отдельного станка, чтобы максимально оптимизировать технологию. Анализ показывает, сколько деталей изготавливается на каждой операции. Это гарантирует, что производительность реальной производственной линии будет соответствовать заданной.


и реальным мирами. Это позволяет сравнить конструкторский проект с реально изготовленным
изделием. На рисунке показано, как технологии работы с большими данными применяются
для сбора текущей информации по качеству продукции, которая передается для анализа
в хранящийся в системе Teamcenter цифровой двойник

Изготовление изделия

Цифровой двойник обеспечивает обратную связь между реальным и виртуальным миром, что позволяет оптимизировать процессы изготовления изделий. Технологические инструкции передаются прямо в цех, где операторы оборудования получают их вместе с видеороликами. Операторы передают конструкторам производственные данные (например, сведения о наличии зазора между двумя крепящими панель винтами), а другие автоматизированные системы собирают сведения о производительности. Затем происходит сравнение конструкторского проекта и реально изготовленного изделия, при этом отклонения выявляются и устраняются.

Новые подходы к работе

Применение цифрового двойника, являющегося точной копией реального изделия, помогает быстро выявить потенциальные проблемы, ускоряет подготовку производства и сокращает себестоимость. Кроме того, наличие цифрового двойника гарантирует возможность изготовления, спроектированного конструкторами изделия; все технологические процессы поддерживаются в актуальном и синхронизированном состоянии; разработанные технологии оказываются работоспособными, а производство функционирует точно по плану. Цифровой двойник позволяет проверить, как можно встроить новые технологии в существующие производственные линии. Это устраняет риски, возникающие при закупке и монтаже оборудования.

Машиностроение — одна из самых передовых отраслей мировой промышленности, где уже давно применяются проверенные на практике, но устаревшие подходы к технологической подготовке производства. Пришло время привнести дух инноваций, открывающий путь к успеху при разработке и изготовлении изделий. Пора попробовать что-то новое!

Нейронные сети, цифровые двойники, искусственный интеллект. Технологии« Индустрии 4.0» изменят нефтяную отрасль до неузнаваемости

Архитекторы цифровой эпохи

Обычно самыми технологичными принято считать сферы информационных технологий и биомедицины. К компаниям традиционных отраслей, занимающимся, например, металлопрокатом или добычей и переработкой нефти, отношение совсем другое. На первый взгляд они кажутся консервативными, но именно их многие эксперты называют главными архитекторами новой цифровой эпохи.

Автоматизировать производственные процессы индустриальные гиганты начали еще в середине 30-х годов прошлого века. На протяжении многих десятилетий комплексы аппаратных и программных средств непрерывно совершенствовались и усложнялись. Автоматизация производственных процессов — например, в нефтепереработке — продвинулась далеко вперед. Работу современного нефтеперерабатывающего завода контролируют сотни тысяч датчиков и приборов, а поставки топлива в режиме реального времени отслеживаются системами спутниковой навигации. Каждый день средний российский НПЗ производит более 50 000 терабайт информации. Для сравнения, 3 миллиона книг, которые хранятся в цифровом хранилище Российской государственной библиотеки, занимают в сотни раз меньше — «всего» 162 терабайта.


Это и есть те самые «большие данные», или Big Data, — поток, сравнимый с информационной загрузкой самых крупных сайтов и социальных сетей. Скопившийся массив данных представляет собой уникальный ресурс, который может быть использован в управлении бизнесом. Но традиционные методы анализа информации для этого уже не подходят. По‑настоящему эффективно работать с таким объемом данных возможно лишь с помощью технологий Индустрии 4.0. В условиях меняющейся экономической парадигмы богатый производственный «исторический опыт» — серьезное преимущество. Большие данные лежат в основе искусственного интеллекта. Его способность обучаться, понимать реальность и прогнозировать процессы напрямую зависит от объема загруженных знаний. При этом промышленные компании обладают мощной инженерной школой, активно занимаются внедрением и совершенствованием новых технологии. Это еще одно обстоятельство, которое делает их ключевыми игроками «новой экономики».

Лучшее за неделю

Наконец, отечественные промышленники знают цену эффективности бизнеса. Россия — страна больших расстояний. Нередко производственные активы находятся на большом удалении от потребителей. В этих условиях очень непросто быстро реагировать на колебания рынка. Традиционные технологии позволяют экономить не больше десятой доли процента. А между тем, цифровые решения уже сегодня позволяют сокращать издержки до 10−15% в месяц. Факт очевиден: в эпоху четвертой промышленной революции конкурентоспособным будет тот, кто научится наиболее эффективно применять новые технологии в разрезе накопленного опыта.

Петр Казначеев, директор Центра сырьевой экономики РАНХиГС : «В качестве первого шага в сторону «интегральной» системы искусственного интеллекта в нефтегазе можно было бы рассмотреть «умное» управление и корпоративное планирование. В данном случае речь могла бы идти о создании алгоритма оцифровки всей ключевой информации о деятельности компании — от месторождения до бензоколонки. Эта информация могла бы поступать в единый автоматизированный центр. На основе данной информации с помощью методов искусственного интеллекта могли бы делаться прогнозы и рекомендации по оптимизации работы компании».


Лидер цифровой трансформации

Осознавая эту тенденцию, индустриальные лидеры России и мира перестраивают бизнес-процессы, складывавшиеся десятилетиями, внедряют в производство технологии Индустрии 4.0 на основе промышленного интернета вещей, искусственного интеллекта и Big Data. Наиболее интенсивно трансформация происходит в нефтегазовой индустрии: отрасль динамично «цифровизируется», инвестируя в проекты, которые еще вчера казались фантастикой. Заводы, управляемые искусственным интеллектом и способные прогнозировать ситуации, установки, подсказывающие оператору оптимальный режим работы — все это уже сегодня становится реальностью.

При этом задача-максимум заключается в том, чтобы создать систему управления добычей, логистикой, производством и сбытом, которая объединила бы «умные» скважины, заводы и автозаправки в единую экосистему. В идеальной цифровой модели, в тот момент, когда потребитель нажимает на рычаг заправочного пистолета, аналитики компании в оперативном центре мгновенно получают информацию о том, какая марка бензина заправляется в бак, сколько нефти нужно добыть, поставить на завод и переработать, чтобы удовлетворить спрос в конкретном регионе. Пока что никому из российских и зарубежных компаний не удавалось построить такую модель. Однако дальше всех в решении этой задачи продвинулась «Газпром нефть». Ее специалисты сегодня реализуют ряд проектов, которые в итоге должны стать основой для создания единой платформы управления переработкой, логистикой и сбытом. Платформы, которой пока нет еще ни у кого в мире.


Цифровые двойники

На сегодняшний день НПЗ «Газпром нефти» являются одними из самых современных в отрасли. Однако четвертая промышленная революция открывает качественно новые возможности, одновременно предъявляя и новые требования к автоматизации. Точнее, речь идет не столько об автоматизации, сколько о практически полной оцифровке производства.

Основой нового этапа станут так называемые «цифровые двойники» — виртуальные копии установок НПЗ. В 3D-моделях достоверно описаны все процессы и взаимосвязи, происходящие в реальных прототипах. В их основе лежит работа искусственного интеллекта на базе нейронных сетей. «Цифровой двойник» может предлагать оптимальные режимы работы оборудования, прогнозировать его отказы, рекомендовать сроки ремонта. Среди других его плюсов — способность постоянно обучаться. Нейросеть сама находит ошибки, исправляет и запоминает их, улучшая тем самым свою работу и точность прогноза.

Базой для обучения «цифрового двойника» служит массив исторической информации. Современные установки нефтепереработки также сложны, как и организм человека. Сотни тысяч деталей, десятки тысяч датчиков. Техническая документация для каждой установки занимает помещение размером с актовый зал. Чтобы создать «цифрового двойника», всю эту информацию необходимо для начала загрузить в нейронную сеть. Затем начинается самый сложный этап — этап обучения искусственного интеллекта понимать установку. В него входят показания датчиков и контрольно-измерительных приборов, собранные за последние несколько лет работы установки. Оператор моделирует различные ситуации, заставляет нейронную сеть отвечать на вопрос «что будет, если поменять один из параметров работы?» — например, заменить один из компонентов сырья или увеличить энергоснабжение установки. Нейросеть анализирует опыт прошлых лет и методом вычисления исключает из алгоритма неоптимальные режимы, и учится прогнозировать будущую работу установки.

Лучшее за неделю

«Газпром нефть» уже полностью «оцифровала» два промышленных комплекса, задействованных в производстве автомобильного топлива — установку гидроочистки бензинов каталитического крекинга на Московском нефтеперерабатывающем заводе и установку, работающую на нефтеперерабатывающем заводе компании в Омске. Испытания показали, что искусственный интеллект способен одновременно учитывать огромное количество параметров их «цифровых двойников», принимать решения и оповещать о возможных отклонениях в работе еще до того момента, когда неприятность грозит перерасти в серьезную проблему.

Одновременно с этим «Газпром нефть» тестирует комплексные решения, которые позволят минимизировать влияние человеческого фактора в масштабах целого производства. Подобные проекты сейчас реализуются на битумных заводах компании в Рязани и Казахстане. Удачные решения, найденные опытным путем, впоследствии можно будет масштабировать до уровня больших НПЗ, что в итоге позволит создать эффективную цифровую платформу управления производством.

Николай Легкодимов, руководитель Группы консультирования по перспективным технологиям КПМГ в России и СНГ: «Решения, которые моделируют различные узлы, агрегаты и системы известны и применяются достаточно давно, в том числе и в нефтегазовой индустрии. О качественном скачке можно говорить лишь тогда, когда достигнута достаточная широта охвата этих моделей. Если удастся сочетать эти модели друг с другом, объединить их в целую сложную цепочку, то это, действительно, позволит решать задачи на совершенно новом уровне — в частности, моделировать поведение системы в критических, невыгодных и просто опасных условиях работы. Для тех сфер, где переоснащение и модернизация оборудования обходятся очень дорого, это позволит предварительно апробировать новые компоненты».


Управление эффективностью

В перспективе вся цепочка добавленной стоимости в блоке логистики, переработки и сбыта «Газпром нефти» будет объединена единой технологической платформой на базе искусственного интеллекта. «Мозгом» этого организма станет Центр управления эффективностью, созданный год назад в Санкт-Петербурге. Именно сюда будет стекаться информация от «цифровых двойников», здесь она будет анализироваться и здесь же, на основе полученных данных, будут приниматься управленческие решения.

Уже сегодня, в режиме реального времени более 250 тыс. датчиков и десятки систем транслируют информацию в Центр со всех активов компании, входящих в периметр блока логистики, переработки и сбыта «Газпром нефти». Каждую секунду сюда поступают 180 тыс. сигналов. Человеку только на просмотр этой информации потребовалось бы около недели. Цифровой мозг Центра делает это моментально: в режиме реального времени отслеживает качество продукции и количество нефтепродуктов по всей цепочке — от выхода с НПЗ до конечного потребителя.

Стратегическая же цель Центра в том, чтобы, используя технологии и возможности Индустрии 4.0, радикально повысить эффективность сегмента downstream. То есть не просто управлять процессами — это можно делать и в рамках традиционных систем, а сделать эти процессы наиболее эффективными: за счет прогнозной аналитики и искусственного интеллекта на каждом этапе бизнеса сокращать потери, оптимизировать процессы и предотвращать убытки.


В ближайшее время Центр должен научиться решать несколько ключевых задач, влияющих на эффективность управления бизнесом. В том числе прогнозировать будущее на 60 дней вперед: как поведет себя рынок через два месяца, сколько нефти нужно будет переработать, чтобы удовлетворить спрос на бензин в актуальный момент времени, в каком состоянии будет оборудование, смогут ли установки справиться с предстоящей нагрузкой и нужен ли им ремонт. При этом в ближайшие два года Центр должен выйти на 50%-ную мощность и начать отслеживать, анализировать и прогнозировать количество запасов нефтепродуктов на всех нефтебазах и ТЗК компании; в автоматическом режиме мониторить более 90% параметров производства; анализировать надежность более 40% технологического оборудования и разрабатывать мероприятия, предупреждающие потери нефтепродуктов и снижение их качества.

К 2020 году «Газпром нефть» ставит цель выйти на 100% возможностей Центра управления эффективностью. Среди заявленных показателей — анализ надежности всего оборудования, предупреждение потерь по качеству и количеству продукции, предиктивное управление технологическими отклонениями.

Дарья Козлова, старший консультант VYGON Consulting: «В целом интегрированные решения приносят существенный экономический эффект для отрасли. К примеру, по оценкам Accenture, экономический эффект от цифровизации может составить более 1 трлн $. Поэтому когда речь идёт о крупных вертикально-интегрированных компаниях, то внедрение интегрированных решений весьма оправдано. Но оно и оправдано для небольших компаний, так как повышение эффективности может высвободить им дополнительные средства за счёт снижения затрат, увеличить эффективность управления оборотным капиталом и т. д. ».

Обсудить 0

IBM внедрит в порту Роттердам новейшие облачные технологии и интернет вещей.

В ближайшее время порт Роттердам ожидает новый рекорд: он станет не только самым крупным европейским портом по грузообороту, но и самым умным портом в мире. И в этом ему поможет IBM.

Совместные усилия будут направлены в первую очередь на реализацию системы «подключенного судоходства» (connected shipping), по аналогии с подключенными автомобилями в автопроме. Суда, имеющие доступ к системе, управляются автономно и обмениваются данными для безопасной навигации. По заявлению администрации порта Роттердам, у них в планах прием первых автономных судов уже в 2025 году.

Программа цифровизации рассчитана на несколько лет. В результате 42-километровая территория порта будет организована в единое цифровое пространство при помощи облачных технологий IBM Cloud и интернета вещей IBM IoT, и порт Роттердам сможет по праву называться самым умным портом в мире.

Для построения такой системы будет создан цифровой двойник порта – точная цифровая модель всех операций, которая будет со 100%-ной точностью отражать ресурсы и портовые мощности, передвижения судов, инфраструктуру, погодные, географические и гидрологические условия.

Через порт проходит ежегодно более 140 тысяч судов, в процесс обработки грузов вовлечено множество заинтересованных сторон. Цифровая модель позволит увидеть общую картину, протестировать сценарии работы порта и при помощи централизованной панели управления лучше координировать действия всех участников. Это повысит скорость выполнения портовых операций и объемы обрабатываемых грузов, а также обеспечить соблюдение самых жестких стандартов безопасности. В конечном итоге время нахождения судна в порту сократится в среднем на 1 час . Для портовых операторов это выразится в экономии порядка 80 000 долларов США , а для порта – в увеличении количества принимаемых судов.

В порту будут использоваться технологии обработки данных интернета вещей и дополненного интеллекта (Augmented Intelligence), а также интеллектуальные метеорологические и гидрологические данные, при помощи которых перевозчики смогут определить наиболее благоприятное время для захода в порт Роттердам. А благоприятные навигационные условия позволяют экономить топливо, оптимизируют скорость захода и швартовки и обеспечивают лучшую сохранность груза.

С этой целью причалы и буи будут оснащены «цифровыми дельфинами» – интеллектуальными датчиками, которые обеспечивают поддержку перевалки грузов, фиксируют вакантность или занятость швартовых терминалов, генерируют данные о статусе портовых операций в конкретный момент времени, а также отслеживают условия окружающей среды, прямо или косвенно влияющие на навигацию. Цифровые дельфины будут самообучаемыми, и точность их показаний в режиме реального времени заявлена на уровне 100%. Эти сведения порт планирует передавать пользователям посредством специально разработанного приложения для планирования и контроля операций.

Еще одна инициатива порта Роттердам – создание вспомогательной производственной лаборатории (RAMLAB). Ее цель – снабжение судоверфи качественными промышленными запчастями по требованию. Это первая лаборатория трехмерной печати , ориентированная на порты и морских перевозчиков, способная сократить время ожидания нужной детали с 1,5-2 месяцев до нескольких дней.

Скорость и эффективность – два главных достоинства любого порта, – Пол Смитс

«Скорость и эффективность – два главных достоинства любого порта, – утверждает Пол Смитс, финансовый директор Администрации порта Роттердам. – Именно они привлекают бизнес и позволяют увеличивать грузооборот». Очевидно, что нововведения порта Роттердам напрямую служат достижению этих двух целей.

От редакции сайт: В конце мая в Москве прошел форум Siemens PLM Connection, основными темами которого стали создание цифрового двойника, 3D-печать, Интернет вещей и повышение конкурентоспособности российских изделий.

Отметим, что термин digital twin в русскоязычных публикациях переводится и как «цифровой двойник», и как «цифровой близнец».

Зал с трудом вместил всех желающих

Пять шагов к построению цифрового предприятия

Современные технологии революционным образом меняют подходы к производству изделий. Компании укоряют свои процессы, повышают гибкость работы и эффективность, улучшают качество. В Siemens считают, что для этого недостаточно фокусироваться лишь на одном этапе производства. Необходимо принять во внимание всю цепочку, начиная с разработки продуктов и заканчивая их использованием.

«После того, как вы создадите и оптимизируете эти процессы, их можно интегрировать, подключить своих поставщиков и получить единый целостный подход к построению своего бизнеса. Более того, это даст возможность создать цифровой двойник вашего предприятия, который позволит смоделировать его работу, чтобы заблаговременно выявлять узкие места, например, где образуются излишки или где намечаются задержки, - сказал Жан Лука Сакко, директор по маркетингу Siemens PLM Software в регионе EMEA. – Это звучит, как фантастика, однако уже сейчас вполне осуществимо. Достаточно сделать пять шагов, и цифровой двойник сможет помочь вашей компании».

Первый шаг – разработку изделия, Жан Лука Сакко проиллюстрировал на реальном примере одного из изделий, созданного самой компанией Siemens с максимальным повторным использованием его предыдущих поколений и с учетом последующей проверки без создания физического прототипа всех его свойств, включая нагрев, охлаждение и защиту от электромагнитных воздействий. «Наша особенность – разработка продуктов на основе системного подхода на базе наполненного информацией цифрового двойника изделия, который хранится в среде коллективной работы Teamcenter таким образом, чтобы все участники разработки имели к нему доступ», – сказал он.

Второй шаг – разработка технологии производства, подразумевает моделирование уже не самого изделия, а производственных операций. «С помощью системы Plant Simulation мы моделируем все производственные операции еще до создания рабочего места, чтобы заранее предусмотреть все трудности. Причем это касается не только одного рабочего места, но и всего завода в целом. Это позволит оптимизировать материальные потоки, энергопотребление и моделировать производственные процессы задолго до начала инвестиций в построение цеха», – сказал Жан Лука Сакко и представил пример, показывающий, как с помощью модели можно избежать опасного искривления позвоночника работника в ходе сборки.

Третий шаг – подготовка и запуск производства, связан с использованием еще одного цифрового двойника, на этот раз для техпроцессов и оборудования. По словам Жан Лука Сакко, Siemens – единственная компания в мире, которая может предложить интегрированный компьютерно-инженерный комплекс, позволяющий создать полный цифровой двойник, включающий все дисциплины, такие как механика, электрика и программное обеспечение, чтобы все протестировать до начала производства. Он подчеркнул важность интеграции всех компонентов такого двойника: «Ведь в жизни все взаимосвязано. Мы конструируем изделие, на этой основе разрабатываем процесс, а особенности техпроцесса накладывают требования к разработке изделия».

Четвертый шаг - производство изделия, также реализуется с помощью цифрового двойника. Ведь без него невозможно составить реальный график работы, чтобы, например, определить потери времени и оптимизировать производственные процессы. Традиционно это требовало большого количества бумажных инструкций, что было неэффективно и чревато ошибками, а цифровое моделирование дает возможность создать идеальный набор инструкций для производства и сборки изделия. Жан Лука Сакко объяснил, что такое решение является комплексным, оно охватывает все ресурсы предприятия, такие как люди, материалы, оснастка, станки, и с помощью цифрового двойника позволяет управлять производством. Электронная информация передается оператору в тот момент. когда она ему нужна. На рабочем месте он может использовать технологию расширенной реальности и лучше понять, что ему нужно сделать с поступившим заготовкой и тем самым минимизировать ошибки при сборке. Но даже если ошибки возникнут, сравнение реального изделия с его цифровым двойником позволит их устранить. «Такой подход убирает стены, которые всегда существовали между конструкторами и рабочими, и тем самым дает возможность значительно повысить качество продукции», - сказал Жан Лука Сакко.

Пятый этап – обслуживание, станет более эффективным, если воспользоваться решением, позволяющим собирать и анализировать информацию, которую генерирует изделие в ходе своей эксплуатации.

Для реализации этих пяти шагов Siemens предлагает комплект Digital Enterprise Software Suite, включающий системы Teamcenter, NX, Tecnomatix и другие, в котором учтены процессы производственных цепочек для разных отраслей. По словам Жан Лука Сакко, это решение показывает состояние продукта на всех этапах - от возникновения начальной идеи до использования потребителем, и все это в единой среде. При этом на каждом этапе люди пользуются наработками своих коллег, получая пользу за счет того, что имеют данные не только о текущем этапе, но и обо всех предшествующих и последующих.

Российские реалии

Такой передовой подход пригодится и российским компаниям, так как они находятся в том же тренде развития, что и вся мировая промышленность. «У нас те же самые проблемы, что и везде - нарастание сложности изделий. Это характерно не только для авиации и автопрома, но для всего машиностроения, – сказал Виктор Беспалов, вице-президент, генеральный менеджер Siemens PLM Software в РФ и СНГ. – К тому же появляются новые бизнес-модели, связанные с распространением передовых технологий, таких как Интернет вещей, аддитивное производство, человеко-машинные интерфейсы, большие данные».

Несмотря на все трудности, наши компании создают сложные инновационные продукты, решая задачи, которые раньше не решались. В качестве примера Виктор Беспалов привел несколько разработок. Так, при создании нового транспортного самолета Ил-76, был построен цифровой макет и реализовано единое информационное пространство, охватывающее головную организацию – КБ им. Илюшина, и поставщиков.

При разработке нового тягача КамАЗ-5490 было проведено моделирование практически всех процессов сборки до начала производства, что соответствует концепции Siemens, а при создании нового двигателя ПД-14, который сейчас проходит испытания, был разработан его полный цифровой макет, применяемый не только на производстве, но в технологических службах.

При этом, подчеркнул Виктор Беспалов, российским предприятиям приходится решать немало проблем. Так, в связи с усложнением изделий перестают работать традиционные методы декомпозиции изделий. Поэтому на самых ранних этапах надо заниматься управлением требованиями и соблюдением сертификационных норм.

Внесение изменений на этапе разработки и на следующих этапах остается непростой задачей. Здесь помогает использование цифрового моделирования и различных методов расчета, тем не менее комплексность этой задачи говорит о том, что еще есть над чем работать. Существуют проблемы управления ресурсами, связанные с взаимодействием между PLM и ERP.

Виктор Беспалов: «Несмотря на все сложности, большинство наших российских заказчиков
планирует расширить использование продуктов Siemens PLM Software».

Есть и национальные проблемы. Наши компании работают не только локально, они выходят на глобальные рынки, так как иначе невозможно. Виктор Беспалов привел данные, полученные от одного российского авиахолднига и его зарубежных конкурентов, которые показывают, что наша компания тратит почти вдвое больше времени на доводку производства, чем они. По его мнению, это тревожный сигнал, говорящий о том, что западные компании гораздо быстрее выводят продукцию на рынок, и российским производителям необходимо постараться снизить эти потери.

Для этого наши компании должны использовать технологии, которые делают их конкурентоспособными. В связи с этим Виктор Беспалов считает, что нужно внимательно относиться к выбору технологий: «Я категорически не согласен с заявлениями некоторых российских разработчиков, появившимися в последнее время в связи с политикой импортозамещения, в которых делает упор на то, что российские PLM-системы на 80% удовлетворяют требования наших предприятий. А что делать с остальными 20%? Как наши отечественные компании смогут конкурировать в такой ситуации? Как бороться с глобальными игроками, которые уже оснащены современными технологиями?».

В качестве ответа на эти риторические вопросы Виктор Беспалов привел результаты опроса российских заказчиков, которые показывают. что несмотря на все сложности, большинство из них планируют расширить использование продуктов Siemens PLM Software.

Видимо в этом не последнюю роль при этом играет внимание, которое российский офис проявляет к требованиям заказчиков. Причем, сегодня речь уже идет не об оформлении чертежей, а о функциональных требованиях. На прошлой конференции упоминался учет требований ОКБ им. Сухого и АНТК им. Антонова в системе NX CAD.

Эта работа продолжается для других продуктов, в частности усилена интеграция системы ЧПУ Sinumetrik и NX CAM для объединения реального и виртуального миров, улучшена интеграция NX и Fibersim для авиационных программ, адаптирована система Product Cost Management к российским методологиям расчета стоимости, интегрированы системы Teamcenter и Test.Lab для сквозного процесса верификации требований.

Эта тема волнует российских пользователей. Так Майклу Ребруху, директору по разработке NX, была задан из зала вопрос о том, как можно донести до разработчиков NX свои проблемы и повлиять на разработку. На что он ответил, что компания продолжает сотрудничать с заказчиками в России, прислушиваясь к пожеланиям и их учитывая: «Нам важно понимать, как они работают, где испытывает сложности и тогда мы постараемся помочь». Со своей стороны Виктор Беспалов обещал, что сразу после форума продолжится работа с заказчиками над определениями требований и созданием плана их удовлетворения в следующих версиях продуктов.

Внимание уделяется и теме создания прототипа стандартного решения. «PLM - не дешевая технология, поэтому заказчики заинтересованы в быстром получении отдачи. В связи с этим в течение последних четырех лет наши усилия были сосредоточены на сокращении сроков внедрения», - сказал Виктор Беспалов.

Уже созданы специальные преднастроенные модели данных, шаблоны NX для поддержки ЕСХД, шаблоны для процессов управления изменениями, библиотеки по стандартным деталям, материалам, технологическим ресурсам и т.д., разработана методика быстрого запуска в эксплуатацию. По оценкам Siemens и данным от пилотных проектов, сроки внедрения удается сократить вдвое благодаря тому, что почти 80% работ охвачены стандартным решением, и лишь 20-30% приходится на учет специфики заказчика.

Кроме того, в ходе реализации индустриального подхода, объявленного несколько лет назад, Siemens продвигает в России набор отраслевых преднастроенных решений Catalyst, который включает лучшие практики и базовые процессы для разных отраслей, таких как кораблестроение, автомобилестроение, машиностроение, электроника, энергетика и т.д. По словам Виктора Беспалова, эти решения позволяют внедрить новые решения в существующие процессы таким образом, чтобы сократить разрыв между передовыми технологиями и тем, что реально использует предприятие.

Выступления российских заказчиков показали, каким образом у нас реализуются перечисленные технологии Siemens. Так, Василий Скворчук, начальник департамента ИТ ООО «Уральские локомотивы», рассказал о том, что при запуске нового производства электропоездов «Ласточка» было решено создать на предприятии комплексную систему автоматизации, включающую Teamcenter, NX CAD/CAM/CAE от Siemens, российско-белорусскую ERP-систему Омега (российско-белорусская) и «1C:Управление производственным предприятием».

Василий Скворчук: «Сейчас в интегрированной корпоративной системе работает порядка 1100 человек»

ООО «Уральские локомотивы» - совместное предприятия с Siemens, было создано в 2010 г. «С этого момента на нашем заводе началось бурное развитие информационных технологий», - сказал Василий Скворчук и добавил, что сейчас в интегрированной корпоративной системе работает порядка 1100 человек, а руководство может наблюдать за ходом работы на панели руководителя, на которую поступает вся основная информация. Благодаря этой систем все подразделения имеют доступ к единому источнику актуальной информации, необходимой для выпуска высококачественного оборудования для «Ласточки».

В планах предприятия – применение трехмерных электронного макета изделия для деталей, обрабатываемых на станке с ЧПУ. Уже проведен пилотный проект.

Переход на электронный макет изделия идет и на Улан-Удэнском авиационном заводе, который разрабатывает и производит вертолеты Ми-8. ИТ-директор завода Максим Лобанов рассказал о двух проектах по организации цифрового процесса технологической подготовки производства по подлиннику конструкторской документации в виде электронного макета.

Сначала для новой модели вертолета был реализован проект «Концевая балка», в ходе которого была создана оснастка и сама балка, а затем проект «Грузовой пол», изготовленный полностью по безбумажной технологии. В рамках этого проекта был отработан процесс сборки оснастки, что позволило повысить точность сборки и сократить сроки.

По словам Максима Лобанова, в связи с переходом на безбумажные технологии появилась необходимость интеграции PLM-системы Teamcenter с применяемой на заводе системой планирования, а также создания современной информационной системы для доведение цифрового макета до каждого рабочего места.

Зарубежные примеры

С точки зрения глобальной конкуренции интересно посмотреть, как развивается переход на цифровые технологии на зарубежных предприятиях. Например, компания Konecranes, занятая производством и обслуживанием кранов и другого подъемного оборудования, начала путь по гармонизации подхода к цифровизации в 2008 г.

«Производство и обслуживание - интересная комбинация, чтобы получать максимальный эффект, нужно эти элементы свести воедино. У нас на обслуживании около полумиллиона единиц оборудования и здесь очень важна цифровизация», – объяснил Матти Лето, директор по Product & Engineering Process компании Konecranes.

По его словам, сначала было выполнено определение процессов, а потом начался поиск решения для обеспечения этих процессов таким образом, чтобы системы продолжали работать и в будущем в течение многих лет. Был составлен список платформ, включая ERP, CRM и т.д, но самой важной с точки зрения долгосрочной устойчивости компания считает систему PLM, так как в нее закладывается информация о продукции. Выбор пал на Teamcenter.

На данный момент часть систем внедрены, остальные внедряются. А Konecranes тем временем переходит на следующий уровень цифровизации за счет применения технологии Интернета вещей для автоматизации обслуживания оборудования и оптимизации других процессов. Для этого создан портал, предназначенный для обмена информацией между компанией, партнерами и заказчиками.

Проект Интернета вещей в Konecranes успешно стартовал. К сети подключено более 10 тыс. единиц оборудования. «PLM-система существенно повышает ценность Интернета вещей, т.к. данные об изделии вместе с данными мониторинга оборудования позволяют быстро принимать обоснованные решения, – поделился опытом Матти Лето. - Мы считаем, что Интернет вещей - это новая модель для бизнеса, за которой будущее».

Цифровой двойник как основа будущего производства

Происходящая сейчас промышленная революция трансформирует бизнес, ставит непростые задачи перед предприятиями. Меняются процессы разработки, например, за счет применения краудсорсинга и систем-ориентированного подхода к проектированию, а в области производства перемены происходят за счет применения аддитивного производства, современных робототехнических систем и интеллектуальных средств автоматизации.

«Создание цифрового двойника для управления жизненным циклом всей системы производства позволяет предприятиям выйти на новый уровень инноваций», – заявил Роберт Мешел, старший директор Siemens PLM Software по стратегии Manufacturing Engineering Software, и рассказал, что действуя в этом направлении, компания развивается направления производственного инжиниринга и цифрового производства. «Несколько новинок, над которыми мы сейчас работаем, позволяют устранить разрыв между проектированием и производством», - сказал Роберт Мешел.

Кроме того, все более активно используются роботы, которые сейчас стали гораздо более гибкими, чем раньше. 3D-печать, которая еще недавно считалась пригодной только для прототипирования, начинает применяться в реальном производстве. В качестве доказательства Роберт Мешел привел конкретные примеры из отраслей авиационно-космической, судостроения, машиностроения и автомобилестроения, которые показывают что это дает радикальное ускорение: «Мы обновляем свои продукты, чтобы предоставить заказчикам возможность использовать эту технологию».

Еще одной многообещающим передовым подходом является виртуальная пуско-наладка с использованием интегрированного программно-аппаратных комплекса. По мнению Роберта Мешела, все это указывает на то, что основу будущего производства составит моделирование реальности, а важной предпосылкой для этого является цифровой двойник - модель с высокой степенью детализации.

Немаловажно и то что использование цифрового двойника позволяет интегрировать расчеты и натурные испытания, а также модели и данные. По словам Вутера Дехандшуттера, технического директора по продукту, Siemens PLM Software, здесь задача состоит в том, чтобы максимально использовать информацию, создаваемую на разных этапах и увязывать ее между собой, но сейчас есть ряд этапов, на которых инженерная информация производится изолировано.

Вутер Дехандшуттер: «Использование цифрового двойника позволяет интегрировать расчеты и натурные испытания»

Он показал, что эту проблему можно решить с помощью цифрового двойника, анализируя продукт на самых ранних этапах посредством виртуальных испытаний, управляя этим двойником и повышая уровень его детализации и точности, чтобы на натурных испытаниях сосредоточиться именно на удовлетворении требований, а не на поиске решений.

В качестве примера Вутер Дехандшуттер привел корпорацию «Иркут», которая применила такой подход при проектировании самолета МС-21, использовав для расчета поведения системы продукты LMS Imagin.Lab и LMS Amesim. При этом моделировались не только отдельные части, но общее взаимодействие систем, что позволило еще на этапе проектирования проверять, как поведет себя целый самолет и, по данным «Иркут» в пять раз сократить создание самых сложных моделей по сравнению с применявшимся раньше решением.

Что нового в NX 11

Продвигая концепцию цифрового двойника, Siemens не забывает о своих базовых продуктах. Майкл Ребрух, директор по разработке NX, Siemens PLM Software, представил некоторые новинки, которые появятся в августе в версии NX 11, и в ноябре в NX 11.01.

Впрочем, одна новинка уже доступна. Это бесплатное мобильное приложение Catchbook, предназначенное для разработки. «Рисуя от руки эскиз на планшете, результат которого конвертируется в геометрию, мы можем добавлять размеры и управлять позиционированием эскизов. Также можно сделать фотографию с помощью мобильника и посредством этой системы исследовать возможности данного проекта», – объяснил Майкл Ребрух.

Майкл Ребрух рассказывает о новинках версии NX 11

Вместе с NX 11 выйдет новый продукт Converging Model, который позволяет в одной модели комбинировать точную геометрию и клеточное представление на основе граней. По словам Майкла Ребруха, клиенты, которые уже с ним познакомились, говорят, он изменил подход к работе, так эту модель можно использовать при проектировании, проведении испытаний и использовании новых методов, таких как 3D-печать и гибридное производство.

В состав NX 11 также войдет новое решение Lightworks Iray+ на базе технологии Iray компании Nvidia, которое предназначено для построения фотореалистичных изображений и включает библиотеку материалов и сцен.

Кроме того, в NX 11 появится возможность сканировать и загружать в систему огромные облака точек и взаимодействовать с ними так же как в реальном мире, чтобы выполнять проектирование в контексте физического окружения.

В NX 11.01 будет реализована новая технология оптимизации топологии, предназначенная для создания поверхностей сложной формы, оптимизации формы, массы, используемых материалов, размеров и топологии конструкций с сохранением функционирования детали. Предполагается, что это позволит улучшить взаимодействие с аддитивным производством. -->