Что такое разрядник. Разрядник вентильный: основные характеристики, типы, принцип действия. Принцип работы разрядника

Разрядники являются защитными аппаратами. Они предназначены для защиты изоляции электрооборудования от перенапряжений. В распределительных устройствах электроустановок применяются вентильные разрядники, на линиях электропередачи - трубчатые.
Вентильные разрядники состоят из искровых промежутков, включенных последовательно с рабочим резистором, имеющим нелинейную вольт-амперную характеристику. В некоторых разрядниках параллельно искровым промежуткам присоединяют шунтирующие резисторы для равномерного распределения напряжения между ними.
В условных обозначениях разрядников буквы означают: Р - разрядник; В - вентильный, П - подстанционный (поляризованный для разрядников постоянного тока); С - станционный; М - с магнитным дутьем; О - облегченной конструкции; У - униполярный; К - для ограничения коммутационных перенапряжений. Цифры, следующие за буквами в обозначении, означают напряжения разрядника.
Разрядники характеризуются рядом параметров.
Класс напряжения разрядника - номинальное значение напряжения сети, для работы в которой разрядник предназначен.
Наибольшее допустимое напряжение разрядника - эффективное значение наибольшего гарантированного заводом-изготовителем напряжения, при котором разрядник надежно гасит дугу.
Пробивное напряжение разрядника- наибольшая величина плавно нарастающего напряжения в момент пробоя разрядника.
Импульсное пробивное напряжение разрядника - наибольшая величина импульсного напряжения в момент пробоя разрядника при заданном значении предразрядного времени. Предразрядное время - время от начала нарастания импульсного напряжения до момента пробоя разрядника.
Номинальный разрядный ток разрядника - амплитудное значение импульсного тока, который проходит через разрядник после его пробоя.
Ток проводимости разрядника, искровые промежутки которого шунтированы резисторами, - ток, проходящий через разрядник при приложении к нему напряжения постоянного тока заданной величины. У разрядников, не имеющих шунтирующих резисторов, измеряемый при этом ток называется током утечки.
Вентильные разрядники переменного тока служат основным средством ограничения перенапряжений и защиты от них.
Разрядник РВП-6 показан на рис. 1. Он состоит из многократных искровых промежутков 12 и последовательно включенных нелинейных вилитовых резисторов б, размещенных в фарфоровом корпусе 7 и сжатых спиральной пружиной 3. Блок многократных искровых промежутков включает несколько последовательно соединенных единичных искровых промежутков, помещенных в бумажно-бакслитовый цилиндр 4. Единичный искровой промежуток состоит из двух фигурных латунных электродов, приклеенных к изоляционной меканитовой или электрокартонной прокладке. Нелинейный последовательный резистор набирается из вилитовых (вилит-запеченная смесь карборунда с жидким стеклом), обладающих вентильными свойствами, то есть сопротивление карборунда изменяется в зависимости от приложенного к нему напряжения: чем выше приложенное напряжение, тем ниже его сопротивление, и наоборот. Количество искровых промежутков в блоке и вилитовых дисков в колонке зависит от величины номинального напряжения разрядника. Плоскости, которыми соприкасаются диски, для лучшего контакта металлизируют алюминием, а боковые поверхности вилитовых дисков для преграждения пути токам утечки покрывают изолирующей обмазкой. Для предотвращения смещения вилитовых дисков ставятся фетровые или войлочные прокладки 5. Вилит невлагостоек и при отсыревании его вентильные свойства ухудшаются. Поэтому разрядник герметизируется уплотнением 2 из озоностойкой резины и закрывается сверху металлическим колпаком 13. К несущей конструкции разрядник присоединяется хомутом 11, к токоведущим проводам - болтом 1, а к заземлению - шпилькой 9. Таким образом, разрядник включается между фазой электроустановки и контуром заземления параллельно защищаемой изоляции.

Рис. 1. Разрядник типа РВП-6
В нормальном режиме работы искровые промежутки обеспечивают изоляцию между фазой и землей. Как только возникает перенапряжение, опасное для изоляции электроустановки, происходит пробой искровых промежутков, в результате чего сеть оказывается соединена с землей через вилитовые диски. В это момент к вилитовым дискам прикладывается максимальное напряжение, поэтому сопротивление их будет наименьшим, а ток замыкания на землю - наибольшим. В результате разряда на землю напряжение в сети снижается, а сопротивление вилитовых дисков возрастает. Дуга переменного тока при прохождении через нуль гаснет, а затем вновь восстанавливается. Когда напряжение, приложенное к разряднику, оказывается недостаточным для поддержания дуги на искровых промежутках, при первом же прохождении тока через нуль его протекание через разрядник прекращается.
Модернизированный разрядник РВП с уменьшенным диаметром искровых промежутков и вилитовых дисков со сниженными габаритами и массой выпускается под наименованием РВО (разрядник вентильный облегченной конструкции).


2. Разрядник типа РВС
Вентильный разрядник РВС (разрядник вентильный станционный) выпускается в виде пяти стандартных элементов: РВС-15, РВС-20, РВС-30, РВС-33 и РВС-35. Из этих элементов комплектуют разрядники на напряжение до 220 кВ. Их устанавливают один на другой и соединяют последовательно. На рис. 2 показан элемент РВС, состоящий из фарфорового кожуха 1, внутри которого находятся вилитовые диски 2 и комплекты искровых промежутков 4, состоящие из нескольких единичных искровых промежутков 3. Каждый комплект заключен в фарфоровый цилиндр 5. Все искровые промежутки и вилитовые диски сжаты спиральными пружинами 6. Фарфоровый кожух закрыт с торцевых сторон крышками, под которыми проложена уплотняющая резина 7. Фарфоровый кожух армирован фланцами 8, которые служат для крепления разрядника к опорной конструкции, а также для присоединения к шинам или проводам. Комплекты искровых промежутков шунтируются подковообразными резисторами 9, предназначенными для равномерного распределения напряжения между ними.
На рис. 3 показан комплект искровых промежутков, состоящий из четырех единичных искровых промежутков. Каждый единичный искровой промежуток включает в себя два фигурных латунных электрода 4, разделенных миканитовой прокладкой. Искровые промежутки размещаются в фарфоровом цилиндре 3, закрытом сверху и снизу латунными крышками 1. К последним присоединяются подковообразные шунтирующие резисторы 2, изготовленные на основе карбоцида.

Рис. 3. Комплект искровых промежутков разрядника

Рис. 4. Блок искровых промежутков разрядника типа РВМ
На напряжение 35-500 кВ нашли применение разрядники магнитовентильные типа РВМ. Они отличаются от других типов разрядников наличием блоков магнитных искровых промежутков (рис. 4). Такие стандартные блоки искровых промежутков, дополненные дисковыми вилитовыми резисторами изготовляются на напряжение 35 кВ. Блок магнитных искровых промежутков состоит из набора единичных искровых промежутков 2, разделенных между собой кольцевыми магнитами 3. Единичный искровой промежуток составляется из двух концентрически расположенных медных электродов 6 и 8, между которыми образуется кольцевая щель 7. Возникающая в щели дуга вращается под действием постоянных магнитов с большой скоростью, что способствует ее быстрому гашению Набор из постоянных магнитов и единичных искровых промежутков помещается внутри фарфоровой покрышки 1, закрытой стальными крышками 5. Магниты и медные электроды плотно сжимаются стальной пружиной 4.

Разрядники – используются для ограничения возникающих перенапряжений с целью облегчения изоляции оборудования. Возникающие перенапряжения делят на две группы: внутренние (коммутационные) и атмосферные.

Первые возникают при коммутации электрических цепей (катушек индуктивностей, конденсаторов, длинных линий) дуговых замыканиях на землю и других процессах. Вторые возникают при воздействии атмосфер-ного электричества. Зависимость максимального напряжения импульса от времени разряда называется вольт-секундной характеристикой. Основным элементом разрядника является искровой промежуток. Вольт-секундная ха-

рактеристика этого промежутка (кривая 1 на рис.) должна лежать ниже вольт-секундной характеристики защищаемого оборудования (кривая 2). При появлении перенапряжения промежуток должен пробиться раньше, чем изоляция защищаемого оборудования. После пробоя линия заземляется через сопротивление разрядника. При этом напряжение на линии определяется током I, проходящим через разрядник,сопротивлениями разрядника и заземления. Чем меньше эти сопротивления, тем эффективнее ограничиваются перенапряжения, т. е. больше разница между возможным (кривая 4) и ограниченным разрядником перенапряжением (кривая 3). Напряжение на разряднике при протекании импульса тока данного значения и формы называется остающимся напряжением. Чем меньше это напряжение, темлучше качество разрядника.

Трубчатый разрядник – это искровой промежуток дополненный устройством принудитльного гашения дуги, в виде трубки из газогенерирующего материала (фибры, винипласта), т.е. отключение дуги сопровождающего тока к.з производится из-за интенсивного газовыделения трубкой при повышенной t горения.

1-трубка, 2-электрод стержневой, 3- электрод в виде кольца, 4-заземлённый электрод, где имеется буферный обьём5, где накапливается потенциальная энергия сжатого газа. При проходе тока через нуль создается газовое дутье из буферного объема, что способствует эффективному гашению дуги. S 1 , S 2 – искровые промежутки. Спецефическим недостатком ТР является наличие зоны выхлопа, опасной для оборудования и обслужи-вающего персонала. В ТР промежуток образован стержневыми электродами, имеющими крутую вольт-секундную характеристику из-за большой неодно-родности электрического поля. В связи с этим ТР примен: для защ подходов к п/ст; защ маломощ оборуд п/ст 3-10 кВ; защ контакт сети перемен тока.

Вентильные разрядники. Основн элементами явл вилитовые кольца, искровые промежутки и рабочие резисторы. Эти элементы расположены внутри фарфорового кожуха, который с торцов имеет специальные фланцы для крепления и присоединения разрядника. Кожух разрядника герметизируется по торцам с помощью пластин и уплотнительных резиновых прокладок. При появлении переU пробиваются последовательно включенные блоки искровых промежутков. Импульс тока при этом через рабочие резисторы замыкается на землю. Возникший сопровождающий ток ограничивается рабочими резисторами, которые создают условия для гашения дуги сопровождающего тока. R этих резисторов велико при Uраб и резко снижается при ­U. В качестве материала нелинейных резисторов используется вилит с коэффиц нелинейности 0,1-0,2. Рабочие резисторы изгот в виде дисков. Единичные искровые промежутки соедин последоват для улучшен условий гашения дуги. Форма электродов обеспечивает равномерное электрическое поле, что позволяет получить пологую вольт-секундную характеристику. Возникновение заряда в закрытом объеме разрядника при малой длительности импульса тока затруднено. Для облегчения ионизации искрового промежутка между электродами помещается миканитовая прокладка.


ОПН – в них используются резисторы с большой нелинейгостью (0.04) на основе оксида цинка (на 110-500 кВ). Эти резисторы позволяют ограничивать комутац переU на уровне на уровне (1,65-1,8)Uф, а грозовые на уровне (2,2-2,4)Uф. Конструкция ОПН выполняется последовательным или паралель набором дисков сопротивлений, причём при Uраб ч/з одну парал колонку резисторов протек ток в n*0.01 mA, т.е. отпадает необходимость в искровом промежутке. Сопровождающий ток, протекающий после срабатывания аппарата, невелик (миллиамперы), так же как и невелика мощность, выделяемая в резисторах. Это позволяет отказаться от последовательного включения нескольких искровых промежутков и дает возможность присоединять ОПН непосредственно к защищаемому оборудованию, что значительно повышает надежность работы.

Во время переключений или под воздействием грозовых разрядов в электротехническом оборудовании и линиях электропередачи могут возникать импульсы высокого напряжения, в несколько раз превышающие номинальное значение. Поскольку изоляция не рассчитана на такое напряжение, может произойти её пробой, сопровождающийся аварией. Чтобы предотвратить её, применяются электрические устройства (разрядники), защищающие от импульсов перенапряжения.

Устройство разрядника и принцип действия

В любом разряднике есть электроды , расстояние между которыми называется искровым промежутком и устройство гашения дуги. Один электрод подключается к защищаемому оборудованию, а другой заземляется. При увеличении напряжения выше величины, определяемой размером промежутка между электродами, он пробивается, и импульс перенапряжения отводится через заземление.

Основным параметром ограничителей является гарантированная электрическая прочность при номинальном напряжении. Сие означает, что устройство, ни при каких условиях не сработает в штатной ситуации. В момент прохождения импульса включается устройство гашения электрической дуги. Оно должно быстро (в течение полупериода) устранить короткое замыкание, образованное дугой, чтобы не успели сработать устройства защиты от перегрузки.

Каталог производимых устройств позволяет сделать выбор разрядников наиболее полно отвечающим предъявляемым требованиям и предпочтительных по цене.

Воздушные (трубчатые) разрядники изготовляются в виде трубок из полимера, который при нагреве может выделять большое количество газа. На концах трубки закреплены электроды, расстояние между которыми определяет величину напряжения срабатывания. Во время пробоя материал трубки начинает выделять газ, который выходя через отверстие в корпусе, создаёт дутьё, гасящее электрическую дугу. Напряжение срабатывания превышает 1 кВ.

Газовые разновидности конструктивно аналогичны предыдущим моделям. Пробой осуществляется в герметичной трубке из керамики, содержащей инертный газ. Ионизация газа обеспечивает более быстрое срабатывание, а его давление надёжное гашение дуги. Порог срабатывания может быть от 60 вольт до 5 кВ. Для индикации превышения напряжения часто используется неоновая лампочка.

Вентильные устройства состоят из нескольких искровых промежутков, соединяемых последовательно, и сопротивления, составленного из вилитовых дисков (рабочий резистор). Между собой они соединяются последовательно. Поскольку характеристики вилита зависят от влажности, его помещают в герметичную оболочку.

Во время пробоя задачей резистора является понижение тока короткого замыкания до величины, успешно гасимой искровыми промежутками. Так как величина сопротивления вилита нелинейная ― она тем меньше, чем больше ток, то это даёт возможность пропускать значительный ток при малом падении напряжения. К преимуществам данных приборов нужно отнести срабатывание без шумовых и световых эффектов. Эти разрядники википедия характеризует устаревшими и уже не производящимися.

Магнитовентильные модификации собираются из ряда блоков, снабжённых магнитными искровыми промежутками, и равным им количеством дисков из вилита. Единичный блок состоит из ряда последовательно соединённых искровых промежутков и постоянного магнита, помещённых в корпус из фарфора. В момент пробоя возникшая дуга под воздействием магнитного поля образуемого кольцевым магнитом приобретает вращение, поэтому гасится быстрее, чем в вентильных устройствах.

В длинно-искровых устройствах используется явление скользящего разряда, обеспечивающего значительную протяжённость пути импульса по наружной стороне разрядного элемента. По длине разрядный элемент значительно превышает изолятор электролинии, но электрическая прочность его меньше, поэтому возможность возникновение дуги равна нулю. Этот вид используется на 3-ёхфазных линиях электропередачи. Они могут работать при температуре от — 60° C до + 50° C 30 лет.

В ограничителях перенапряжения нелинейных искровые промежутки отсутствуют. Вместо них используются последовательно соединённые окисно-цинковые варисторы . Их сопротивление тем меньше, чем больше сила тока, поэтому отведение импульса перенапряжения происходит очень быстро с моментальным возвратом в исходное положение. Для пропуска больших токов допускается параллельная установка нескольких ограничителей одной марки. Ограничитель устанавливается на весь срок службы защищаемого объекта.

Выбор разрядников

Прежде всего, нужно определиться с классом прибора:

В соответствии с указанным ранжиром создаются схемы селективной защиты. Самой популярной является схема B ― C , которая надёжно защищает от перенапряжения 1,5 ― 2,5 кВ. Для защиты дорогостоящей электронной аппаратуры сооружается защита от A до D включительно.

Выбор по параметрам

Выбирать конкретное защитное устройство , работающее на разрядниках или варисторах, нужно по следующим параметрам:

Остальные значения, указанные в техническом паспорте нужны для проведения испытаний и наладки систем защиты на промышленных предприятиях. Поскольку создание системы защиты от перенапряжения дело ответственное, то если нет опыта лучше монтаж разрядников и заземления поручить специалистам.

Даже представить страшно загородную собственность без электроприборов. Пусть и в ночном кошмаре не снятся лучина или коромысло с корытом. Да здравствуют стиральные машины, насосы, светильники, водонагреватели и еще масса полезных изобретений, участвующих в формировании цивилизованных условий! Однако для стабильной работы оборудования оды слагать недостаточно. Нужно позаботиться о том, чтобы трудолюбивые «железные помощники» получали питание требующихся им параметров, а способ доставки энергии был надежным и предельно безопасным. Вот для этого и нужен ограничитель перенапряжения – компактный потомок устаревших разрядников.

Служебные обязанности старых и новых разрядников

Теплую симпатию Тютчева к майским грозам вряд ли смогут разделить владельцы электрооборудования. Угодивший в воздушную электролинию меткий грозовой разряд создаст в ней перенапряжение, значение которого достигает порой десятков кВ. Даже если дело не дойдет до десятков, а обойдется единицами, приборам может быть нанесен серьезный ущерб. Ведь преобладающее количество бытовых агрегатов с электронной начинкой устойчиво лишь к 1,5 кВ.

Молниеносно разбегаясь по проводке крутые волны перенапряжения способны вызвать пробой, могут перегреть изоляцию до стадии возгорания. И вовсе необязательно, чтобы разрушительная грозовая «стрела» попала в сеть рядом со строением. За пару микросекунд она преодолевает километровые расстояния. От предсказуемых последствий жильцов многоэтажек обязаны защитить электрики управляющей организации. А вот частники смогут предъявить претензии только Илье Громовержцу.

Это не единственная причина, с целью исключения которой нужна защита от перенапряжения. Аналогичную угрозу представляют:

  • коммутационные скачки, возникающие на подстанции вследствие отключающих/подключающих манипуляций с мощными потребителями;
  • броски перенапряжения, распространяемые другим оборудованием;
  • электростатические разряды, которые периодически появляются между работающими рядом устройствами.

Для того чтобы все перечисленные обстоятельства не влияли ни на работу электротехники, ни на целостность ее изоляции, были изобретены разрядники.

Функция разрядников заключалась в поглощении излишков энергии с последующим сбросом их вместе с выделившимся теплом в почву через . В списке компонентов разрядника значатся только два электрода и дугогасительный элемент. Один из электродов крепился к защищаемому объекту, второй к заземляющему контуру. Т.е. одной «рукой» разрядник ловил перенапряжение, второй – выводил его за пределы. Дугогаситель снимал возникшую в это время ионизацию, чтобы вернуть разрядник в обычное рабочее русло.

Между электродами разрядника нужно было установить четкое расстояние, именуемое искровым промежутком. Чем больше был данный интервал, тем мощнее действовала разрядная система. В результате сооружалось нечто весьма громоздкое и не всегда эффективное, потому что устройство могло внезапно ограничить поток, не успев вернуться в нормальный рабочий режим перед очередным всплеском. Потом были эпопеи с внедрением вентильных, воздушных, газовых и других типов разрядников. Каждый из них мог похвастаться технологическими плюсами, но не был полностью избавлен от недостатков.

Меньше всего технологических минусов у нового поколения разрядников – ограничителей. Ранее они были представлены блокированными устройствами, которые после повреждения приходилось полностью менять. Теперь их выпускают в модульных вариантах, невероятно удобных для защиты электропроводки загородной частной собственности.

Конструкция и специфика модульных ограничителей

Ограничители, применяемые для гашения импульсного перенапряжения, представляют собой компактные аппараты со сменными модульными элементами. Устанавливают приборы в главных и второстепенных распределительных щитках.

Обратите внимание. Использование ограничителей будет иметь смысл только при наличии системы заземления, которая требуется для вывода тепловой энергии от погашенной электромагнитной дуги.

Главный рабочий орган ограничителя – варистор. Это реостат, набранный из плотно состыкованных варисторных таблеток. Делают таблетки из смеси оксида цинка с оксидами висмута, кобальта и других металлов. Преимущество данного органа заключается в нелинейном вольт-амперном «поведении». Т.е. сопротивление устройства уменьшается с увеличением силы тока, благодаря чему:

  • прибор свободно пропускает сверхтоки и компактно гасит их без длиннющего искрового промежутка;
  • срабатывает в предельно краткий срок;
  • почти моментально возвращается к исходному изоляционному состоянию в полной готовности «принять на грудь» очередной импульсный поток.

Варистор расположен в модульной вставке, которую после выхода из строя функциональной начинки можно без мельчайших проблем заменить. Модульные устройства выпускают в широком диапазоне пропускной токовой способности, т.к. ограничители призваны осуществлятьзащиту от разных по мощности скачков напряжения.

Обратите внимание, что в случае применения комплектных ограничителей от одного производителя (например, с маркой ETITEC) допустима их параллельная установка, если требуется увеличить токовую способность. Однако желательно изначально подбирать аппарат с требующимися характеристиками.

Ограничитель в сеть устанавливается навечно. Точнее, на весь срок службы защищаемого им участка проводки. Периодически менять нужно будет лишь сменную вставку, габариты которой рассчитаны на возможность подключения только к прибору с конкретной пропускной токовой способностью. Короче, вставка с иными токовыми характеристиками банально не влезет в «гнездо».

Работа и сигнализация о повреждении

Пока по токоведущим жилам проводки течет ток стандартного рабочего значения, варисторный ограничитель безоговорочно пропускает поток. Напряжение на клеммах его главного рабочего органа равнозначно напряжению в сети. Как только клеммы прибора зафиксируют аномалию, аппарат в считанные наносекунды приступает к обязанностям. А если возникнет напряжение, равное по значению напряжению воспламенения прибора, работу ограничителя прервет термический предохранитель.

По задумке разработчиков «жизненный цикл» ограничителей равен 200 тысячам часов. Однако сократить его могут всплески перенапряжения, значение которых ощутимо превышает номинальные величины. Они способны повредить варисторный орган и сжечь предохранитель, в результате чего устройствопросто вообще не сможет осуществлять защиту от перенапряжения. Естественно, «на ощупь» получить информацию о выходе прибора из строя невозможно. Для этого в сменном модуле заботливые производители предусмотрели сигнальный элемент – контрольное окошко.

Визуальная сигнализация зависит от предпочтений изготовителя. Это может быть затемнение контрольного окна или обнаруженный там же яркий красный свет, как у продукции ETITEC. Кстати в ассортименте упомянутой фирмы есть ограничители со звуковым оповещением. В инструкциях обычно подробно описано, по каким признакам нужно определять предстоящую замену вкладыша.

Обратите внимание, что модульность ограничителей в приоритете не только из-за оперативной замены поврежденного элемента, но и из-за возможности получить верные показания при контрольном измерении сопротивления проводки. Достаточно удалить вкладыши из модульных ограничителей, и на исследуемые значения ничто не будет влиять. С блокированными аппаратами измерения проводить бесполезно, достоверных результатов не будет.

Классификация ограничителей и правила монтажа

Защиту объекта от импульсных напастей сооружают по традиционным правилам селективности. Т.е. на вводе устанавливают наиболее мощный прибор, затем ограничитель с меньшей пропускной токовой способностью, далее – еще меньше и т.д. Для загородных строений вполне приемлем двухступенчатый формат защиты, тратиться на более изощренный вариант не к чему.

Чтобы не купить ограничитель с абсолютно ненужными характеристиками, выясним, по каким принципам классифицирует свой товар глубокоуважаемая нами компания ETITEC:

  • Группа А - ограничители, предназначенные для защиты объекта от сверхтоков, вызванных прямым попаданием грозового разряда в сеть или попаданием в объект, расположенный поблизости от воздушной ЛЭП. Без потери работоспособности они смогут вывести в землю импульсы не более 6кВ. Рабочее сопротивление данных устройств не превышает 10 Ом. Устанавливаются снаружи, чаще всего крепятся в точке перехода воздушной линии в кабельное продолжение. Рекомендовано располагать в зоне заземления нулевого защитного проводника PE или его собрата PEN, по совместительству выполняющего функции нулевого защитного и нулевого рабочего проводников.
  • Группа В – ограничители, защищающие от импульсных всплесков в пределах 4 кВ. Устанавливаются они на вводе в строение, если наружное ограничивающее устройство уже есть. Эта группа чаще всего используются в качестве первой ступени защиты частного дома, т.к. предполагается, что предыдущий вариант обязана поставить обслуживающая ЛЭП компания.
  • Группа С – ограничители, сбрасывающие в заземление все, что пропустила защита В, но не более 2,5 кВ. Причем и применяются они преимущественно в паре, особенно, если сооружается двухступенчатая система. Если в двух ступенях ограничения не было необходимости, то приборы группы С справляются с задачами первой защитной преграды. Монтируются в местах распределения электропроводки, в щитках.
  • Группа D – ограничители, предназначенные для защиты потребителей, особо чувствительных к коротким сверхтокам. Оберегают они оборудование, чья устойчивость изоляции не превышает 1,5 кВ. Обойтись без них можно, если нет техники с электронной начинкой. Однако если между устройством С и защищаемым оборудованием больше 15 м, D очень даже пригодится. Установка в сеть ограничителей D допустима только при наличии более высоких степеней защиты. Чувствительные устройства без затруднений выведет из строя малейшее импульсное колебание.

Согласно описанному ранжиру производится селективная установка ограничителей. В преобладающем количестве случаев используется схема B – C, отлично справляющаяся с гашением и отводом наружу электромагнитного негатива в диапазоне 1,5- 2,5 кВ. Если имеются причины для увеличения количества ступеней, то можно начать сооружение защиты с прибора группы А и завершить устройством D.

Обратите внимание. Между ограничителями В и С марки ETITEC расстояние должно быть 10м и более, чтобы на подступах ко второй ступени защиты перенапряжение успело достичь порогового значения. При отсутствии возможности расположить приборы согласно правилам, можно поставить рядом в щиток, но между аппаратами разместить индукционную катушку от того же производителя. Между С и D катушки не надо, но желательно создать между ними интервал в 5 м.

Жаль, что латинскими литерами обозначаются не все ограничители, но принцип классификации у всех производителей приблизительно одинаков. Аналогична схема установки и использования ограничителей, защищающих от скачков напряжения в электросети, равнозначны правила их подбора. Как ориентироваться без буквенных подсказок?

Ориентиры подбора ограничителей

Перед покупкой надо изучить технический паспорт аппарата, в котором указаны:

  • значение максимального рабочего напряжения, при котором устройство способно длительное время работать без отвода излишка энергии в систему заземления;
  • номинальное напряжение – характеристика, указывающая на то, какое перенапряжение при пуске оборудования может действовать на устройство целых 10 сек., не призывая его к «должностным» обязанностям;
  • величина номинального разрядного тока, согласно которой производится классификация, идентичная вышеуказанному варианту.
  • токовая пропускная способность, обозначающая предел снижения сопротивления ограничителя. Проще говоря, какой величины перенапряжение устройство сможет обрабатывать и сбрасывать без собственной поломки;
  • устойчивость к медленно возрастающему напряжению, которая означает способность устройства пропускать аномальный ток без разрушительных последствий;
  • предельный ток разряда, который может «обработать» устройство;
  • устойчивость к «коротышам», успевшим вывести прибор из строя, но не создавшим условий для взрыва оболочки…

В техпаспорте найдется еще ряд значений, полученных расчетным или экспериментальным путем. Изучать их в полном объеме необязательно, большинство пропечатанных параметров предназначено для рабочих испытаний и для настройки промышленных систем.

Резюмируем полученную информацию

Итак, уверенно направляемся в магазин с целью приобретения весьма полезных приборов защиты и учитываем что:

  • для обеспечения автономного строения, не имеющего наружной грозовой защиты, потребуется трехступенчатое сооружение А – В – С, действие которой будет последовательно ограничивать импульсные волны 6 – 4 – 2,5 кВ;
  • при расстоянии от ограничителя С (2,5 кВ) до приемника энергии больше 10ти метров нужен будет еще и прибор D (1,5кВ);
  • для объекта с существующей защитой от атмосферных и сетевых перенапряжений нужен только тандем В – С (4 - 2,5 кВ).

Хочется верить, что наши советы помогут грамотно выбрать приборы для защиты от всего спектра перенапряжений. А вот установку их желательно поручить «бывалым» электрикам. Без опыта лучше не браться за крайне ответственное дело.

Разрядники вентильного типа применяются в электрических цепях. Данные устройства необходимы для того, чтобы предотвращать атмосферные перегрузки. Также вентильные разрядники и способны бороться с коммутационными помехами. Устанавливаются устройства в основном за изоляторами. К основным параметрам разрядников следует отнести класс напряжения и номинальную частоту.

Пробивная перегрузка в устройствах сильно отличается. Если рассматривать стационарные модификации, то учитывается Стоит в среднем вентильный разрядник 15 тыс. руб.

Устройство и принцип работы модификаций

Стандартный вентильный разрядник включает в себя резистор и блоки конденсаторов. Диски чаще всего устанавливаются в верхней части конструкции. Приводные блоки применяются низкоомного типа. Также стоит отметить, что существуют устройства со специальными замыкающими пластинами. По импульсной проводимости они довольно сильно отличаются. Многие модификации работают от модуля.

Принцип действия вентильного разрядника основан на преобразовании тока. В первую очередь напряжение подается на пластины. За магнитные помехи отвечает резистор. Конденсаторный блок пропускает через себя ток только в одном направлении. Весь процесс преобразования происходит в модуляторе. На выходе получается переменный ток с частотой не ниже 20 Гц.

Типы устройств

По конструкции выделяют коммутационные и низковольтные устройства. На подстанциях применяются трубчатые модификации. выделяются высокой частотой. При этом номинальное напряжение модификаций располагается на уровне 300 В. Системы защиты применяются разных классов. Низковольтные устройства подходят для трансформаторов серии РК.

Показатель рабочей частоты находится на уровне 55 Гц. Трубчатые устройства используются в сетях с переменным током. Для трансформаторов серии РЕ подходят магнитные модификации. В отдельную категорию выделены стационарные устройства. Параметр номинального напряжения у них может доходить до 340 Вт.

Коммутационные модели

Коммутационный разрядник замечательно походит для электростанций разной мощности. Диски в данном случае применяются высокой проводимости. Если верить специалистам, то чувствительность конденсаторных блоков доходит до 30 мВ. У многих моделей применяется диодный блок, который предотвращает перегорание модуля.

Непосредственно резисторы используются, как правило, волнового типа, подкладки устанавливаются небольшой высоты. Для трансформаторов серии РК указанные разрядники не подходят однозначно. Стоит качественная модификация в пределах 14.500 руб.

Низковольтные разрядники

Низковольтный разрядник хорош тем, что не боится магнитных помех. Привод используется низкой частоты. При этом номинальное напряжение лежит в пределах 100 - 200 В. Многие модификации способны похвастаться высокой проводимостью и низким остаточным напряжением. Также стоит отметить, что устройства замечательно подходят для трансформаторов серии РК.

Система защиты у разрядников используется в основном класса МЕ40. Рабочая влажность находится в районе 90%. Атмосферные перегрузки в данном случае электронной цепи не страшны. Для трансформаторов серии КЕ разрядники не подходят. Конденсаторные блоки здесь применяются невысокой мощности. Купить качественный разрядник пользователь может по цене от 8 тыс. руб.

Трубчатые модификации

Трубчатые и вентильные разрядники между собой схожи. На подстанциях они встречаются довольно часто. Основная особенность трубчатой модификации кроется в низкой проводной способности. Также стоит отметить, что рабочая частота лежит в пределах 40-50 Гц. Многие модификации подходят для трансформаторов серии КЕ. Системы защиты используются разных классов.

Пробивное напряжение, как правило, не превышает 500 В. Рабочая влажность разрядника составляет не более 80%. Атмосферных перегрузок они не боится, корпус защищен отлично. Насадки под устройства применяются в основном комбинированного типа. Накладки в данном случае используются довольно редко. Диски устанавливаются на небольшом расстоянии друг от друга.

Модификации с двумя конденсаторными коробками встречаются очень редко. Емкость у них в среднем составляет 500 мк. Довольно часто номинальное напряжение не превышает 450 Вт. Системы защиты КР используются редко. Резисторы дипольного типа для модификаций точно не подходят. Цена на хороший разрядник колеблется в пределах 14 - 20 тыс. руб.

Модели с удлиненной дугой

Разрядник вентильный с удлиненной дугой разрешается использовать только в цепи переменного тока. Многие эксперты говорят о том, что модификации обладают хорошей выходной проводимостью. При этом проблемы с отрицательной полярностью возникают нечасто. Системы защиты в основном используются класса РК40. Рабочая влажность разрядников находится в районе 90%. Атмосферные перегрузки данным устройствам не страшны.

Для трансформаторов серии РА данные модификации не подходят. Если говорить про параметры, то важно отметить, что номинальное напряжение у них не сильно высокое. При этом частота максимум составляет 66 Гц. Блоки защемления применяются разной проводимости. Диски в основном устанавливаются в верхней части конструкции. Объем конденсаторного блока колеблется в районе 50 пФ. Приобрести качественный разрядник в специализированном магазине электроники можно всего за 15 тыс. руб.

Особенности стационарных разрядников

Стационарные разрядники можно применять на трансформаторах серии КЕ. Системы защиты у моделей используются разных классов. Если верить мнению экспертов, то проводимость у них в среднем равняется 120 мк. Довольно часто устройства производятся с дисками на подкладках. Многие модели могут похвастаться высокой чувствительностью. Также стоит отметить, что конденсаторные блоки применяются с преобразователями и без них. Показатель емкости максимум равняется 50 пФ.

Для работы в сети с переменным током разрядники стационарного типа подходят замечательно, атмосферные перегрузки им не страшны. Резисторы, как правило, применяются дипольного типа. При этом класс напряжения зависит от модулятора. Некоторые модификации разрешается применять на трансформаторах серии РК40. Конденсаторные коробки используются невысокой мощности, однако имеется фильтр для магнитных помех. Приобрести неплохой разрядник пользователь способен по цене от 30 тыс. руб.

Параметры магнитных модификаций

Магнитный разрядник вентильный производится с одним или несколькими переходниками. Показатель номинального напряжения составляет около 500 В. Устройства без фильтров встречаются очень редко. Индикаторы применяются только дипольного типа. При этом конденсаторные коробки устанавливаются разных размеров. Очень часто магнитные разрядники эксплуатируются на низковольтных трансформаторах. Рабочая частота в данном случае поддерживается на отметке 50 Гц. Для работы в цепи постоянного тока устройства не подходят.

Параметр пробивного напряжения не сильно высокий. Испытание вентильных разрядников осуществляется при помощи проводных тестеров. Рабочая влажность модификаций располагается на уровне 60%. Довольно часто устройства устанавливаются на Пластины у них крепятся как в верхней, так и нижней части. Приобрести неплохой разрядник пользователь может по цене от 15 тыс. руб.

Особенности устройств серии РВО 12

Разрядник вентильный данной серии применяется на для предотвращения атмосферных перегрузок. Показатель номинально напряжения у него равняется 300 В. Если верить экспертам, то проблемы с отрицательной модуляцией устройству не страшны, дипольный фильтр у этой модификации имеется. Если говорить про конструктивные особенности, специалисты отмечают низкое расположение дисков. Центральные переходники располагаются возле модулятора. Конденсаторная коробка работает при частоте 30 Гц. При этом емкость ее равняется 5 пФ. Пробивное напряжение устройства составляет 500 В.

Система защиты применяется класса РК50. Если верить мнению экспертов, то для высоковольтных трансформаторов устройство не подходит. Коммутационные помехи этой модели не страшны. Однако важно отметить, что центральный проводник в некоторых случаях перегорает. При этом рабочая влажность разрядника располагается на уровне 30%. Купить модель данной серии пользователь можно от 20 тыс. руб.

Характеристики разрядников РВО 10

Разрядник вентильный РВО 10 интересен тем, что у него имеется два модулятора. Частота в данном случае контролируется за счет модуля. Процесс преобразования у разрядника много времени не отнимает. Большинство экспертов утверждают, что данный аппарат замечательно подходит для трансформаторов серии РК. При этом система защиты применяется высокого качества, а рабочая влажность находится на уровне 60%. Купить разрядник вентильный РВО 10 пользователь может по цене от 18 тыс. руб.

Отличие устройств серии РВС 35

Разрядник вентильный РВС работает в цепи постоянного тока. Подходит модификация только для трансформаторов серии РЕ. Проводимость на дисках довольно высокая. Также специалисты говорят о том, что процесс преобразования тока не занимает много времени.

Конденсаторный блок применяется высокой емкости. Чувствительность модуля располагается на отметке 50 мВ. Для трансформаторов серии КЕ50 модификация не подходит. Рабочая влажность разрядника располагается на отметке 60%. Приобрести эту модификацию пользователь способен по цене от 22 тыс. руб.

Особенности устройств серии РВО 40

Разрядник вентильный представленной серии имеет массу преимуществ. В первую очередь стоит отметить, что у него поддерживается проводимость на уровне 50 мк. Для трубчатых модификаций это довольно много. Также эксперты утверждают, что устройства разрешается эксплуатировать в сетях переменного тока. Для трансформаторов серии РК они подходят замечательно. Пороговая проводимость у разрядников представленной серии поддерживается на отметке 55 мк.

Номинальное напряжение при этом не превышает 400 В. Для трансформаторов серии КЕ устройства не подходят. Конденсаторный блок используется большой емкости. При этом применяется система защиты класса АК 50. Пробивное напряжение модификации располагается на уровне 430 В. Система защиты от волновых помех у модификации не предусмотрена. Рабочая влажность разрядника составляет 50%. Приобрести модель пользователь может за 18 тыс. руб.

Характеристики разрядников ОПН 10

Вентильный разрядник ОПН используется на трансформаторах серии РК. Изоляторы под него подходят только небольшой ширины. Если верить мнению экспертов, то проводимость у разрядника данной серии довольно высокая. Номинальное напряжение находится на уровне 450 В. В это время коммутационная проходимость располагается на уровне 40 мк. Система защиты у модификации используется класса РЕ. В сети с переменным током конденсаторный блок перегревается очень редко.

Для работы с трансформатором МО модификации применяются нечасто. Емкость конденсаторного блока составляет ровно 50 пФ. Отдельного внимания в устройстве заслуживает линейный проводник, который борется с импульсными помехами. Отрицательная модуляция для него не страшна. Отдельно нужно отметить, что рабочая влажность разрядника составляет 80%. Купить его пользователь может за 20 тыс. руб.