Что такое CCD-матрица? Рассуждения о телевизионных камерах

{lang: ‘ru’}

Продолжаю начатый в предыдущей публикации разговор об устройстве .

Одним из главных элементов цифрового фотоаппарата, отличающих его от фотоаппаратов пленочных является светочувствительный элемент, так называемый ЭОП или светочувствительная цифрового фотоаппарата . О матрицах фотоаппаратов уже говорилось , теперь же рассмотрим несколько подробнее устройство и принцип работы матрицы, хотя и достаточно поверхностно, чтобы не слишком утомлять читателя.

В настоящее время большинство цифровых фотоаппаратов оснащены ПЗС-матрицами.

ПЗС-матрица. Устройство. Принцип работы.

Рассмотрим в общих чертах устройство ПЗС- матрицы .

Полупроводники, как известно, делятся на полупроводники n-типа и p-типа. В полупроводнике n-типа имеется избыток свободных электронов, а в полупроводнике p-типа избыток положительных зарядов, «дырок» (а следовательно недостаток электронов). На взаимодействии таких двух типов полупроводников и основана вся микроэлектроника.

Так вот, элемент ПЗС-матрицы цифрового фотоаппарата устроен следующим образом. См. Рис.1:

Рис.1

Если не вдаваться в подробности, то ПЗС-элемент или прибор с зарядовой связью, в английской транскрипции: charge-coupled-device – CCD, представляет собой МДП (металл-диэлектрик-полупроводник) конденсатор. Он состоит из подложки p-типа - слоя кремния, изолятора из двуокиси кремния и пластин-электродов. При подаче на один из электродов положительного потенциала, под ним образуется зона обедненная основными носителями - дырками, т. к. они оттесняются электрическим полем от электрода вглубь подложки. Таким образом под данным электродом образуется потенциальная яма, т. е. энергетическая зона благоприятная для перемещения в нее неосновных носителей – электронов. В этой яме накапливается отрицательный заряд. Он может храниться в данной яме достаточно долго из-за отсутствия в ней дырок и, следовательно, причин для рекомбинации электронов.

В светочувствительных матрицах электродами являются пленки поликристаллического кремния, прозрачного в видимой области спектра.

Фотоны падающего на матрицу света попадают в кремниевую подложку, образуя в ней пару дырка-электрон. Дырки, как сказано выше смещаются вглубь подложки, а электроны накапливаются в потенциальной яме.

Накопившийся заряд пропорционален количеству фотонов падающих на элемент, т. е. интенсивности светового потока. Таким образом на матрице создается зарядовый рельеф, соответствующий оптическому изображению.

Перемещение зарядов в ПЗС-матрице.

В каждом ПЗС-элементе имеется несколько электродов, на которые подаются разные потенциалы.

При подаче на соседний электрод (см. рис. 3) потенциала, большего, чем на данном электроде, под ним образуется более глубокая потенциальная яма, в которую перемещается заряд из первой потенциальной ямы. Таким образом заряд может перемещаться из одной ПЗС-ячейки в другую. Показанный на рис.3 ПЗС-элемент называется трехфазным, бывают еще и 4-х фазные элементы.

Рис.4. Схема работы трехфазного прибора с зарядовой связью – сдвигового регистра.

Для преобразования зарядов в импульсы тока (фототока) используются последовательные регистры сдвига (см. рис.4). Такой регистр сдвига и является строкой ПЗС-элементов. Амплитуда импульсов тока пропорциональна величине передаваемого заряда, и пропорциональна,таким образом, падающему световому потоку. Последовательность импульсов тока, образующихся при считывании последовательности зарядов, затем подается на вход усилителя.

Линейки близко расположенных друг к другу ПЗС-элементов объединяются в ПЗС-матрицу . Работа такой матрицы основывается на создании и передаче локального заряда в потенциальных ямах, создаваемых электрическим полем.

Рис.5.

Заряды всех ПЗС-элементов регистра синхронно перемещаются в соседние ПЗС-элементы. Заряд, который находился в последней ячейке, поступает на выход из регистра, а затем подается на вход усилителя.

На вход последовательного регистра сдвига подаются заряды перпендикулярно расположенных регистров сдвига, которые в совокупности называются параллельным регистром сдвига. Параллельный и последовательный регистры сдвига и составляют ПЗС-матрицу (см. рис.4).

Перпендикулярные к последовательному регистру сдвиговые регистры носят название столбцов.

Перемещение зарядов параллельного регистра строго синхронизовано. Все заряды одной строки смещаются одновременно в соседнюю. Заряды последней строки попадают в последовательный регистр. Таким образом за один рабочий цикл строка зарядов из параллельного регистра попадает на вход последовательного, освобождая место для вновь образуемых зарядов.

Работа последовательного и параллельного регистров синхронизуется тактовым генератором. В состав матрицы цифрового фотоаппарата также входит микросхема, подающая потенциалы на электроды переноса регистров и управляющая их работой.

ЭОП такого типа носит название полнокадровой матрицы (full-frame CCD-matrix). Для его работы необходимо наличие светонепроницаемой крышки, которая сначала открывает ЭОП для экспонирования светом, затем, когда на него попало количество фотонов, необходимое для накопления достаточного заряда в элементах матрицы, закрывает его от света. Такая крышка является механическим затвором, как в пленочных фотоаппаратах. Отсутствие такого затвора приводит к тому, что при перемещении зарядов в сдвиговом регистре ячейки продолжают облучаться светом, добавляя к заряду каждого пиксела лишние электроны, не соответствующие световому потоку данной точки. Это приводит к «размазыванию» заряда, соответственно к искажению получаемого изображения.

Сенсор - главный элемент цифровой камеры

ердцем любой цифровой видео- или фотокамеры (в настоящее время границы между этими типами устройств постепенно стираются) является светочувствительный сенсор. Он преобразует видимый свет в электрические сигналы, используемые для дальнейшей обработки с помощью электронных схем. Из школьного курса физики известно, что свет можно рассматривать как поток элементарных частиц - фотонов. Фотоны, попадая на поверхность некоторых полупроводниковых материалов, способны приводить к образованию электронов и дырок (напомним, что дыркой в полупроводниках принято называть вакантное место для электрона, образующееся в результате разрыва ковалентных связей между атомами полупроводникового вещества). Процесс генерации электронно-дырочных пар под воздействием света возможен только в том случае, когда энергии фотона достаточно, чтобы «оторвать» электрон от «родного» ядра и перевести его в зону проводимости. Энергия фотона напрямую связана с длиной волны падающего света, то есть зависит от так называемого цвета излучения. В диапазоне видимого (то есть воспринимаемого человеческим глазом) излучения энергии фотонов оказывается достаточно для того, чтобы порождать генерацию электронно-дырочных пар в таких полупроводниковых материалах, как, например, кремний.

Поскольку количество образующихся фотоэлектронов прямо пропорционально интенсивности светового потока, появляется возможность математически связывать количество падающего света с величиной порождаемого им заряда. Именно на этом простом физическом явлении и основан принцип действия светочувствительных сенсоров. Сенсор выполняет пять основных операций: поглощает фотоны, преобразует их в заряд, накапливает его, передает и преобразует в напряжение. В зависимости от технологии изготовления различные сенсоры осуществляют задачи хранения и накопления фотоэлектронов по-разному. Кроме того, могут использоваться различные методы преобразования накопленных электронов в электрическое напряжение (аналоговый сигнал), которое, в свою очередь, преобразуется в цифровой сигнал.

ПЗС-сенсоры

Исторически первыми в качестве светочувствительных элементов для видеокамер были использованы так называемые ПЗС-матрицы, массовое производство которых началось в 1973 году. Аббревиатура ПЗС расшифровывается как прибор с зарядовой связью; в английской литературе используется термин CCD (Charge-Coupled Device). Простейший ПЗС-сенсор представляет собой конденсатор, способный под воздействием света накапливать электрический заряд. Обычный конденсатор, состоящий из двух разделенных слоем диэлектрика металлических пластин, здесь не подойдет, поэтому используют так называемые МОП-конденсаторы. По своей внутренней структуре такие конденсаторы представляют собой сандвич из металла, оксида и полупроводника (от первых букв используемых компонентов они и получили свое название). В качестве полупроводника используется легированный кремний p-типа, то есть такой полупроводник, в котором за счет добавления атомов примеси (легирования) образуются избыточные дырки. Над полупроводником расположен тонкий слой диэлектрика (оксида кремния), а сверху - слой металла, выполняющий функцию затвора, если следовать терминологии полевых транзисторов (рис. 1).

Как уже отмечалось, под воздействием света в полупроводнике образуются электронно-дырочные пары. Однако наряду с процессом генерации происходит и обратный процесс - рекомбинация дырок и электронов. Поэтому следует предпринять меры, чтобы разделить образующиеся электроны и дырки и сохранять их в течение необходимого времеми. Ведь именно количество образованных фотоэлектронов несет информацию об интенсивности поглощенного света. Для этого и предназначены затвор и слой изолирующего диэлектрика. Предположим, что на затвор подан положительный потенциал. В этом случае под воздействием созданного электрического поля, проникающего сквозь диэлектрик в полупроводник, дырки, являющиеся основными носителями заряда, начнут сдвигаться в сторону от диэлектрика, то есть в глубь полупроводника. На границе полупроводника с диэлектриком образуется обедненная основными носителями, то есть дырками, область, причем размер этой области зависит от величины приложенного потенциала. Именно эта обедненная область и является «хранилищем» для фотоэлектронов. Действительно, если полупроводник подвергнуть воздействию света, то образующиеся электроны и дырки будут двигаться в противоположных направлениях - дырки в глубь полупроводника, а электроны к обедненному слою. Так как в этом слое нет дырок, то электроны будут сохраняться там без процесса рекомбинации в течение требуемого времени. Естественно, что процесс накопления электронов не может происходить бесконечно. По мере увеличения количества электронов между ними и положительно заряженными дырками возникает наведенное электрическое поле, направленное противоположно полю, создаваемому затвором. В результате поле внутри полупроводника уменьшается до нуля, после чего процесс пространственного разделения дырок и электронов становится невозможным. Как следствие - образование электронно-дырочной пары сопровождается ее рекомбинацией, то есть число «информационных» электронов в обедненном слое перестает увеличиваться. В этом случае можно говорить о переполнении емкости сенсора.

Рассмотренный нами сенсор способен выполнять две важные задачи - преобразовывать фотоны в электроны и накапливать их. Осталось решить задачу передачи этих информационных электронов в соответствующие блоки преобразования, то есть задачу съема информации.

Представим себе не один, а несколько близко расположенных затворов на поверхности одного и того же диэлектрика (рис. 2). Пусть в результате фотогенерации под одним из затворов накоплены электроны. Если на соседний затвор подать более высокий положительный потенциал, то электроны начнут перетекать в область более сильного поля, то есть перемещаться от одного затвора к другому. Теперь уже должно быть ясно, что если мы имеем цепочку затворов, то, подавая на них соответствующие управляющие напряжения, можно перемещать локализованный зарядовый пакет вдоль такой структуры. Именно на этом простом принципе и основаны приборы с зарядовой связью.

Замечательное свойство ПЗС состоит в том, что для перемещения накопленного заряда достаточно всего трех типов затворов - одного передающего, одного принимающего и одного изолирующего, разделяющего пары принимающих и передающих друг от друга, причем одноименные затворы таких троек могут быть соединены друг с другом в единую тактовую шину, требующую лишь одного внешнего вывода (рис. 3). Это и есть простейший трехфазный регистр сдвига на ПЗС.

До сих пор мы рассматривали ПЗС-сенсор только в одной плоскости - вдоль бокового разреза. Вне поля нашего зрения остался механизм удержания электронов в поперечном направлении, при котором затвор подобен длинной полоске. Учитывая, что освещение полупроводника неоднородно в пределах такой полоски, скорость образования электронов под воздействием света будет меняться по длине затвора. Если не принять мер по локализации электронов вблизи области их образования, то в результате диффузии концентрация электронов выравняется и информация об изменении интенсивности света в продольном направлении будет утеряна. Естественно, можно было бы сделать размер затвора одинаковым как в продольном, так и поперечном направлении, но это потребовало бы изготовления слишком большого числа затворов на ПЗС-матрице. Поэтому для локализации образующихся электронов в продольном направлении используют так называемые стоп-каналы (рис. 4), представляющие собой узкую полоску полупроводника с повышенным содержанием легирующей примеси. Чем больше концентрация примеси, тем больше дырок образуется внутри такого проводника (каждый атом примеси приводит к образованию дырки). Но от концентрации дырок зависит, при каком конкретно напряжении на затворе под ним образуется обедненная область. Интуитивно понятно, что чем больше концентрация дырок в полупроводнике, тем труднее их отогнать вглубь.

Рассмотренная нами структура ПЗС-матрицы носит название ПЗС с поверхностным каналом передачи, так как канал, по которому передается накопленный заряд, находится на поверхности полупроводника. Поверхностный способ передачи имеет ряд существенных недостатков, связанных со свойствами границы полупроводника. Дело в том, что ограничение полупроводника в пространстве нарушает идеальную симметрию его кристаллической решетки со всеми вытекающими отсюда последствиями. Не вникая в тонкости физики твердого тела, заметим, что подобное ограничение приводит к образованию энергетических ловушек для электронов. В результате накопленные под воздействием света электроны могут захватываться этими ловушками, вместо того чтобы передаваться от одного затвора к другому. Помимо прочего такие ловушки могут непредсказуемо высвобождать электроны, причем не всегда, когда это действительно нужно. Получается, что полупроводник начинает «шуметь» - иначе говоря, количество накопленных под затвором электронов не будет точно соответствовать интенсивности поглощенного излучения. Избежать подобных явлений можно, но для этого сам канал переноса нужно отодвинуть в глубь проводника. Такое решение было реализовано специалистами фирмы Philips в 1972 году. Идея заключалась в том, что в поверхностной области полупроводника p-типа создавался тонкий слой полупроводника n-типа, то есть полупроводника, в котором основными носителями заряда являются электроны (рис. 5).

Хорошо известно, что контакт двух полупроводников с различными типами проводимости приводит к образованию обедненного слоя на границе перехода. Происходит это за счет диффузии дырок и электронов во взаимно противоположных направлениях и их рекомбинации. Подача положительного потенциала на затвор увеличивает размер обедненной области. Характерно, что теперь сама обедненная область, или емкость для фотоэлектронов, находится не на поверхности, а следовательно, отсутствуют и поверхностные ловушки для электронов. Такой канал переноса называется скрытым, и все современные ПЗС изготавливаются именно со скрытым каналом переноса.

Рассмотренные нами основные принципы функционирования ПЗС-сенсора используются для построения различных по архитектуре ПЗС-матриц. Конструктивно можно выделить две основные схемы матриц: с покадровым переносом и с межстрочным переносом.

В матрице с покадровым переносом имеются две равнозначные секции с одинаковым числом строк: накопления и хранения. Каждая строка в этих секциях образована тремя затворами (передающий, принимающий и изолирующий). Кроме того, как уже отмечалось выше, все строки разделены множеством стоп-каналов, формирующих ячейки накопления в горизонтальном направлении. Таким образом, наименьший структурный элемент ПЗС-матрицы (пиксел) создается из трех горизонтальных затворов и двух вертикальных стоп-каналов (рис. 6).

За время экспозиции в секции накопления образуются фотоэлектроны. После этого тактовые импульсы, подаваемые на затворы, переносят накопленные заряды из секции накопления в затененную секцию хранения, то есть фактически происходит передача всего кадра целиком. Поэтому такая архитектура и получила название ПЗС с покадровым переносом. После переноса секция накопления очищается и может повторно накапливать заряды, в то время как из секции памяти заряды поступают в горизонтальный регистр считывания. Структура горизонтального регистра аналогична структуре ПЗС-сенсора - те же три затвора для переноса заряда. Каждый элемент горизонтального регистра имеет зарядовую связь с соответствующим столбцом секции памяти, и за каждый тактовый импульс из секции накопления в регистр считывания поступает вся строка целиком, которая после этого передается в выходной усилитель для дальнейшей обработки.

Рассмотренная схема ПЗС-матрицы имеет одно несомненное достоинство - высокий коэффициент заполнения (fill factor). Этим термином принято называть отношение фоточувствительной площади матрицы к ее общей площади. У матриц с покадровым переносом коэффициент заполнения достигает практически 100%. Такая особенность позволяет создавать на их основе очень чувствительные приборы.

Кроме рассмотренного преимущества матрицы с покадровым переносом обладают и рядом недостатков. Прежде всего отметим, что сам процесс переноса не может осуществляться мгновенно. Именно это обстоятельство приводит к ряду негативных явлений. В процессе переноса заряда из секции накопления в секцию хранения первая остается освещенной и в ней продолжается процесс накопления фотоэлектронов. Это приводит к тому, что яркие участки изображения успевают внести свой вклад в чужой зарядовый пакет даже за то короткое время, в течение которого он проходит через них. В результате на кадре появляются характерные искажения в виде вертикальных полос, простирающихся через весь кадр от ярких участков изображения. Конечно, для борьбы с подобными явлениями можно применять различные ухищрения, однако наиболее радикальным способом является разделение секции накопления и секции переноса, с тем чтобы перенос протекал в затененной области. Матрицы такой архитектуры получили название ПЗС с межстрочным переносом (рис. 7).

В отличие от описанной ранее матрицы с покадровым переносом, в качестве элементов накопления заряда здесь выступают фотодиоды (более подробно фотодиоды будут рассмотрены позже). Заряды, накопляемые фотодиодами, передаются в затененные ПЗС-элементы, которые осуществляют дальнейший перенос заряда. Обратим внимание, что перенос всего кадра от фотодиодов в вертикальные ПЗС-регистры переноса происходит за один такт. Возникает закономерный вопрос: почему такая архитектура получила название межстрочного переноса (встречается также термин «чересстрочный перенос»)? Чтобы разобраться в происхождении названия межстрочного, а также и покадрового переноса, вспомним основной принцип вывода изображения на экран формирования видеосигнала. Кадровый сигнал состоит из сигналов строк, разделенных межстрочным промежутком, то есть временем, необходимым для того, чтобы электронный луч, сканирующий по экрану, успел переместиться от конца одной строки к началу следующей. Имеются также межкадровые промежутки - время, необходимое для перемещения луча от конца последней строки к началу первой строки (переход на новый кадр).

Если вспомнить архитектуру ПЗС-матрицы с межкадровым переносом, то становится понятно, что перенос кадра из секции накопления в секцию хранения происходит во время межкадрового промежутка видеосигнала. Это и понятно, так как для переноса всего кадра потребуется значительный интервал времени. В архитектуре с межстрочным переносом передача кадра происходит за один такт, и для этого достаточно небольшого промежутка времени. Далее изображение поступает в горизонтальный регистр сдвига, причем передача происходит по строкам во время межстрочных интервалов видеосигнала.

Помимо двух рассмотренных типов ПЗС-матриц существуют и иные схемы. Например, схема, объединяющая межкадровый и межстрочный механизм (строчно-кадровый перенос), получается при добавлении к ПЗС-матрице межстрочного переноса секции хранения. При этом перенос кадра от фоточувствительных элементов происходит за один такт во время межстрочного интервала, а во время межкадрового интервала кадр передается в секцию хранения (межкадровый перенос); из секции хранения кадр передается в горизонтальный регистр сдвига во время межстрочных интервалов (межкадровый перенос).

В последнее время получили распространение так называемые супер-ПЗС (Super CCD), использующие оригинальную сотовую архитектуру, которую образуют восьмиугольные пикселы. За счет этого увеличивается рабочая поверхность кремния и повышается плотность пикселов (количество пикселов ПЗС). Кроме того, восьмиугольная форма пикселов увеличивает площадь светочувствительной поверхности.

КМОП-сенсоры

Принципиально другим типом сенсора является так называемый КМОП-сенсор (КМОП - комплиментарный металл-оксид-полупроводник; в англоязычной терминологии - CMOS).

Внутренняя архитектура КМОП-сенсоров может быть различной. Так, в качестве фоточувствительного элемента могут выступать фотодиоды, фототранзисторы или фотовентили. Независимо от типа фоточувствительного элемента неизменным остается принцип разделения дырок и электронов, получаемых в процессе фотогенерации. Рассмотрим наиболее простой тип фотодиода, на примере которого легко понять принцип действия всех фотоэлементов.

Простейший фотодиод представляет собой контакт полупроводников n- и p-типов. На границе контакта этих полупроводников образуется обедненная область, то есть слой без дырок и электронов. Такая область формируется в результате диффузии основных носителей зарядов во взаимно противоположных направлениях. Дырки движутся из p-полупроводника (то есть из области, где их находится в избытке) в n-полупроводник (то есть в область, где их концентрация мала), а электроны движутся в противоположном направлении, то есть из n-полупроводника в p-полупроводник. В результате такой рекомбинации дырки и электроны исчезают и создается обедненная область. Кроме того, на границах обедненной области оголяются ионы примеси, причем в n-области ионы примеси имеют положительный заряд, а в p-области - отрицательный. Эти заряды, распределенные по границе обедненной области, образуют электрическое поле, подобное тому, что создается в плоском конденсаторе, состоящем из двух пластин. Именно это поле выполняет функцию пространственного разделения дырок и электронов, образующихся в процессе фотогенерации. Наличие такого локального поля (его также называют потенциальным барьером) является принципиальным моментом в любом фоточувствительном сенсоре (не только в фотодиоде).

Предположим, что фотодиод освещается светом, причем свет падает на n-полупроводник, а p-n-переход перпендикулярен лучам света (рис. 8). Фотоэлектроны и фотодырки будут диффундировать в глубь кристалла, и некоторая их доля, не успевшая рекомбинировать, достигнет поверхности p-n-перехода. Однако для электронов существующее электрическое поле является непреодолимым препятствием - потенциальным барьером, поэтому электроны не смогут преодолеть p-n-переход. Дырки же, напротив, ускоряются электрическим полем и проникают в p-область. В результате пространственного разделения дырок и электронов n-область заряжается отрицательно (избыток фотоэлектронов), а p-область - положительно (избыток фотодырок).

Основное отличие КМОП-сенсоров от ПЗС-сенсоров заключается не в способе накопления заряда, а в способе его дальнейшего переноса. Технология КМОП, в отличие от ПЗС, позволяет осуществлять большее количество операций прямо на кристалле, на котором расположена фоточувствительная матрица. Кроме высвобождения электронов и их передачи, КМОП-сенсоры могут также обрабатывать изображения, выделять контуры изображения, уменьшать помехи и производить аналого-цифровые преобразования. Более того, имеется возможность создавать программируемые КМОП-сенсоры, следовательно, можно получить очень гибкое многофункциональное устройство.

Столь широкий набор функций, выполняемых одной микросхемой, - основное преимущество технологии КМОП над ПЗС. При этом сокращается количество необходимых внешних компонентов. Использование в цифровой камере КМОП-сенсора позволяет устанавливать на освободившееся место другие чипы - например, цифровые сигнальные процессоры (DSP) и аналого-цифровые преобразователи.

Бурное развитие КМОП-технологий началось в 1993 году, когда были созданы активные пиксельные сенсоры. При этой технологии у каждого пиксела имеется свой считывающий транзисторный усилитель, что и позволяет преобразовывать заряд в напряжение непосредственно на пикселе. Кроме того, появилась возможность для произвольного доступа к каждому пикселу сенсора (подобно тому, как работает оперативная память с произвольным доступом). Считывание заряда с активных пикселов КМОП-сенсора производится по параллельной схеме (рис. 9), что позволяет считывать сигнал с каждого пиксела или с колонки пикселов напрямую. Произвольный доступ позволяет КМОП-сенсору считывать не только всю матрицу целиком, но и выборочные области (метод оконного считывания).

Несмотря на кажущиеся преимущества КМОП-матриц перед ПЗС (основным из которых является более низкая цена), они обладают и рядом недостатков. Наличие дополнительных схем на кристалле КМОП-матрицы приводит к появлению ряда помех, таких как транзисторные и диодные рассеивания, а также эффект остаточного заряда, то есть КМОП-матрицы на сегодняшний день являются более «шумными». Поэтому в профессиональных цифровых камерах в ближайшее время будут использовать качественные ПЗС-матрицы, а КМОП-сенсоры осваивают рынок более дешевых устройств, к которому, в частности, относятся Web-камеры.

Как получается цвет

Рассмотренные выше фоточувствительные сенсоры способны реагировать лишь на интенсивность поглощаемого света - чем выше интенсивность, тем больший заряд накапливается. Возникает закономерный вопрос: как же получается цветное изображение?

Чтобы камера могла различать цвета, непосредственно на активный пиксел накладывается массив цветных фильтров (CFA, color filter arrays). Принцип действия цветного фильтра очень прост: он пропускает свет только определенного цвета (иначе говоря, только свет с определенной длиной волны). Но сколько же таких фильтров потребуется, если количество различных цветовых оттенков практически не ограниченно? Оказывается, любой цветовой оттенок можно получить смешиванием в определенных пропорциях нескольких основных (базовых) цветов. В наиболее популярной аддитивной модели RGB (Red, Green, Blue) таких цвета три: красный, зеленый и синий. Значит, и цветных фильтров потребуется всего три. Отметим, что цветовая модель RGB не единственная, но в подавляющем большинстве цифровых Web-камер используется именно она.

Наиболее популярными являются массивы фильтров цветовой модели Байера (Bayer pattern). В этой системе красные, зеленые и синие фильтры расположены в шахматном порядке, а количество зеленых фильтров в два раза больше, чем красных или синих. Порядок расположения таков, что красные и синие фильтры расположены между зелеными (рис. 10).

Такое соотношение зеленых, красных и синих фильтров объясняется особенностями зрительного восприятия человека: наши глаза более чувствительны к зеленому цвету.

В ПЗС-камерах совмещение трех цветовых каналов производится в устройстве формирования изображения уже после преобразования сигнала из аналогового вида в цифровой. В КМОП-сенсорах это совмещение может происходить и непосредственно в чипе. В любом случае первичные цвета каждого фильтра математически интерполируются с учетом цвета соседних фильтров. Следовательно, для того чтобы получить истинный цвет пиксела изображения, необходимо знать не только интенсивность света, прошедшего через светофильтр этого пиксела, но и значения интенсивностей света, прошедшего через светофильтры окружающих пикселов.

Как уже отмечалось, в цветовой модели RGB используется три основных цвета, с помощью которых можно получить любой оттенок видимого спектра. сколько же всего оттенков позволяют различать цифровые камеры? Максимальное количество различных цветовых оттенков определяется глубиной цвета, которая, в свою очередь, определяется количеством битов, используемых для кодирования цвета. В популярной модели RGB 24 с глубиной цвета 24 бита для каждого цвета отводится по 8 битов. С помощью 8 битов можно задать 256 различных цветовых оттенков соответственно красного, зеленого и синего цветов. Каждому оттенку присваивается значение от 0 до 255. К примеру, красный цвет может принимать 256 градаций: от чисто красного (255) до черного (0). Максимальное значение кода соответствует чистому цвету, а код каждого цвета принято располагать в следующем порядке: красный, зеленый и синий. Например, код чистого красного цвета записывается в виде (255, 0, 0), код зеленого цвета - (0, 255, 0), а код синего цвета - (0, 0, 255). Желтый цвет можно получить смешением красного и зеленого, и его код записывается в виде (255, 255, 0).

Кроме модели RGB широкое применение нашли также модели YUV и YСrCb, которые похожи друг на друга и основаны на разделении сигналов яркости и цветности. Сигнал Y - это сигнал яркости, который определяется смешением красного, зеленого и синего цветов. Сигналы U и V (Cr, Cb) являются цветоразностными. Так, сигнал U близок к разности между синими и желтыми компонентами цветного изображения, а сигнал V близок к разности между красными и зелеными компонентами цветного изображения.

Основное достоинство модели YUV (YCrCb) заключается в том, что этот метод кодирования хотя и более сложен, чем RGB, однако требует меньшей полосы пропускания. Дело в том, что чувствительность человеческого глаза к яркостному Y-компоненту и цветоразностным компонентам неодинакова, поэтому вполне допустимым представляется выполнение этого преобразования с прореживанием (интерливингом) цветоразностных компонентов, когда для группы из четырех соседних пикселов (2×2) вычисляются Y-компоненты, а цветоразностные компоненты используются общие (так называемая схема 4:1:1). Нетрудно подсчитать, что уже схема 4:1:1 позволяет сократить выходной поток вдвое (вместо 12 байтов для четырех соседних пикселов достаточно шести). При кодировании по схеме YUV 4:2:2 сигнал яркости передается для каждой точки, а цветоразностные сигналы U и V - только для каждой второй точки в строке.

Как работают цифровые

Web-камеры

ринцип работы всех типов цифровых камер примерно одинаков. Рассмотрим типичную схему наиболее простой Web-камеры, основное отличие которой от других типов камер - наличие USB-интерфейса для подключения к компьютеру.

Помимо оптической системы (объектива) и светочувствительного ПЗС- или КМОП-сенсора обязательным является наличие аналого-цифрового преобразователя (АЦП), который преобразует аналоговые сигналы светочувствительного сенсора в цифровой код. Кроме того, необходима и система формирования цветного изображения. Еще одним важным элементом камеры является схема, отвечающая за компрессию данных и подготовку к передаче в нужном формате. К примеру, в рассматриваемой Web-камере видеоданные передаются в компьютер по интерфейсу USB, поэтому на ее выходе должен наличествовать контроллер USB-интерфейса. Структурная схема цифровой камеры изображена на рис. 11 .

Аналого-цифровой преобразователь предназначен для дискретизации непрерывного аналогового сигнала и характеризуется частотой отсчетов, определяющих промежутки времени, через которые производится замер аналогового сигнала, а также своей разрядностью. Разрядность АЦП - это количество битов, используемых для представления каждого отсчета сигнала. Например, если используется 8-разрядный АЦП, то для представления сигнала используется 8 битов, что позволяет различать 256 градаций исходного сигнала. При использовании 10-разрядного АЦП имеется возможность различать уже 1024 различных градаций аналогового сигнала.

Из-за низкой пропускной способности USB 1.1 (всего 12 Мбит/с, из которых Web-камера использует не более 8 Мбит/с) перед передачей в компьютер данные необходимо сжимать. Например, при разрешении кадра 320×240 пикселов и глубине цвета 24 бита размер кадра в несжатом виде будет составлять 1,76 Мбит. При ширине полосы пропускания канала USB 8 Мбит/с максимальная скорость передачи несжатого сигнала составит всего 4,5 кадров в секунду, а для получения качественного видео необходима скорость передачи 24 или более кадров в секунду. Таким образом, становится понятно, что без аппаратного сжатия передаваемой информации нормальное функционирование камеры невозможно.

В соответствии с технической документацией данная КМОП-матрица имеет разрешение 664×492 (326 688 пикселов) и может функционировать со скоростью до 30 кадров в секунду. Сенсор поддерживает как прогрессивный, так и строчной тип развертки и обеспечивает отношение «сигнал/шум» более 48 дБ.

Как видно из блок-схемы, блок цветоформирования (аналоговый сигнальный процессор) имеет два канала - RGB и YСrCb, причем для модели YСrCb яркостный и цветоразностные сигналы вычисляются по формулам:

Y = 0,59G + 0,31R + 0,11B,

Cr = 0,713 × (R – Y),

Cb = 0,564 × (B – Y).

Аналоговые сигналы RGB и YCrCb, формируемые аналоговым сигнальным процессором, обрабатываются двумя 10-битными АЦП, каждый из которых работает на скорости 13,5 MSPS, что обеспечивает синхронизацию с пиксельной скоростью. После оцифровки данные поступают на цифровой преобразователь, формирующий видеоданные в 16-битном формате YUV 4:2:2 или 8-битном формате Y 4:0:0, которые направляются в выходной порт по 16-битной или 8-битной шине.

Кроме того, рассматриваемый КМОП-сенсор обладает широким спектром возможностей по коррекции изображения: предусмотрены установка баланса белого цвета, управление экспозицией, гамма-коррекцией, цветовой коррекции и т.д. Управлять работой сенсора можно по интерфейсу SCCB (Serial Camera Control Bus).

Микросхема OV511+, блок-схема которой показана на рис. 13 , представляет собой USB-контроллер.

Контроллер позволяет передавать видеоданные по USB-шине со скоростью до 7,5 Мбит/с. Нетрудно подсчитать, что такая полоса пропускания не позволит передавать видеопоток с приемлемой скоростью без предварительного сжатия. Собственно, компрессия - это и есть основное назначение USB-контроллера. Обеспечивая необходимую компрессию в реальном времени вплоть до степени сжатия 8:1, контроллер позволяет передавать видеопоток со скоростью 10-15 кадров в секунду при разрешении 640×480 и со скоростью 30 кадров в секунду при разрешении 320×240 и меньшем.

За компрессию данных отвечает блок OmniCE, реализующий фирменный алгоритм сжатия. OmniCE обеспечивает не только необходимую скорость видеопотока, но и быструю декомпрессию при минимальной загрузке центрального процессора (по крайней мере, по утверждению разработчиков). Степень сжатия, обеспечиваемая блоком OmniCE, варьируется от 4 до 8 в зависимости от требуемой скорости видеопотока.

КомпьютерПресс 12"2001

Твердотельные фотоэлектрические преобразователи (ТФЭП) изображений являются аналогами передающих ЭЛТ.

ТФЭП ведут начало с 1970г., с так называемых ПЗС и формируются на основе отдельных ячеек, представляющих собой конденсаторы МДП- или МОП-структуры. Одной из обкладок такого элементарного конденсатора является металлическая пленка М, второй – полупроводниковая подложка П (p - или n -проводимости), диэлектриком Д служит полупроводник, наносимый в виде тонкого слоя на подложку П. В качестве подложки П применяется кремний, легированный акцепторной (p -типа) или донорной (n -типа) примесью, а в качестве Д – окисел кремния SiO 2 (см. рис.8.8).

Рис. 8.8. Конденсатор МОП-структуры

Рис. 8.9. Перемещение зарядов под действием электрического поля

Рис. 8.10. Принцип работы трехфазной системы ПЗС

Рис. 8.11. Перемещение зарядов в двухфазной системе ПЗС

При подаче на металлический электрод напряжения, под ним образуется «карман» или потенциальная яма, в которой могут «скапливаться» неосновные носители (в нашем случае электроны), а основные носители, дырки, будут отталкиваться от М. На каком-то расстоянии от поверхности, концентрирование неосновных носителей может оказаться выше концентрации основных. Вблизи диэлектрика Д в подложке П возникает инверсионный слой, в котором тип проводимости изменяется на обратный.

Зарядовый пакет в ПЗС может быть введен электрическим путем или с помощью световой генерации. При световой генерации фотоэлектрические процессы, возникающие в кремнии, приведут к накоплению неосновных носителей в потенциальных ямах. Накопленный заряд пропорционален освещенности и времени накопления . Направленная передача заряда в ПЗС обеспечивается расположением МОП-конденсаторов на столь близком расстоянии друг от друга, что их обедненные области перекрываются и потенциальные ямы соединяются. При этом подвижный заряд неосновных носителей будет накапливаться в том месте, где глубже потенциальная яма.

Пусть под воздействием света накоплен заряд под электродом U 1 (см. рис.8.9). Если теперь на соседний электрод U 2 подать напряжение U 2 > U 1 , то рядом появится другая потенциальная яма, более глубокая (U 2 > U 1). Между ними возникнет область электрического поля и неосновные носители (электроны) будут дрейфовать (перетекать) в более глубокий «карман» (см. рис.8.9). Чтобы исключить двунаправленность в передаче зарядов, используют последовательность электродов, объединенных в группы по 3 электрода (см. рис.8.10).

Если, например, накоплен заряд под электродом 4 и необходимо передать его вправо, то на правый электрод 5 подается более высокое напряжение (U 2 > U 1) и заряд перетекает к нему и т.д.


Практически вся совокупность электродов подсоединена к трем шинам:

I – 1, 4, 7, …

II – 2, 5, 8, …

III – 3, 6, 9, …

В нашем случае напряжение «приема» (U 2) будет на электродах 2 и 5, но электрод 2 отделен от электрода 4, где хранится заряд, электродом 3 (у которого

U 3 = 0), поэтому перетекания влево не будет.

Трехтактная работа ПЗС предполагает наличие трех электродов (ячеек) на один элемент ТВ-изображения, что уменьшает полезную площадь, используемую световым потоком. Для сокращения числа ячеек (электродов) ПЗС металлические электроды и слой диэлектрика формируются ступенчатой формы (см. рис.8.11). Это позволяет при подаче на электроды импульсов напряжения создавать под разными его участками потенциальные ямы разной глубины. В более глубокую яму стекает большинство зарядов из соседней ячейки.

При двухфазной системе ПЗС сокращается число электродов (ячеек) в матрице на одну треть, что благоприятно сказывается на считывании потенциального рельефа.

ПЗС вначале предлагали использовать в вычислительной технике в качестве запоминающих устройств, регистров сдвига. В начале цепочки ставили инжектирующий диод, вводящий в систему заряд, а в конце цепи – выводной диод, обычно это n-p- или p-n- переходы МОП структуры, образующие с первым и последним электродами (ячейками) цепочки ПЗС полевые транзисторы.

Но скоро выяснилось, что ПЗС очень чувствительны к свету, и поэтому их лучше и эффективнее использовать в качестве светоприемников, а не в качестве запоминающих устройств.

Если ПЗС-матрица используется в качестве фотоприемника, то накопление заряда под тем или иным электродом может быть осуществлено оптическим методом (инжекция светом). Можно говорить, что ПЗС-матрицы по сути своей являются светочувствительными аналоговыми сдвиговыми регистрами. Сегодня ПЗС не используются в качестве запоминающих устройств (ЗУ), а только в качестве фотоприемников. Они используются в факсимильных аппаратах, сканерах (линейки ПЗС), в фотокамерах и видеокамерах (матрицы ПЗС). Обычно в ТВ камерах используются так называемые ПЗС-чипы.

Мы предполагали, что все 100% зарядов передаются в соседний карман. Однако на практике приходится считаться с потерями. Одним из источников потерь является «ловушки», способные захватывать и удерживать некоторое время заряды. Эти заряды не успевают перетечь в соседний карман, если скорость передачи будет велика.

Второй причиной является сам механизм перетекания. В первый момент перенос зарядов происходит в сильном электрическом поле - дрейф в Е . Однако по мере перетекания зарядов напряженность поля падает и дрейфовый процесс затухает, поэтому последняя порция перемещается за счет диффузии, в 100 раз медленнее дрейфа. Дождаться последней порции – значит снизить быстродействие. Дрейф дает более 90% переноса. Но именно последние проценты являются основными при определении потерь.

Пусть коэффициент передачи одного цикла переноса равен k = 0,99, полагая число циклов равным N = 100, определим суммарный коэффициент передачи:

0,99 100 = 0,366

Становится очевидным, что при большом числе элементов даже незначительные потери на одном элементе приобретают большое значение для цепочки в целом.

Поэтому вопрос о сокращении числа переносов зарядов в матрице ПЗС является особо важным. В этом отношении у матрицы двухфазной ПЗС коэффициент передачи зарядов будет несколько большим, чем в трехфазной системе.

Что такое ПЗС-матрица?

Немного истории

В качестве приёмника света раньше использовались фотоматериалы: фотопластинки, фотоплёнка, фотобумага. Позже появились телевизионные камеры и ФЭУ (фото-электрический умножитель).
В конце 60-х - начале 70-х годов начали разрабатываться так называемые "Приборы с Зарядовой Связью", что сокращённо пишется как ПЗС. На английском языке это выглядит как "charge-coupled devices" или сокращённо - CCD. В принципе ПЗС-матриц лежал факт, что кремний способен реагировать на видимый свет. И этот факт привёл к мысли что этот принцип может использоваться для получения изображений светящихся объектов.

Астрономы были одними из первых, кто распознал экстраординарные способности ПЗС для регистрации изображений. В 1972 году группа исследователей из JPL (Лаборатория Реактивного Движения, США) основала программу развития ПЗС для астрономии и космических исследований. Три года спустя, совместно с учеными Аризонского университета, эта команда получила первое астрономическое ПЗС изображение. На снимке Урана в ближнем инфракрасном диапазоне с помощью полутораметрового телескопа были обнаружены темные пятна возле южного полюса планеты, свидетельствующие о наличии там метана...

Применение ПЗС-матриц на сегодняшний день нашло широкое применение: цифровые фотокамеры, видеокамеры; ПЗС-матрица как фотокамеры стало возможным встраивать даже в мобильные телефоны.

Устройство ПЗС

Типичное устройство ПЗС (рис.1): на полупроводниковой поверхности находится тонкий (0.1-0.15 мкм) слой диэлектрика (обычно окисла), на котором располагаются полоски проводящих электродов (из металла или поликристаллического кремния). Эти электроды образуют линейную или матричную регулярную систему, причем расстояния между электродами столь малы, что существенными являются эффекты взаимного влияния соседних электродов. Принцип работы ПЗС основан на возникновении, хранении и направленной передаче зарядовых пакетов в потенциальных ямах, образующихся в приповерхностном слое полупроводника при приложении к электродам внешних электрических напряжений.



Рис. 1. Принципиальное устройство ПЗС-матрицы.

На рис. 1 символами С1, С2 и С3 обозначены МОП-конденсаторы (металл-окисел-полупроводник).

Если к какому-либо электроду приложить положительное напряжение U, то в МДП-структуре возникает электрическое поле, под действием которого основные носители (дырки) очень быстро (за единицы пикосекунд) уходят от поверхности полупроводника. В результате у поверхности образуется обедненный слой, толщина которого составляет доли или единицы микрометра. Неосновные носители (электроны), генерированные в обедненном слое под действием каких-либо процессов (например, тепловых) или попавшие туда из нейтральных областей полупроводника под действием диффузии, будут перемещаться (под действием поля) к границе раздела полупроводник-диэлектрик и локализоваться в узком инверсном слое. Таким образом, у поверхности возникает потенциальная яма для электронов, в которую они скатываются из обедненного слоя под действием поля. Генерированные в обедненном слое основные носители (дырки) под действием поля выбрасываются в нейтральную часть полупроводника.
В течение заданного интервала времени каждый пиксель постепенно заполняется электронами пропорционально количеству попавшего в него света. По окончании этого времени электрические заряды, накопленные каждым пикселем, по очереди передаются на "выход" прибора и измеряются.

Размер светочувствительного пикселя матриц составляет от одного-двух до нескольких десятков микрон. Размер же кристаллов галоидного серебра в светочувствительном слое фотопленки колеблется от 0.1 (позитивные эмульсии) до 1 микрона (высокочувствительные негативные).

Одним из основных параметров матрицы является, так называемая, квантовая эффективность. Это название отражает эффективность преобразования поглощенных фотонов (квантов) в фотоэлектроны и схоже фотографическому понятию светочувствительности. Поскольку энергия световых квантов зависит от их цвета (длины волны), невозможно однозначно определить сколько электронов родится в пикселе матрицы при поглощении им например потока из ста разнородных фотонов. Поэтому квантовая эффективность обычно дается в паспорте на матрицу как функция от длины волны, и на отдельных участках спектра может достигать 80%. Это гораздо больше, чем у фотоэмульсии или глаза (примерно 1%).

Какие бывают ПЗС-матрицы?

Если пиксели выстроены в один ряд, то приемник называется ПЗС-линейкой, если же участок поверхности заполнен ровными рядами - тогда приемник называется ПЗС-матрицей.

ПЗС-линейка имела широкий круг применения в 80-х и 90-х годах для астрономических наблюдений. Достаточно было провести изображение по ПЗС-линейке и оно появлялось на мониторе компьютера. Но это процесс сопровождался многими трудностями и поэтому в настоящее время ПЗС-линейки всё больше вытесняются ПЗС-матрицами.

Нежелательные эффекты

Одним из нежелательных побочных эффектов переноса заряда на ПЗС-матрице, который может мешать наблюдениям, являются яркие вертикальные полосы (столбы) на месте ярких зон изображения небольшой площади. Также к возможным нежелательным эффектам ПЗС-матриц можно отнести: высокий темновой шум, наличие "слепых" или "горячих" пикселей, неравномерность чувствительности по полю матрицы. Для уменьшения темнового шума используют автономное охлаждение ПЗС-матриц до температур -20°С и ниже. Либо же снимается темновой кадр (например с закрытым объективом) с такой же длительностью (экспозицией) и температурой, с какими был произведён предыдущий кадр. Впоследствии специальной программой на компьютере вычитается темновой кадр из изображения.

Телевизионные камеры на базе ПЗС-матриц хороши тем, что они дают возможность получать изображения со скоростью до 25 кадров в секунду с разрешением 752 x 582 пикселей. Но непригодность нектороых камер этого типа для астрономических наблюдений состоит в том, что в них производителем реализуются внутренние предобработки изображения (читать - искажения) для лучшего восприятия получаемых кадров зрением. Это и АРУ (автоматизированная регулировка управления) и т.н. эффект "резких границ" и прочие.

Прогресс…

В целом, использование ПЗС-приемников значительно удобнее, чем использование нецифровых приемников света, поскольку полученные данные сразу оказываются в виде, пригодном для обработки на компьютере и, кроме того, скорость получения отдельных кадров очень высока (от нескольких кадров в секунду до минут).

В настоящий момент быстрыми темпами развивается и совершенствуется производство ПЗС-матриц. Увеличивается количество "мегапикселей" матриц - количества отдельных пикселей на единицу площади матрицы. Улучшается качество изображений получаемых с помощью ПЗС-матриц и т.д.

Использованные источники:
1. 1. Виктор Белов. С точностью до десятых долей микрона.
2. 2. С.Е.Гурьянов. Знакомьтесь - ПЗС.

ПЗС-ма́трица (сокр. от «п рибор с з арядовой с вязью») или CCD-ма́трица (сокр. от англ. CCD , «Charge-Coupled Device») - специализированная аналоговая интегральная микросхема , состоящая из светочувствительных фотодиодов , выполненная на основе кремния , использующая технологию ПЗС - приборов с зарядовой связью.

ПЗС-матрицы выпускаются и активно используются компаниями Nikon , Canon , Sony , Fuji , Kodak , Matsushita , Philips и многими другими. В России ПЗС-матрицы сегодня разрабатывает и выпускает ЗАО "НПП «ЭЛАР», С.-Петербург.

    1 История ПЗС-матрицы

    2 Общее устройство и принцип работы

    • 2.1 Пример субпикселя ПЗС-матрицы с карманом n-типа

    3 Классификация по способу буферизации

    • 3.1 Матрицы с полнокадровым переносом

      3.2 Матрицы с буферизацией кадра

      3.3 Матрицы с буферизацией столбцов

    4 Классификация по типу развёртки

    • 4.1 Матрицы для видеокамер

    5 Размеры фотографических матриц

    6 Некоторые специальные виды матриц

    • 6.1 Светочувствительные линейки

      6.2 Координатные и угловые датчики

      6.3 Матрицы с обратной засветкой

    7 Светочувствительность

    8 См. также

    9 Примечания

История ПЗС-матрицы

Прибор с зарядовой связью был изобретен в 1969 году Уиллардом Бойлом и Джорджем Смитом в Лабораториях Белла (AT&T Bell Labs ). Лаборатории работали над видеотелефонией (англ. picture phone ) и развитием «полупроводниковой пузырьковой памяти» (англ. semiconductor bubble memory ). Приборы с зарядовой связью начали свою жизнь как устройства памяти, в которых можно было только поместить заряд во входной регистр устройства. Однако способность элемента памяти устройства получить заряд благодаря фотоэлектрическому эффекту сделала данное применение ПЗС устройств основным.

В 1970 году исследователи Bell Labs научились фиксировать изображения с помощью простых линейных устройств.

Впоследствии под руководством Кацуо Ивама (Kazuo Iwama ) компания Sony стала активно заниматься ПЗС, вложив в это крупные средства, и сумела наладить массовое производство ПЗС для своих видеокамер.

Ивама умер в августе 1982 года . Микросхема ПЗС была установлена на его надгробной плите для увековечения его вклада.

В январе 2006 года за работы над ПЗС У. Бойл и Дж. Смит были удостоены награды Национальной Инженерной Академии США (англ. National Academy of Engineering ).

В 2009 году эти создатели ПЗС-матрицы были награждены Нобелевской премией по физике .

Общее устройство и принцип работы

ПЗС-матрица состоит из поликремния , отделённого от кремниевой подложки, у которой при подаче напряжения через поликремневые затворы изменяются электрические потенциалы вблизи электродов .

До экспонирования обычно подачей определённой комбинации напряжений на электроды происходит сброс всех ранее образовавшихся зарядов и приведение всех элементов в идентичное состояние.

Далее комбинация напряжений на электродах создаёт потенциальную яму, в которой могут накапливаться электроны, образовавшиеся в данном пикселе матрицы в результате воздействия света при экспонировании. Чем интенсивнее световой поток во время экспозиции , тем больше накапливается электронов в потенциальной яме, соответственно тем выше итоговый заряд данного пикселя .

После экспонирования последовательные изменения напряжения на электродах формируют в каждом пикселе и рядом с ним распределение потенциалов, которое приводит к перетеканию заряда в заданном направлении, к выходным элементам матрицы.

Пример субпикселя ПЗС-матрицы с карманом n-типа

Архитектура пикселей у производителей разная.

Схема субпикселей ПЗС-матрицы с карманом n-типа (на примере красного фотодетектора)

Обозначения на схеме субпикселя ПЗС :

    1 - Фотоны света, прошедшие через объектив фотоаппарата;

    2 - Микролинза субпикселя;

    3 - R - красный светофильтр субпикселя, фрагмент фильтра Байера ;

    4 - Прозрачный электрод из поликристаллического кремния или оксида олова ;

    5 - Изолятор (оксид кремния);

    6 - Кремниевый канал n-типа. Зона генерации носителей (зона внутреннего фотоэффекта);

    7 - Зона потенциальной ямы (карман n-типа), где собираются электроны из зоны генерации носителей;

    8 - Кремниевая подложка p-типа;

Классификация по способу буферизации

[Матрицы с полнокадровым переносом

Матрицы с буферизацией кадра

Матрицы с буферизацией столбцов

Размеры фотографических матриц

Координатные и угловые датчики

Матрицы с обратной засветкой

В классической схеме ПЗС-элемента, при которой используются электроды из поликристаллического кремния, светочувствительность ограничена по причине частичного рассеивания света поверхностью электрода. Поэтому при съёмке в особых условиях, требующих повышенной светочувствительности в синей и ультрафиолетовой областях спектра, применяются матрицы с обратной засветкой (англ. back - illuminated matrix ). В сенсорах такого типа регистрируемый свет падает на подложку, но для требуемого внутреннего фотоэффекта подложка шлифуется до толщины 10-15 мкм . Данная стадия обработки существенно увеличивала стоимость матрицы, устройства получались весьма хрупкими и требовали повышенной осторожности при сборке и эксплуатации. А при использовании светофильтров, ослабляющих световой поток, все дорогостоящие операции по увеличению чувствительности теряют смысл. Поэтому матрицы с обратной засветкой применяются в основном в астрономической фотографии .

Светочувствительность

Светочувствительность матрицы складывается из светочувствительности всех её фотодатчиков (пикселей) и в целом зависит от:

    интегральной светочувствительности , представляющей собой отношение величины фотоэффекта к световому потоку (в люменах) от источника излучения нормированного спектрального состава;

    монохроматической светочувствительности" - отношения величины фотоэффекта к величине световой энергии излучения (в миллиэлектронвольтах), соответствующей определённой длине волны;

    набор всех значений монохроматической светочувствительности для выбранной части спектра света составляет спектральную светочувствительность - зависимость светочувствительности от длины волны света;