Азы радиоэлектроники. Начинающему радиолюбителю простые схемы,простейшие схемы,литература для начинающего радиолюбителя

Научиться можно только тому, что любишь.
Гёте И.

"Как самостоятельно изучить электронику с нуля?" — один из самых популярных вопросов на радиолюбительских форумах. При этом те ответы, которые я нашел, когда сам его задавал, мне мало помогли. Поэтому я решил дать свой.

Это эссе описывает общий подход к самообучению, а так как оно стало ежедневно получать множество просмотров, то я решил его развить и сделать небольшое руководство по самостоятельному изучению электроники и рассказать как это делаю я. Подписывайся на рассылку -- будет интересно!

Творчество и результат

Чтобы что-то изучить надо это полюбить, гореть интересом и регулярно упражняться. Кажется, я только что озвучил прописную истину... Тем не менее. Для того, чтобы с лёгкостью и удовольствием изучать электронику надо её любить и относится к ней с любопытством и восхищением. Сейчас уже для всех привычно иметь возможность отправить видеосообщение на другой конец земли и мгновенно получить ответ. А это одно из достижений электоники. 100 лет труда тысяч ученых и инженеров.

Как нас обычно учат

Классический подход, который проповедуется в школах и университетах всего мира можно назвать подходом снизу-вверх. Сначала тебе рассказывают что такое электрон, атом, заряд, ток, резистор, конденсатор, индуктивность, заставляют решить сотни задач на нахождение токов в резисторных цепях, потом ещё сложней и т.д. Такой подход схож с восхождением на гору. Но лезть в гору сложней, чем спускаться. И многие сдаются так и не добравшись до вершины. Это верно в любом деле.

А что если спускаться с горы? Главная идея в том, чтобы сначала получить результат, а затем разобрать детально почему работает именно так. Т.е. это классический подход детских радиокружков. Он даёт возможность получить ощущение победы и успеха, которые в свою очередь стимулируют желание изучать электронику дальше. Понимаешь, очень сомнительная польза в изучении одной теории. Надо обязательно практиковаться, так как не все из теории 100% ложится на практику.

Есть такая старая инженерная шутка гласит: "Раз ты хорош в математике, то тебе надо пойти в электронику". Типичная чушь. Электроника -- это творчество, новизна идей, практика. И не обязательно впадать в дебри теоритический расчетов, чтобы создавать электронные устройства. Ты вполне можешь освоить необходимые знания самостоятельно. А математику подтянешь в процессе творчества.

Главное -- это понять основной принцип, и только потом тонкости. Такой подход просто переворачивает мир самостоятельного изучения. Он не нов. Так рисуют художники: сначала набросок, затем детализация. Так проектируют различные большие системы и т.д. Такой подход похож на "метод тыка", но только если не искать ответа, а тупо повторять одно и тоже действие.

Понравилось устройство? Собирай, разбирайся почему оно сделано именно так и какие идеи заложены в его конструкцию: почему именно эти детали используются, почему именно так соединены, какие принципы используются? А можно ли что-нибудь улучшить или просто заменить какую-нибудь деталь?

Конструирование -- это творчество, но ему можно научиться. Для это надо только выполнять простые действия: читать, повторять чужие устройства, обдумывать результат, наслаждаться процессом, быть смелым и уверенным в себе.

Математика в электронике

В радиолюбительском конструировании считать несобственные интегралы вряд ли придётся, но знание закона Ома, правил Кирхгофа, формул делителя тока/напряжения , владение комплексной арифметикой и тригонометрией может пригодиться. Это азы азов. Хочешь уметь больше - люби математику и физику. Это не только полезно, но и чрезвычайно занимательно. Конечно, это не обязательно. Можно делать достаточно крутые устройства вообще ничего этого не зная. Только это будут устройства, придуманные кем-то другим.

Когда я, после очень длительного перерыва, понял, что электроника снова меня зовёт и манит в ряды радиолюбителей, то сразу стало ясно, что мои знания давно уже улетучились, а доступность компонентов и технологий стала шире. Что я стал делать? Путь был только один — признать себя полным нолём и стартовать из ничего: знакомых опытных электронщиков нет, какой-либо программы самообучения тоже нет, форумы я отбросил потому, что они представляют собой свалку информации и отнимают много времени (какой-то вопрос можно там узнать вкратце, но получить цельные знания очень сложно — там все такие важные, что лопнуть можно!)

И тогда япошел самым старым и простым путём: через книги. В хороших книгах тематика обсуждается наиболее полно и нет пустой болтовни. Конечно, в книгах есть и ошибки, и косноязычие. Просто надо знать какие книги читать и в каком порядке. После прочтения хорошо написанных книг и результат будет отличным.

Мой совет прост, но полезен — читайте книги и журналы. Я, к примеру, хочу не только повторять чужие схемы, а уметь конструировать свои. Создавать -- это интересно и весело. Именно таким должно быть моё хобби: интересным и занимательным. Да и ваше тоже.

Какие книги помогут освить электронику

Много времени я провел выискивая подходящие книги. И понял, что надо сказать спасибо СССР. Такой массив полезных книг после него остался! СССР можно ругать, можно хвалить. Смотря за что. Так вот за книги и журналы для радиолюбителей и школьников надо благодарить. Тиражи бешеные, авторы отборные. До сих пор можно найти книги для новичков, которые дадут фору всем современным. Поэтому есть смысл пройтись по букинистам и поспрашивать (да и скачать все можно).

  1. Климчевский Ч. - Азбука радиолюбителя.
  2. Эймишен. Электроника? Нет ничего проще.
  3. Б.С.Иванов. Осциллограф - ваш помощник (как работать с осциллографом)
  4. Хабловски. И. Электроника в вопросах и ответах
  5. Никулин, Повный. Энциклопедия начинающего радиолюбителя
  6. Ревич. Занимательная электроника
  7. Шишков. Первые шаги в радиоэлектронике
  8. Колдунов. Радиолюбительская азбука
  9. Бессонов В.В. Электроника для начинающих и не только
  10. В. Новопольский - Работа с осциллографом

Это мой список книг для самых "маленьких". Обязательно следует пролистывать и журналы Радио с 70х по 90е гг. После этого можно уже читать:

  1. Гендин. Советы по конструированию
  2. Кауфман, Сидман. Практическое руководство по расчетам схем в электронике
  3. Волович Г. Схемотехника аналоговых и аналого-цифровых электронных устройств
  4. Титце, Шенк. Полупроводниковая схемотехника. 12-е изд.
  5. Шустов М. А. Практическая схемотехника.
  6. Гаврилов С.А.-Полупроводниковые схемы. Секреты разработчика
  7. Барнс. Эллектронное конструирование
  8. Миловзоров. Элементы информационных систем
  9. Ревич. Практическое программирвоание МК AVR
  10. Белов. Самоучитель по Микропроцессорной технике
  11. Суэмацу. Микрокомпьютерные системы управления. Первое знакомство
  12. Ю.Сато. Обработка сигналов
  13. Д.Харрис, С.Харрис. Цифровая схемотехника и архитектура компьютера
  14. Янсен. Курс цифровой электроники

Думаю, эти книги ответят на множество вопросов. Более специальные знания можно почерпнуть из более специальных книг: по аудиоусилителям, по микроконтроллерам и т.д.

И конечно же нужно практиковаться. Без паяльника вся теория в прорубь. Это как водить машину в голове.
Кстати, более подробные обзоры некоторых книг из списка выше можешь .

Что еще следует делать?

Учиться читать схемы устройств! Учиться анализировать схему и стараться понять как работает устройство. Этот навык приходит только с тренировкой. Начинать надо с самых простых схем, постепенно наращивая сложность. Благодаря этому ты не только изучишь обозначения радиоэлементов на схемах, но и научишься их анализировать, а также запомнишь ходовые приемы и решения.

Дорого ли заниматься электроникой

К сожалению, деньги потребуются! Радиолюбительство не самое дешевое хобби и потребуется некоторый минимум фин. вложений. Но начать можно практически без вложений: книги можно доставать буккросингах или брать в библиотеках, читать в электронном виде, приборы можно купить для начала самые простые, а более продвинутые купить тогда, когда будет не хватать возможностей простых приборов.

Сейчас купить можно всё: осциллограф, генератор, источник питания и другие измерительные приборы для домашней лаборатории — всё это следует со временем приобрести (или сделать самому то, что в домашних условиях сделать можно)

Но когда ты маленький и начинающий можно обойтись пальником и деталями из сломанный техники, которую кто-нибудь выкидывает или просто валялась дома давно без дела. Главное иметь желание! А остальное приложится.

Что делать, если не получается?

Продолжать! Редко что-то получается хорошо с первого раза. А бывает так, что результатов нет и нет -- будто упёрся в невидимый барьер. Кто-то этот барьер преодолевает за полгода-год, а другие только через несколько лет.

Если сталкиваешься со сложностями, то не надо рвать волосы и думать о себе, что ты самый тупой на свете, так как Вася понимает, что такое обратный ток коллектора, а вот ты все никак не можешь понять почему он играет роль. Может быть Вася просто надувает щёки, а сам ни бум-бум =)

Качествои и скорость самообучения зависят не только от личных способностей, но и от окружения. Вот тут надо радоваться существованию форумов. На них все таки встречаются (и часто) вежливые профессионалы, готовые с радостью учить новичков. (Есть еще всякие грымзы, но считаю таких людей потерянной веткой эволюции. Мне их жаль. загибать пальцы — это понты самого низкого уровня. Лучше просто молчать)

Полезные программы

Обязательно следует ознакомиться с САПРами: рисовалками принципиальных схем и печатных плат, симуляторами, — полезные и удобные программы (Eagele, SprintLayout и т.д.). Я выделил на сайте целый раздел под них. Время от времени там будут появляться материалы по работе с программами, которые использую сам.

И самое главное — испытывайте радость творчества от радиолюбительства! На мой взгляд к любому делу следует относится как к игре. Тогда оно будет и занимательным и познавательным.

О практике

Обычно каждый радиолюбитель всегда знает какое устройство хочет сделать. Но если ты еще не определился, то я посоветую собрать источник питания, разобраться для чего нужна и как работает каждая его часть. Затем можно обратить внимание на усилители. И собрать, например, аудиоусилитель.

Можно поэксперементировать с самыми простыми электрическими цепями: делителем напряжения, диодным выпрямителем, фильтрами ВЧ/СЧ/НЧ, транзистором и однотранзисторными каскадами, простейшими цифровыми схемами, конденсаторами, индуктивностями. Всё это пригодится в дальнейшем, а знание таких основных цепей и компонентов придаст уверенность в своих силах.

Когда шаг за шагом идешь от простейшего к более сложному, тогда знания порционно накладываются друг на друга и легче освоить более сложные темы. Но иногда не ясно из каких кирпичиков и как следует сложить здание. Поэтому иногда следует действовать наоборот: поставить цель собрать какое-нибудь устройство и освоить множество вопросов при его сборке.

Да прибует с тобой Ом, Ампер и Вольт:

Добрый день, уважаемое сообщество.

Меня все время удивляли люди, которые понимают в радиоэлектронике. Я всегда их считал своего рода шаманами: как можно разобраться в этом обилии элементов, дорожек и документации? Как можно только взглянуть на плату, пару раз «тыкнуть» осциллографом в только одному ему понятные места и со словами «а, понятно» взять паяльник в руки и воскресить, вроде как почившую любимую игрушку. Иначе как волшебством это не назовёшь.

Расцвет радиоэлектроники в нашей стране пришёлся на 80-е годы, когда ничего не было и все приходилось делать своими руками. С той поры прошло много лет. Сейчас у меня складывается впечатление, что вместе с поколением 70-х уходят и знания с умением. Мне не повезло: половину эпохи расцвета меня планировали родители, а вторую половину я провёл играя в кубики и прочие машинки. Когда в 12 лет я пошёл в кружок «Юный техник» - это были не самые благополучные времена, и ввиду обстоятельств через полгода пришлось с кружком «завязать», но мечта осталась.

По текущей деятельности я программист. Я осознаю, что найти ошибку в большом коде ровно тоже самое, что найти «плохой» конденсатор на плате. Сказано - сделано. Так как по натуре я люблю учиться самостоятельно - пошёл искать литературу. Попыток начать было несколько, но каждый раз при начале чтения книг я упирался в то, что не мог разобраться в базовых вещах, например, «что есть напряжение и сила тока». Запросы к великому и ужасному Гуглу также давали шаблонные ответы, скопированные из учебников. Попробовал найти место в Москве, где можно поучиться этому мастерству - поиски не закончились результатом.

Итак, добро пожаловать в кружок начинающего радиолюбителя.

Я люблю учиться и узнавать что-то новое, но просто знания мне мало. В школе мне привили навык «теорему нельзя выучить - её можно только понять» и теперь я несу это правило по жизни. Окружающие, конечно, смотрят с недоумением, когда вместо того, чтобы взять готовые решения и сложить по-быстрому их воедино я начинаю изобретать свои велосипеды. Второй довод для написания статьи - это мысль «если ты понимаешь предмет - ты можешь его с лёгкостью объяснить другому». Ну что ж, попробую сам понять и другим объяснить.

Первая моя цель, прямо как по книгам - аналоговый радиоприёмник, а там пойдем и в цифру.

Сразу хочу предупредить - статья написана дилетантом в радиоэлектронике и физике и является скорее рассуждением. Все поправки буду рад выслушать в комментариях.

Итак, чем что такое напряжение, ток и прочее сопротивление? В большинстве случаев для понимания электрических процессов приводят аналогию с водой. Мы не будем отходить от этого правила, правда с небольшими отклонениями.
Представим трубу. Для контроля некоторых показателей мы включим в неё несколько счётчиков расхода воды, манометров для измерения давления, и элементы, которые мешают току воды.

В электрическом эквиваленте схема будет выглядеть примерно так:

Напряжение

Курс физики нам говорит, что напряжение - это разность потенциалов между двумя точками. Если перекладывать определение на нашу трубу с водой, то потенциал - это давление, т. е. напряжение - это разница давлений между двумя точках. Этим и объясняется принцип его измерения вольтметром. Получается, что если попытаться измерить напряжение в двух соседних точках трубы, где нет никаких сопротивлений движению воды (отсутствуют краны и сужения, внутренним трением воды о стенки трубы мы пока пренебрежём) и давление не меняется - то разница давлений в этих двух точках будет равна нулю. Если же сопротивление присутствует, происходит снижение давления (в электрическом эквиваленте падение напряжения), то мы получим величину напряжения. Сумма напряжений на всех элементах равна напряжению на источнике. Т.е. если сложить показания всех вольтметров на нашей схеме, мы получим напряжение батареи.

Например, будем считать, что наша батарея даёт напряжение 5 вольт и резисторы имеют сопротивление 100 и 150 Ом. Тогда по закону Ома U=IR, или I=U/R, получаем, что по цепи течёт ток с силой I=5/250=20мА. Так как сила тока во всей цепи одинакова (пояснения чуть дальше), из того же закона Ома следует, что первый вольтметр покажет U=0,02*100=2В, а второй U=0,02*150=3В.

Сила тока

Из того же курса физики известно, что это количество заряда за единицу времени. В водяном эквиваленте - это сама вода, а её измеритель, амперметр - есть счётчик воды. Опять таки становится понятно, почему амперметр подключается в разрыв цепи. Если его подключить на место, например, вольтметра V1, то образуется новая цепь, из которой будет исключено сопротивление R1, а значит как минимум мы получим некорректные значения (что будет «как максимум»станет понятно чуть позже). Вернёмся к нашей водичке - подключение амперметра параллельно любому из элементов означает, что часть воды пойдёт по основной трубе, а другая часть пойдёт через счётчик - и как раз этот счётчик будет врать.

Ах, да, о цепи. В большинстве литературы что мне попадалось фраза о том, что батарейки являются лишь источником напряжения, и только сопротивления являются источником тока. Как же так? Как сопротивление может являться источником чего-то ещё, кроме как источником сопротивления (тепло пока не в счёт)? Все верно, если опираться на закон Ома I=U/R, однако сколько не прикладывай сопротивление, ток не появится, пока не будет источника напряжения и замкнутой цепи (ровно как если заткнуть справа нашу трубу пробкой что не делай - счётчики воды будут молчать)!

Сопротивление в цепи просто должно присутствовать, ведь если оно равно нулю - сила тока устремится в бесконечность. Такую ситуацию мы видим при «замыкании» - искры это и есть очень большая сила тока, а если точнее теплота, равная Q=(I^2)Rt (формула действительна при постоянной силе тока и сопротивления).

Ещё одно важное замечание - при рассмотрении расчёта напряжения и силы тока я не нашёл уточнений, что в замкнутой цепи на всех участках сила тока будет одинаковой. Т.е. все счётчики будут крутиться с одной скоростью и показывать одни и те же значения. По сути, количество тока, который прошёл по цепи аналогичен количеству «воды», вышедшей из трубы.

Сопротивление

Пожалуй, самое простое явление для объяснения. Вернувшись к нашей трубе, сопротивление - это есть все возможные сужения и краны. Согласно тому, что мы разобрали выше - при повышении сопротивления уменьшается ток во всей цепи и понижает напряжение на концах сопротивления. Или снова в водяных реалиях - закрытие нашего крана на пол оборота вызовет уменьшение расхода воды на всех счётчиках и пропорциональное (в зависимости от сопротивления) снижение давления на манометрах.

Так куда же все падает и уменьшается? Вот здесь аналогия с водой неоднозначна, так как в случае с электричеством «излишки» превращаются в тепло и рассеиваются. Количество теплоты, которое при этом выделяется, снова можно рассчитать формулой Q=(ΔI^2)Rt (снова при постоянном сопротивлении). Если поделить количество теплоты на время, получим мощность, которую нужно применить при выборе самого резистора P=Q/t=(ΔI^2)R.

Курить не круто!

Когда я ходил в кружок Юный техник более старшие товарищи проводили «эксперименты» с прикуриванием от электричества. Для этого они брали блок питания, подключали к нему резисторы малой мощности и повышали напряжение. Повышали до тех пор, пока он не раскалялся до красна, как автомобильный прикуриватель. После этого, практически через мгновение резистор «перегорал» и отправлялся в мусорное ведро.

С постоянным током все понятно, а переменный?

Переменный ток, как таковой в радиоэлектронике используется редко. Его как минимум делают постоянным и в большинстве случаев снижают. Видимо по этому в попадавшейся мне литературе про него практически не говорится.

В чем же его отличие? C обывательской точки зрения, в малом - направление тока в нем меняется. Здесь аналогия с трубой не совсем уместна, первое что приходит в голову - шейкер для коктейлей (жидкость при смешивании в нем гуляет туда-сюда). Нам в радиоэлектронике нужно знать, как идёт ток в нашей цепи, чтобы получить от него то, что мы хотим.

Следующее, с чем я пошёл разбираться - полупроводники. Дырки? Электроны? Ключевой режим? Каскады? Полевой транзистор, то тот, который нашли в поле? Пока ничего не понятно…

Теги: Добавить метки

Давайте для начала рассмотрим обычную пальчиковую батарейку. На ее этикетке вы можете прочитать, что она имеет напряжение 1,5 вольта… так ли это на самом деле? Давайте проверим!

Для того чтобы это выяснить нам понадобится цифровой мультиметр. Для начала стоит приобрести недорогую модель, обязательно с ручным выбором диапазона измерения.

  • черный провод мультиметра необходимо подключить к разъему „COM”;
  • красный провод необходимо подключить к разъему для измерения напряжения „V” (Внимание ! Подключение проводов иным образом может привести к повреждению прибора!)
  • мы ожидаем получить значение около 1,5 вольта, поэтому ручку мультиметра устанавливаем на значение «20» в области DCV или V- (буква V с тире, означает постоянный ток) и если это необходимо, включаем прибор (некоторые модели включаются при повороте ручки), при этом мультиметр должен показать 0;
  • металлическими наконечниками щупов мультиметра касаемся выводов батарейки… но какой куда? Попробуйте обе комбинации – результат должен быть один и тот же, только в одном случае будет отражаться положительное число, а в другом случае то же число, но только со знаком минус.
  • считываем значение – в нашем случае напряжение новой батарейки составляет 1,62 вольт;
  • выключаем мультиметр.

ВНИМАНИЕ! Во время проведения измерений, чтобы не повредить мультиметр, всегда выбирайте диапазон измерения большее максимально ожидаемого результата! Если мы не знаем чего ожидать, то безопаснее будет выбрать более высокий диапазон и в дальнейшем уменьшить его для получения максимально точного результата.

Поскольку мы научились измерять напряжение мультиметром, то давайте померим и другие батарейки/аккумуляторы! Мы для тестирования выбрали:

  • заряженный аккумулятор 1,2 вольта, размер АА — мультиметр показал 1,34 вольт.
  • частично разряженный аккумулятор Ni-Mh (используемый в камере) — мультиметр наш показал 1,25 вольт.

Далее нам понадобятся 4 батарейки формата ААА, кассета для 4 батареек и макетная плата (что такое макетная плата и как ею пользоваться можно узнать ). Установим наши 4 батарейки в кассету. Затем концы проводов кассеты вставим в отверстия макетной платы так, как это показано на следующих фото:

Следующим шагом будет подготовка соединительных проводов (перемычек), их еще называют джамперами. Это такие провода, которые будут объединять отдельные радиодетали между собой на макетной плате.

Конечно же, какое-то количество джамперов входит в комплект вместе с макетной платой. Но если их у вас нет, то не беда, их можно сделать самим.

Для этого нам понадобится: компьютерный кабель, так называемая витая пара, ножницы или острый нож.

Для начала необходимо снять изоляцию с кабеля. Внутри кабеля мы видим скрученные между собой тонкие провода. Следующим шагом будет нарезка проводов необходимой длинны. И последнее что необходимо – это зачистить с обоих концов изоляцию примерно на 1 см.

Теперь мы на макетной плате соберем нашу первую схему. Возьмем резистор 22кОм с цветными полосками (красный-красный-оранжевый-золотой). А какое реальное сопротивление данного резистора? Давайте проверим это мультиметром!

  • красный провод подключите к разъему » Ω «
  • мы ожидаем получить значение около 22кОм, поэтому установите регулятор на значение 200к в секции Ω и, если это необходимо, включите прибор (некоторые модели включаются при повороте диска), который до измерения должен показать 0;
  • металлическими наконечниками щупов мультиметра коснитесь ножек резистора;
  • смотрим значение – у нас сопротивление составляет 22,1кОм;
  • выключаем мультиметр.

Как и в случае с батарейкой, значение, измеренное мультиметром, отличается от номинального значения тестируемого элемента (резистора). Напомним, что золотая полоска на резисторе (значение цветных полосок смотрите в этой ) означает допуск 5%, то есть 22кОм x 5% = 1,1кОм

Поэтому диапазон отклонения сопротивления для нашего резистора может быть в пределах от 20,9кОм до 23,1кОм.

Теперь соединим на макетной плате кассету с батарейками и резистор так, как показано на картинке ниже:

В электронике чтобы изобразить связи между отдельными элементами используют принципиальные схемы. В нашем случае схема будет выглядеть следующим образом:

Символ обозначенный как B1 — это наши батарейки, обеспечивающие общее напряжение: 4 х 1,5В = 6В. наш резистор на 22кОм обозначен символом R1.
В соответствии с :

I = U / R
I = 6В / 22кОм
I = 6В / 22000 Ом
I = 0,000273 А
I = 273мкА

Теоретически, ток в схеме должен составлять 273мкА. Вспомним, что сопротивление резистора может отличаться в пределах 5% (у нас это 22,1кОм). Напряжение, поступающее от батареек, также может отличаться от номинальных 6 вольт, и оно будет зависеть от степени разряда этих батареек.

Давайте посмотрим, какое реальное напряжения идет от 4 батареек по 1,5 В.

  • черный провод подключите к разъему „COM”;
  • красный провод подключите к разъему „V”
  • мы ожидаем получить значение около 6В, поэтому установите регулятор на значение «20» в секции DCV или V-, если это необходимо, включите прибор, который должен изначально показать 0;
  • металлическими наконечниками щупов мультиметра прикоснитесь проводов выходящих из кассеты батареек;
  • смотрим результат – у нас напряжение составляет 6,5 В;
  • выключаем мультиметр.

Подставим полученные значения в формулу, вытекающую из закона Ома:

I = U / R
I = 6,5 В / 22,1кОм
I = 6,5 В / 22100 Ом
I = 0,000294 А
I = 294мкА

Для подтверждения достоверности наших расчетов, нам не остается ничего другого, кроме как измерить фактический ток мультиметром.

  • черный провод подсоедините к разъему „COM”;
  • красный провод подключите к разъему „mA”;
  • мы ожидаем получить значение 294 мкА, поэтому устанавливаем регулятор на значение 2000µ в секции A-, если это необходимо, включите прибор, который должен изначально показать 0;
  • для измерения тока, необходимо мультиметр подключить в разрыв цепи. Металлическими наконечниками щупов мультиметра касаемся, ножки джемпера соединяющий положительный полюс батареи и ножки резистора;
  • считываем значение – у нас сила тока составляет 294 мкA;
  • выключаем мультиметр.

И под конец данного урока приведем схему, отражающую различия подключения мультиметра при измерении напряжения и силы тока:

С чего начать изучение радиоэлектроники? Как собрать свою первую электронную схему? Можно ли быстро научиться паять? Именно для тех, кто задаётся такими вопросами и создан раздел "Старт " .

Н а страницах данного раздела публикуются статьи о том, что в первую очередь должен знать любой новичок в радиоэлектронике. Для многих радиолюбителей, электроника, когда-то бывшая просто увлечением, со временем переросла в профессиональную среду деятельности, помогло в поиске работы, в выборе профессии. Делая первые шаги в изучении радиоэлементов, схем, кажется, что всё это кошмарно сложно. Но постепенно, по мере накопления знаний загадочный мир электроники становиться более понятен.

Е сли Вас всегда интересовало, что же скрывается под крышкой электронного прибора, то Вы зашли по адресу. Возможно, долгий и увлекательный путь в мире радиоэлектроники для Вас начнётся именно с этого сайта!

Для перехода на интересующую статью кликните ссылку или миниатюрную картинку, размещённую рядом с кратким описанием материала.

Измерения и измерительная аппаратура

Любому радиолюбителю требуется прибор, которым можно проверить радиодетали. В большинстве случаев любители электроники используют для этих целей цифровой мультиметр. Но им можно проверить далеко не все элементы, например, MOSFET-транзисторы. Вашему вниманию предлагается обзор универсального ESR L/C/R тестера, которым также можно проверить большинство полупроводниковых радиоэлементов.

Амперметр – один из самых важных приборов в лаборатории начинающего радиолюбителя. С помощью его можно замерить потребляемый схемой ток, настроить режим работы конкретного узла в электронном приборе и многое другое. В статье показано, как на практике можно использовать амперметр, который в обязательном порядке присутствует в любом современном мультиметре.

Вольтметр – прибор для измерения напряжения. Как пользоваться этим прибором? Как он обозначается на схеме? Подробнее об этом вы узнаете из этой статьи.

Из этой статьи вы узнаете, как определить основные характеристики стрелочного вольтметра по обозначениям на его шкале. Научитесь считывать показания со шкалы стрелочного вольтметра. Вас ждёт практический пример, а также вы узнаете об интересной особенности стрелочного вольтметра, которую можно использовать в своих самоделках.

Как проверить транзистор? Этим вопросом задаются все начинающие радиолюбители. Здесь вы узнаете, как проверить биполярный транзистор цифровым мультиметром. Методика проверки транзистора показана на конкретных примерах с большим количеством фотографий и пояснений.

Как проверить диод мультиметром? Здесь подробно рассказано о том, как можно определить исправность диода цифровым мультиметром. Подробное описание методики проверки и некоторые «хитрости» использования функции тестирования диодов цифрового мультиметра.

Время от времени мне задают вопрос: «Как проверить диодный мост?». И, вроде бы, о методике проверки всевозможных диодов я уже рассказывал достаточно подробно, но вот способ проверки диодного моста именно в монолитной сборке не рассматривал. Заполним этот пробел.

Если Вы ещё не знаете, что такое децибел, то рекомендуем неспеша, внимательно прочитать статью про эту занимательную единицу измерения уровней. Ведь если Вы занимаетесь радиоэлектроникой, то жизнь рано или поздно заставит Вас понять, что такое децибел.

Часто на практике требуется перевод микрофарад в пикофарады, миллигенри в микрогенри, миллиампер в амперы и т.п. Как не запутаться при пересчёте значений электрических величин? В этом поможет таблица множителей и приставок для образования десятичных кратных и дольных единиц.

В процессе ремонта и при конструировании электронных устройств возникает необходимость в проверке конденсаторов. Зачастую с виду исправные конденсаторы имеют такие дефекты, как электрический пробой, обрыв или потерю ёмкости. Провести проверку конденсаторов можно с помощью широко распространённых мультиметров.

Эквивалентное последовательное сопротивление (или ЭПС) - это весьма важный параметр конденсатора. Особенно это касается электролитических конденсаторов, работающих в высокочастотных импульсных схемах. Чем же опасно ЭПС и почему необходимо учитывать его величину при ремонте и сборке электронной аппаратуры? Ответы на эти вопросы вы найдёте в данной статье.

Мощность рассеивания резистора является важным параметром резистора напрямую влияющего на надёжность работы этого элемента в электронной схеме. В статье рассказывается о том, как оценить и рассчитать мощность резистора для применения в электронной схеме.

Мастерская начинающего радиолюбителя

Как читать принципиальные схемы? С этим вопросом сталкиваются все начинающие любители электроники. Здесь вы узнаете о том, как научиться различать обозначения радиодеталей на принципиальных схемах и сделаете первый шаг в понимании устройства электронных схем.

Блок питания своими руками. Блок питания – это непременный атрибут в мастерской радиолюбителя. Здесь вы узнаете, как самостоятельно собрать регулируемый блок питания с импульсным стабилизатором.

Самый востребованный прибор в лаборатории начинающего радиолюбителя - это регулируемый блок питания. Здесь вы узнаете, как с минимумом усилий и временных затрат собрать регулируемый блок питания 1,2...32V на базе готового модуля DC-DC преобразователя.

Сделать своими руками простейшие электронные схемы для использования в быту можно, даже не имея глубоких познаний в электронике. На самом деле на бытовом уровне радио – это очень просто. Знания элементарных законов электротехники (Ома, Кирхгофа), общих принципов работы полупроводниковых устройств, навыков чтения схем, умения работать с электрическим паяльником вполне достаточно, чтобы собрать простейшую схему.

Мастерская радиолюбителя

Какой сложности схему ни пришлось бы выполнять, необходимо иметь минимальный набор материалов и инструментов в своей домашней мастерской:

  • Бокорезы;
  • Пинцет;
  • Припой;
  • Флюс;
  • Монтажные платы;
  • Тестер или мультиметр;
  • Материалы и инструменты для изготовления корпуса прибора.

Не следует приобретать для начала дорогие профессиональные инструменты и приборы. Дорогая паяльная станция или цифровой осциллограф мало помогут начинающему радиолюбителю. В начале творческого пути вполне достаточно простейших приборов, на которых и нужно оттачивать опыт и мастерство.

С чего начинать

Радиосхемы своими руками для дома должны по сложности не превышать того уровня, каким Вы владеете, иначе это будет означать лишь потраченное время и материалы. При недостатке опыта лучше ограничиться простейшими схемами, а по мере накопления навыков усовершенствовать их, заменяя более сложными.

Обычно большинство литературы из области электроника для начинающих радиолюбителей приводит классический пример изготовления простейших приемников. Особенно это относится к классической старой литературе, в которой нет столько принципиальных ошибок по сравнению с современной.

Обратите внимание! Данные схемы были рассчитаны на огромные мощности передающих радиостанций в прошлое время. Сегодня передающие центры используют меньшую мощность для передачи и стараются уйти в диапазон более коротких волн. Не стоит тратить время на попытки сделать рабочий радиоприемник при помощи простейшей схемы.

Радиосхемы для начинающих должны иметь в своем составе максимум пару-тройку активных элементов – транзисторов. Так будет легче разобраться в работе схемы и повысить уровень знаний.

Что можно сделать

Что можно сделать, чтобы и было несложно, и можно было использовать на практике в домашних условиях? Вариантов может быть множество:

  • Квартирный звонок;
  • Переключатель елочных гирлянд;
  • Подсветка для моддинга системного блока компьютера.

Важно! Не следует конструировать устройства, работающие от бытовой сети переменного тока, пока нет достаточного опыта. Это опасно и для жизни, и для окружающих.

Довольно несложные схемы имеют усилители для компьютерных колонок, выполненные на специализированных интегральных микросхемах. Устройства, собранные на их основе, содержат минимальное количество элементов и практически не требуют регулировки.

Часто можно встретить схемы, которые нуждаются в элементарных переделках, усовершенствованиях, которые упрощают изготовление и настройку. Но это должен делать опытный мастер с тем расчетом, чтобы итоговый вариант был более доступен новичку.

На чем выполнять конструкцию

Большинство литературы рекомендует выполнять конструирование простых схем на монтажных платах. В настоящее время с этим совсем просто. Существует большое разнообразие монтажных плат с различными конфигурациями посадочных отверстий и печатных дорожек.

Принцип монтажа заключается в том, что детали устанавливаются на плату в свободные места, а затем нужные выводы соединяются между собой перемычками, как указано на принципиальной схеме.

При должной аккуратности такая плата может послужить основой для множества схем. Мощность паяльника для пайки не должна превышать 25 Вт, тогда риск перегреть радиоэлементы и печатные проводники будет сведен к минимуму.

Припой должен быть легкоплавким, типа ПОС-60, а в качестве флюса лучше всего использовать чистую сосновую канифоль или ее раствор в этиловом спирте.

Радиолюбители высокой квалификации могут сами разработать рисунок печатной платы и выполнить его на фольгированном материале, на котором затем паять радиоэлементы. Разработанная таким образом конструкция будет иметь оптимальные габариты.

Оформление готовой конструкции

Глядя на творения начинающих и опытных мастеров, можно придти к выводу, что сборка и регулировка устройства не всегда являются самым сложным в процессе конструирования. Порой правильно работающее устройство так и остается набором деталей с припаянными проводами, не закрытое никаким корпусом. В настоящее время уже можно не озадачиваться изготовлением корпуса, потому что в продаже можно встретить всевозможные наборы корпусов любых конфигураций и габаритов.