Технология MIMO: что это и с чем её едят? Что такое MIMO антенна

27.08.2015

Наверняка, многие уже слышали про технологию MIMO , в последние годы её частенько пестрят рекламные проспекты и плакаты, особенно в компьютерных магазинах и журналах. Но что же такое MIMO (МИМО) и с чем её едят? Давайте разберёмся поподробнее.

Технология MIMO

MIMO (Multiple Input Multiple Output; множественные входы, множественные выходы) — метод пространственного кодирования сигнала, позволяющий увеличить полосу пропускания канала, при котором для передачи данных используются две и более антенны и такое же количество антенн для приёма. Передающие и приёмные антенны разнесены настолько, чтобы достичь минимального взаимного влияния друг на друга между соседними антеннами. Технология MIMO используется в беспроводных связи Wi-Fi, WiMAX, LTE для увеличения пропускной способности и более эффективного использования частотной полосы. Фактически MIMO позволяет в одном частотном диапазоне и заданном частотном коридоре передавать больше данных, т.е. увеличить скорость. Достигается это за счёт использования нескольких передающих и принимающих антенн.

История MIMO

Технологию MIMO можно отнести к достаточно моложим разработкам. Её история начинается в 1984 году, когда был зарегистрирован первый патент на использования данной технологии. Начальные разработки и исследования проходили в компании Bell Laboratories , а 1996 году компание Airgo Networks был выпущен первый MIMO-чипсет под названием True MIMO . Наибольшее развитие технология MIMO получила в начале XXI века, когда бурными темпами начали развиваться беспроводные сети Wi-Fi и сотовые сети 3G. А сейчас технология MIMO вовсю используется в сетях 4G LTE и Wi-Fi 802.11b/g/ac.

Что даёт технология MIMO?

Для конечного пользователя MIMO даёт значительный прирост в скорости передачи данных. В зависимости от конфигурации оборудования и количества используемых антенн, можно получить двухкратный, трёкратный и до восьмикратного увеличения скорости. Обычно в беспроводных сетях используется одинаковое количество передающих и принимающих антенн, и записывается это как, например, 2х2 или 3х3. Т.е. если видим запись MIMO 2x2, значит две антенны передают сигнал и две принимают. Например, в стандарте Wi-Fi один канал шириной 20 Мгц даёт пропускную способность 866 Мбит/с, тогда как в конфигурации MIMO 8x8 объединяются 8 каналов, что даёт максимальную скорость около 7 Гбит/с. Аналогично и в LTE MIMO - потенциальный рост скорости в несколько раз. Для полноценного использования MIMO в сетях LTE необходимы , т.к. как правило встроенные антенны недостаточно разнесены и дают малый эффект. И конечно, должна быть поддержка MIMO со стороны базовой станции.

LTE-антенна с поддержкой MIMO передаёт и принимает сигнал в горизонтальной и вертикальной плоскостях. Это называется поляризация. Отличительной особенностью MIMO-антенн является наличие двух антенных разъёмов, и соответственно использование двух проводов для подключения к модему/роутеру.

Несмотря на то, что многие говорят, и не безосновательно, что MIMO-антенна для сетей 4G LTE фактически представляет собой две антенны в одной, не стоит думать, что при использовании такой антенны будет двухкратный рост скорости. Таковым он может быть только в теории, а на практике разница между обычной и MIMO-антенной в сети 4G LTE не превышает 20-25%. Однако, более важным в данном случае будет стабильный сигнал, который может обеспечить MIMO-антенна.

В свете выхода новых беспроводных устройств с поддержкой технологии MU-MIMO, в частности с выходом UniFi AC HD (UAP-AC-HD) , назрела необходимость в разъяснении, что это такое и почему старое железо не поддерживает данную технологию.

Что такое 802.11ac?

Стандарт 802.11ac является трансформацией беспроводной технологии, пришедшей на смену предыдущему поколению в виде стандарта 802.11n.

Появление 802.11n, как предполагалось ранее, должно было позволить бизнесу повсеместно использовать данную технологию в качестве альтернативы обычному проводному соединению для работы внутри локальной сети (LAN).

802.11ac – дальнейший этап на пути развития беспроводных технологий. Теоретически, новый стандарт может обеспечить скорость передачи данных до 6.9 Гбит/сек в диапазоне 5 ГГц. Это в 11.5 раз выше сферы передачи данных 802.11n.

Новый стандарт доступен в двух релизах: Wave 1 и Wave 2. Ниже вы можете ознакомиться со сравнительной таблицей по актуальным стандартам.

В чем отличие Wave 1 и Wave 2?

Продукты 802.11ac Wave 1 доступны на рынке примерно с середины 2013-го. Новая ревизия стандарта базируется на предыдущей версии стандарта, но с некоторыми очень существенными изменениями, а именно:

  • Повышена производительность с 1.3 Гбит до 2.34 Гбит;
  • Добавлена поддержка Multi User MIMO (MU-MIMO);
  • Допускается использование широких каналов в 160 МГц;
  • Четвертый пространственный поток (Spatial Stream) для большей производительности и стабильности;
  • Больше каналов в диапазоне 5 ГГц;

Что именно дают усовершенствования Wave 2 для реального пользователя?

Рост пропускной способности положительно сказывается на приложениях, чувствительных к пропускной способности и задержкам внутри сети. Это в первую очередь передача потокового голосового и видеоконтента, а также повышение плотности сети и рост количества клиентов.

MU-MIMO предоставляет огромные возможности для развития «интернета вещей» (Internet of Things, IoT), когда один пользователь может подключать одновременно несколько устройств.

Технология MU-MIMO допускает несколько одновременных исходящих потоков (downstreams), обеспечивая одновременное обслуживание сразу нескольких устройств, что повышает производительность сети в целом. MU-MIMO также положительно сказывается на задержках, обеспечивая более быстрое подключение и работу клиентов в целом. К тому же, особенности технологии позволяют подключать к сети еще большее количество одновременных клиентов, нежели в предыдущей версии стандарта.

Использование ширины канала в 160 МГц требует соблюдения некоторых условий (низкая мощность, низкий показатель шума и т.д), при этом канал сможет обеспечить колоссальный прирост производительности при передачи больших объемов данных. Для сравнения 802.11n может обеспечить канальную скорость до 450 Мбит, более новый 802.11ac Wave 1 – до 1.3 Гбит, в то время как 802.11ac Wave 2 с каналом на 160 МГц может обеспечить канальную скорость порядка 2.3 Гбит/сек.

В предыдущем поколении стандарта допускалось использование 3-х приемо-передающих антенн, новая ревизия добавляет 4-й поток. Данное изменение повышает дальность и стабильность соединения.

Существует 37 каналов в диапазоне 5 ГГц, используемых во всем мире. В некоторых странах количество каналов ограничено, в некоторых нет. 802.11ac Wave 2 допускает использование большего количества каналов, что позволит повысить количество одновременно работающих устройств в одном месте. К тому же, большее количество каналов необходимо для широких каналов в 160 МГц.

Есть ли новые канальные скорости в 802.11ac Wave 2?

Новый стандарт наследует стандарты, введенные с появлением первого релиза. Как и ранее, скорость зависит от количества потоков и ширины канала. Максимальная модуляция осталась без изменений – 256 QAM.

Если ранее для канальной скорости 866.6 Мбит требовалось 2 потока и ширина канала в 80 МГц, то теперь этой канальной скорости можно достичь при использовании всего одного потока, двое увеличив при этом скорость канала – с 80 до 160 МГц.

Как видите, кардинальных изменений не произошло. В связи с поддержкой каналов на 160 МГц, увеличились и максимальные канальные скорости – до 2600 Мбит.

На практике, реальная скорость составляет примерно 65% от канальной (PHY Rate).

Используя 1 поток, модуляцию 256 QAM и канал на 160 МГц, можно достичь реальной скорости порядка 560 Мбит/сек. Соответственно 2 потока обеспечат скорость обмена на уровне ~1100 Мбит/сек, 3 потока – 1.1-1.6 Гбит/сек.

Какие диапазоны и каналы использует 802.11ac Wave2?

На практике, Waves 1 и Waves 2 работают исключительно в диапазоне 5 ГГц. Диапазон частот зависит от региональных ограничений, как правило, используется диапазон 5,15-5,35 ГГц и 5,47-5,85 ГГц.

В США под беспроводные сети 5 ГГц выделено полосу в 580 МГц.

802.11ac, как и ранее, может использовать канала на 20 и 40 МГц, в то же время хорошей производительности можно достичь используя только 80 МГц либо 160 МГц.

Поскольку на практике далеко не всегда возможно использовать непрерывную полосу в 160 МГц, стандартом предусмотрен режим 80+80 МГц, который поделит полосу в 160 МГц на 2 разные диапазона. Всё это добавляет большей гибкости.

Обратите внимание, стандартными каналами для 802.11ac являются 20/40/80 МГц.

Почему существует две волны стандарта 802.11ac?

IEEE внедряет стандарты волнами, по мере развития технологий. Такой подход позволяет промышленности сразу выпускать новые продукты, не дожидаясь пока будет доработана та или иная возможность.

Первая волна стандарта 802.11ac обеспечила значительный шаг вперед по отношению к 802.11n и заложила основу для дальнейшего развития.

Когда стоит ожидать продукты с поддержкой 802.11ac Wave 2?

Согласно первоначальным прогнозам аналитиков, первые продукты потребительского уровня должны были поступить в продажу еще в середине 2015-го. Более высокоуровневые корпоративные и операторские решения обычно выходят с задержкой в 3-6 месяцев, точно так, как это было с первой волной стандарта.

Оба класса, потребительский и коммерческий, обычно выпускаются еще до того, как WFA (Wi-Fi Alliance) начинает проводить сертификацию (вторая половина 2016).

Состоянием на февраль 2017, количество устройств с поддержкой 802.11ac W2 не так велико как этого бы хотелось. Особенно со стороны Mikrotik и Ubiquit.

Будут ли устройства Wave 2 существенно отличаться от Wave 1?

В случае с новым стандартом сохраняется общая тенденция предыдущих лет – смартфоны и ноутбуки выпускаются с 1-2 потоками, 3 потока предназначены для более требовательных задач. Нет практического смысла в том, чтобы реализовывать полный функционал стандарта на всех устройствах.

Совместимо ли оборудование Wave 1 с Wave 2?

Первая волна допускает 3 потока и каналы до 80 МГц, по этой части клиентские устройства и точки доступа полностью совместимы.

Для реализации функций второго поколения (160 МГц, MU-MIMO, 4 потока), и клиентское устройство, и точка доступа должны поддерживать новый стандарт.

Точки доступа нового поколения совместимы с клиентскими устройствами 802.11ac Wave 1, 802.11n и 802.11a.

Таким образом, использовать дополнительные возможности адаптера второго поколения не получится с точкой первого поколения, и наоборот.

Что такое MU-MIMO и что оно даёт?

MU-MIMO является сокращением от «multiuser multiple input, multiple output». По сути, это одно из ключевых нововведений второй волны.

Для работы MU-MIMO клиент и AP должны его поддерживать.

Если кратко, точка доступа может одновременно отправлять данные сразу на несколько устройств, в то время как предыдущие стандарты позволяют отправку данных только одному клиенту в конкретный момент времени.

По сути, обычный MIMO это SU-MIMO, т.е. SingleUser, однопользовательский MIMO.

Рассмотрим пример. Есть точка с 3-мя потоками (3 Spatial Streams / 3SS) и в ней подключено 4 клиента: 1 клиент с поддержкой 3SS, 3 клиента с поддержкой 1SS.

Точка доступа распределяет время поровну между всеми клиентами. Во время работы с первым клиентом, точка задействует 100% своих возможностей, ведь клиент также поддерживает 3SS (MIMO 3x3).

Оставшиеся 75% времени точка работает с тремя клиентами, каждый из которых использует только 1 поток (1SS) из 3-х доступных. При этом точка доступа использует всего 33% своих возможностей. Чем больше таких клиентов, тем меньше эффективность.

В конкретном примере, средняя канальная скорость составит 650 Мбит:

(1300 + 433,3 + 433,3 + 433,3)/4 = 650

На практике будет означать среднюю скорость порядка 420 Мбит, из возможных 845 Мбит.

А теперь давайте рассмотрим пример с использованием MU-MIMO. У нас есть точка с поддержкой второго поколения стандарта, использующая MIMO 3x3, канальная скорость останется без изменений – 1300 Мбит для ширины канала в 80 МГц. Т.е. одновременно клиенты, как и ранее, могут использовать не более 3 каналов.

Общее количество клиентов теперь составляет 7, при этом точка доступа распределила их на 3 группы:

  1. один клиент 3SS;
  2. три клиента 1SS;
  3. один клиент 2SS + один 1SS;
  4. один клиент 3SS;

На выходе мы получаем 100%-ную реализацию возможностей AP. Клиент из первой группы использует все 3 потока, клиенты из другой группы использую по одному каналу и так далее. Средняя канальная скорость составит 1300 Мбит. Как видите, на выходе это дало двукратный прирост.

Совместима ли точка MU-MIMO с более старыми клиентами?

Увы, нет! MU-MIMO не совместим с первой версией протокола, т.е. для работы данной технологии ваши клиентские устройства должны поддерживать вторую версию.

Отличия между MU-MIMO и SU-MIMO

В SU-MIMO, точка доступа передает данные только одному клиенту в конкретный момент времени. При MU-MIMO точка доступа может передавать данные сразу нескольким клиентам.

Сколько клиентов поддерживается в MU-MIMO одновременно?

Стандарт предусматривает одновременное обслуживание до 4-х устройств. Общее максимальное количество потоков может достигать 8.

В зависимости от конфигурации оборудования возможны самые разнообразные варианты, например:

  • 1+1: два клиента, каждый с одним потоком;
  • 4+4: два клиента, каждый из которых использует по 4 потока;
  • 2+2+2+2: четыре клиента, по 2 потока у каждого;
  • 1+1+1: три клиента по одному потоку;
  • 2+1, 1+1+1+1, 1+2+3, 2+3+3 и другие комбинации.

Всё зависит от конфигурации оборудования, обычно устройства используют 3 потока, следовательно, точка сможет обслуживать до 3-х клиентов одновременно.

Возможен также вариант использования 4-х антенн в конфигурации MIMO 3x3. Четвертая антенна в данном случае дополнительная, она не реализует дополнительный поток, В таком случае, одновременно можно будет обслуживать 1+1+1, 2+1 либо 3SS, но никак не 4.

MU-MIMO поддерживается только для Downlink?

Да, стандартом предусмотрена поддержка только Downlink MU-MIMO, т.е. точка может одновременно передавать данные нескольким клиентам. А вот «слушать» одновременно точка не может.

Реализация Uplink MU-MIMO была признана невозможной в короткие сроки, поэтому данный функционал будет добавлен только в стандарте 802.11ax, выход которого запланирован на 2019-2020 годы.

Сколько потоков поддерживается в MU-MIMO?

Как уже упоминалось выше, MU-MIMO может работать с любым количеством потоков, но не более 4 на клиента.

Для качественной работы мнопользовательской передачи, стандартом рекомендуется наличие количество антенн, большее количества потоков. В идеале для MIMO 4x4 должно быть 4 антенны на прием и столько же на отправку.

Есть ли необходимость в использовании специальных антенн для нового стандарта?

Конструкция антенн осталась прежней. Как и ранее, вы можете использовать любые совместимые антенны, разработанные для использования в диапазоне 5 ГГц для 802.11a/n/ac.

Во втором релизе также добавлен Beamforming, что это?

Технология Beamforming позволяет изменять диаграмму направленности, адаптируя её под конкретного клиента. В процессе работы точка анализирует сигнал от клиента и оптимизирует свое излучение. В процессе формирования луча может использоваться дополнительная антенна.

Может ли точка доступа 802.11ac Wave 2 обрабатывать 1 Гбит трафика?

Потенциально, точки доступа нового поколения способны обработать такой поток трафика. Реальная пропускная способность зависит от целого ряда факторов , начиная с количества поддерживаемых потоков, дальности связи, наличия преград и заканчивая наличием помех, качеством точки доступа и клиентского модуля.

Какие диапазоны частот используются в 802.11ac Wave?

Выбор рабочей частоты зависит исключительно от регионального законодательства. Список каналов и частот постоянно меняется, ниже приведены данные по США (FCC) и Европе, состоянием на январь 2015.

В Европе разрешено использование ширины канала более 40 МГц, поэтому каких-либо изменений в плане нового стандарта нет, к нему применяются все те же правила, что и для предыдущего стандарта.

Онлайн курс по сетевым технологиям

Рекомендую курс Дмитрия Скоромнова « ». Курс не привязан к оборудованию какого-то производителя. В нем даются фундаментальные знания, которые должны быть у каждого системного администратора. К сожалению, у многих администраторов, даже со стажем 5 лет, зачастую нет и половины этих знаний. В курсе простым языком описываются много разных тем. Например: модель OSI, инкапсуляция, домены коллизий и широковещательные домены, петля коммутации, QoS, VPN, NAT, DNS, Wi-Fi и многие другие темы.

Отдельно отмечу тему по IP-адресации. В ней простым языком описывается как делать переводы из десятичной системы счисления в двоичную и наоборот, расчет по IP-адресу и маске: адреса сети, широковещательного адреса, количества хостов сети, разбиение на подсети и другие темы, имеющие отношение к IP-адресации.

У курса есть две версии: платная и бесплатная.

Существующие сети мобильной связи используются не только для осуществления звонков и передачи сообщений. Благодаря цифровому методу передачи, с помощью существующих сетей возможна также передача данных. Данные технологии, в зависимости от уровня развития, обозначаются 3G и 4G. Технологию 4G поддерживает стандарт LTE. Скорость передачи данных зависит от некоторых особенностей сети (определяется оператором), достигая теоретически до 2 Мб/с для сети 3G и до 1 Гб/с для сети 4G. Все указанные технологии работают эффективнее при наличии сильного и стабильного сигнала. Для этих целей большинство модемов предусматривает подключение внешних антенн.

Панельная антенна

В продаже можно встретить различные варианты антенн для улучшения качества приема. Большой популярностью пользуется панельная антенна 3G. Коэффициент усиления подобной антенны составляет около 12 дБ в диапазоне частот 1900-2200 МГц. Подобный тип устройств способен также улучшить качество сигнала 2G – GPRS и EDGE.

Как и подавляющее большинство других пассивных устройств, она имеет одностороннюю направленность, что вместе с увеличением принимаемого сигнала позволяет снизить уровень помех с боковых направлений и сзади. Таким образом, даже в условиях неустойчивого приема можно поднять уровень сигнала до приемлемых значений, тем самым увеличивая скорость приема и передачи информации.

Применение панельных антенн для работы в сетях 4G

Поскольку рабочий диапазон сетей 4G практически совпадает с диапазоном предыдущего поколения, то не возникает никаких сложностей в использовании данных антенн в сетях 3G 4G LTE. Для любой из технологий применение антенн позволяет более приблизить скорости передачи данных к максимальным значениям.

Еще более увеличить скорости приема и передачи данных позволила новая технология, использующая раздельные приемники и передатчики в одной полосе частот. Конструкция существующего 4G модема предусматривает использование технологии MIMO.

Несомненное достоинство панельных антенн – их невысокая стоимость и исключительная надежность. В конструкции практически нет ничего, что может поломаться даже при падении с большой высоты. Единственное слабое место – высокочастотный кабель, который может переломиться в месте ввода в корпус. Для того чтобы продлить срок службы устройства, кабель должен быть надежно закреплен.

Технология MIMO

Для увеличения пропускной способности канала связи между приемником и передатчиком данных разработан метод обработки сигнала, когда прием и передача ведутся на различные антенны.

Обратите внимание! Применяя антенны LTE MIMO, можно увеличить пропускную способность на 20-30% относительно работы с простой антенной.

Основной принцип заключен в устранении взаимосвязи между антеннами.

Электромагнитные волны могут иметь различное направление относительно плоскости земли. Это носит название поляризации. В основном используется вертикально и горизонтально поляризованные антенны. Для исключения взаимного влияния между собой антенны отличаются друг от друга поляризацией на угол 90 гр. Чтобы влияние земной поверхности было одинаково для обеих антенн, плоскости поляризации каждой смещают на 45 гр. относительно земли. Таким образом, если одна из антенн имеет угол поляризации 45 гр., то другая, соответственно, 45 гр. Относительно друг друга смещение составляет необходимые 90 гр.

На рисунке наглядно видно, как развернуты антенны относительно друг друга и относительно земли.

Важно! Поляризация антенн должна быть такой же, как и на базовой станции.

Если для технологий 4G LTE поддержка MIMO по умолчанию имеется на базовой станции, то для 3G в связи с большим количеством устройств без MIMO, операторы не спешат внедрять новые технологии. Дело в том, что в сети MIMO 3G устройства будут работать гораздо медленнее.

Установка антенн для модема своими руками

Правила установки антенн не отличаются от обычных. Главное условие – отсутствие препятствий между клиентской и базовой станциями. Растущее дерево, крыша соседнего здания или, что еще хуже, линия электропередач, служат надежными экранами для электромагнитных волн. И чем выше частота сигнала, тем большее затухание будут вносить расположенные на пути распространения радиоволн препятствия.

В зависимости от типа крепления антенны можно устанавливать на стене здания или закреплять на мачте. Есть два вида антенн MIMO :

  • моноблочные;
  • разнесенные.

Моноблочные уже содержат внутри две конструкции, установленные с необходимой поляризацией, а разнесенные – состоят из двух антенн, которые нужно крепить отдельно, каждая из них должна быть направлена точно на базовую станцию.

Все нюансы установки антенны MIMO своими руками четко и подробно описаны в сопроводительной документации, но лучше предварительно проконсультироваться с провайдером или пригласить представителя для установки, заплатив не очень большую сумму, но получив определенную гарантию на произведенные работы.

Как сделать антенну самостоятельно

Принципиальных сложностей при самостоятельном изготовлении нет. Нужны навыки работы с металлом, умение держать в руках паяльник, желание и аккуратность.

Непременное условие – строгое соблюдение геометрических размеров всех, без исключения, составляющих частей. Геометрические размеры высокочастотных устройств должны быть соблюдены с точностью до миллиметра и точнее. Любое отклонение ведет к ухудшению характеристик. Упадет коэффициент усиления, увеличится взаимосвязь между антеннами MIMO. В конечном итоге вместо усиления сигнала буден наблюдаться его ослабление.

К сожалению, в широком доступе отсутствуют точные геометрические размеры. Как исключение, имеющиеся в сети материалы основаны на повторении некоторых заводских конструкций, не всегда скопированных с заданной точностью. Поэтому не стоит возлагать большие надежды на публикуемые в интернете схемы, описания и методики.

С другой стороны, если не требуется сверх сильного усиления, то выполненная самостоятельно, с соблюдением указанных размеров антенна MIMO, все равно даст, хоть и не большой, но положительный эффект.

Стоимость материалов невысока, затраты времени при наличии навыков также не слишком велики. К тому же никто не мешает испытать несколько вариантов и выбрать приемлемый по результатам тестирования.

Для того чтобы сделать MIMO антенну 4G LTE своими руками, нужны два абсолютно ровных листа оцинкованной стали толщиной 0.2-0.5 мм, а лучше одностороннего фольгированного стеклотекстолита. Один из листов пойдет на изготовление рефлектора (отражателя), а другой – на изготовление активных элементов. Кабель для подключения к модему должен иметь сопротивление 50 Ом (таков стандарт для модемного оборудования).

Телевизионный кабель использовать нельзя по двум причинам:

  • сопротивление 75 Ом вызовет рассогласованность со входами модема;
  • большая толщина.

Также необходимо подобрать разъемы, которые должны в точности соответствовать разъемам на модеме.

Важно! Указанное расстояние между активными элементами и рефлектором должно отсчитываться от слоя фольги в случае использования фольгированного материала.

Кроме того понадобится небольшой отрезок медного провода толщиной 1-1.2 мм.

Изготовленная конструкция должна быть помещена в пластиковый корпус. Металл использовать нельзя, поскольку таким образом антенна будет заключена в электромагнитный экран и работать не будет.

Обратите внимание! Большая часть чертежей относится не к MIMO антеннам, а к панельным. Внешне они отличаются тем, что к простой панельной антенне подводится один кабель, а к MIMO нужно два. Оцените статью:

Требования к пропускной способности мобильных сетей очень высоки и, при этом, они постоянно растут. Очевидные варианты увеличения пропускной способности - увеличение ширины канала и использование модуляций более высокого порядка, не позволяют полностью решить задачу обеспечения высокой пропускной способности. Частотный диапазон все-таки ограничен. А использование модуляции более высокого порядка подразумевает повышение SINR (Signal to Interference plus Noise Ratio), что тоже имеет свой предел. Еще одним способом увеличения пропускной способности беспроводных систем является использование нескольких передающих и приемных антенн (MIMO - Multiple Input Multiple Output ) и специальная обработка сигнала в этом случае. Далее приводится классификация вариантов MIMO и их краткое описание.

Классическая система (SISO - Single Input Single Output)

Для начала рассмотрим варианты MIMO, которые могут быть использованы для передачи данных одному пользователю. Первый классический и самый простой вариант использования одной передающей и одном приемной антенны изображен на рисунке ниже. Такая система с точки зрения терминологии MIMO называется SISO - Single Input Single Output .

Пропускную способность такой системы можно расчитать, используя формулу Шеннона:

C = B log 2 (1 + S /N ), где

C B - ширина канала; S /N - соотношение сигнал/шум.

Разнесенный прием (Rx Diversity, SIMO - Single Input Multiple Output)

Разнесенный прием (Rx Diversity) - это случай использования большего количества антенн на приемной стороне, чем на передающей. С точки зрения MIMO такая система называется SIMO - Single Input Multiple Output . Простейший случай такой системы, когда передающая антенна одна, а приемных две, представлен на рисунке ниже и называется SIMO 1x2.

Представленный вариант не требует специальной подготовки сигнала при передаче, поэтому его достаточно просто реализовать на практике. При использовании разнесенного приема увеличения пропускной способности не происходит. Однако, повышается надежность передачи. В случае с изображенной выше системой на приемной стороне будет два сигнала, и существуют разные способы их обработки. Например, может выбираться сигнал с наилучшим соотношением сигнал/шум. Такой метод называется switched diversity. Или сигналы могут складываться, что позволяет повысить соотношение сигнал/шум. И такой метод называется MRC - Maximum Ratio Combining.

Разнесенная передача (Tx Diversity, MISO - Multiple Input Single Output)

Разнесенная передача (Tx Diversity) - это случай использования большего количества антенн на передающей стороне, чем на приемной. С точки зрения MIMO такая система называется MISO - Multiple Input Single Output . Простейший случай такой системы, когда передающих антенн две, а приемная одна, представлен на рисунке ниже и называется MISO 2x1.

Как и SIMO, MISO не позволяет увеличить пропускную способность канала, но повышает надежность передачи. В то же время, использование MISO позволяет перенести необходимую дополнительную обработку сигнала с приемной стороны (мобильной станции) на передающую (базовую станцию). Для формирования надежного сигнала используется пространственно-временное кодирование. В этом случае копия сигнала передается не только с другой антенны, но и в другое время. Также может использоваться пространственно-частотное кодирование.

Пространственное уплотнение (Spatial Multiplexing, MIMO - Multiple Input Multiple Output)

Пространственное уплотнение (Spatial Multiplexing) - это случай использования нескольких антенн на передающей стороне и нескольких антенн на приемной. В отличие от предыдущих вариантов - MISO и SIMO, описанных выше, данный вариант направлен не на повышение надежности передачи, а на увеличение скорости передачи. Поэтому MIMO используется для передачи данных мобильным станциям, которые находятся в хороших радиоусловиях. В то время, как варианты MISO и SIMO используются для передачи данных мобильным станциям, которые находятся в более плохих радиоусловиях. Для того, чтобы повысить скорость передачи данных в случае с MIMO входной поток данных разбивают на несколько потоков, каждый из которых независимо передается с отдельной антенны. На рисунке ниже приводится общая схема системы MIMO с m передающими антеннами и с n приемными антеннами.

Из-за того, что используется общий канал, каждая антенна на приемнике получает сигнал не только предназначенный для нее (сплошные линии на рисунке), но и все сигналы предназначенные другим антеннам (прерывистые линии на рисунке). Если известна матрица передачи, то влияние сигналов, предназначенных для других антенн, можно вычислить и минимизировать.

Количество независимых потоков данных, которые могут одновременно передаваться, зависит от количества используемых антенн. Если количество передающих и приемных антенн одинаково, то количество независимых потоков данных равно или меньше количеству антенн. Например, в случае MIMO 4x4 количество независимых потоков данных может быть 4 или меньше. Если же количество передающих и приемных антенн не одинаково, то количество независимых потоков данных равно минимальному количеству антенн или меньше. Например в случае MIMO 4x2 количество независимых потоков данных может быть 2 или меньше.

Для вычисления максимальной пропускной способности в случае использования MIMO применяется следующая формула:

C = M B log 2 (1 + S /N ), где

C - пропускная способность канала; M - количество независимых потоков данных; B - ширина канала; S /N - соотношение сигнал/шум.

В зависимости от количества пользователей, которым одновременно осуществляется передача данных, можно выделить следующие варианты. Single User MIMO (SU-MIMO) - когда технология MIMO используется для передачи данных одному пользователю, то есть все потоки данных адресованы одному и тому же пользователю. И Multi User MIMO (MU-MIMO) - когда технология MIMO используется для передачи данных нескольким пользователям одновременно в одних и тех же ресурсных блоках, то есть когда независимые потоки данных адресованы разным пользователям. Ниже на рисунке приводится пример MU-MIMO для случая с двумя пользователями.

Если вы не нашли интересующую вас информацию по LTE/LTE-A в этой статье, напишите мне об этом письмо на [email protected]. Я постараюсь ее добавить в кратчайшие сроки.

Технология на базе стандарта WiFi IEEE 802.11n.

Wi - Life представляет краткий обзор по технологии WiFi IEEE 802.11 n .
Расширенная информация к нашей видеопубликации .

Первое поколение устройств с поддержкой стандарта WiFi 802.11n появилось на рынке несколько лет назад. Технология MIMO ( MIMO - multiple input / multiple output -множественные входы/множественные выходы) является стержнем 802.11n. Это радиосистема с множеством раздельных путей передачи и приема. MIMO-системы описываются с использованием количества передатчиков и приемников. Стандарт WiFi 802.11n определяет набор возможных комбинаций от 1х1 до 4х4.


В типичном случае развертывания сети стандарта Wi-Fi внутри помещения, например в офисе, цеху, ангаре, больнице радиосигнал редко идет по кратчайшему пути между передатчиком и приемником из-за стен, дверей и других препятствий. Большинство подобных окружений имеют много различных поверхностей, которые отражают радиосигнал (электромагнитную волну) подобно зеркалу, отражающему свет. После переотражения образуются множественные копии исходного сигнала WiFi. Когда множественные копии WiFi-сигнала перемещаются различными путями от передатчика к приемнику сигнал шедший кратчайшим путем будет первым, а следующие копии (или переотраженное эхо сигнала) придут чуть позже из-за более длинных путей. Это называют многолучевым распространением сигнала (multipath). Условия множественного распространения постоянно меняются, т.к. Wi-Fi-устройства часто перемещаются (смартфон с Wi-Fi в руках пользователя), движутся вокруг различные объекты создавая помехи (люди, машины и т.п.). В случае прибытия сигналов в разное время и под разными углами это может вызывать искажения и возможное затухание сигнала.

Важно помнить, что поддержка WiFi 802.11 n c MIMO и большим количеством приемников может снизить эффект многолучевого распространения и деструктивную интерференцию, но в любом случае лучше уменьшать условия многолучевого распространения где и как только возможно. Один из важнейших моментов - держите антенны как можно дальше от металлических предметов (прежде всего омни антенны WiFi, которые имеют круговую или всенаправленную диаграмму направленности).

Необходимо четко понимать, что далеко не все Wi -Fi клиенты и Точки Доступа стандарта WiFi одинаковы с точки зрения MIMO .
Существуют клиенты 1х1, 2х1, 3х3 и т.д. Например мобильные устройства типа сматрфона чаще всего поддерживают MIMO 1x 1, иногда 1x 2. Это связано с двумя ключевыми проблемами:
1. необходимость обеспечения низкого потребления энергии и долгой жизни аккумулятора,
2. сложность в расположении нескольких антенн с адекватным их разнесением в небольшом корпусе.
Это же касается и других мобильных устройств: планшетных компьютеров, КПК и т.п..

Ноутбуки выского уровня довольно часто уже сейчас поддерживают MIMO вплоть до 3х3 (MacBook Pro и тп).


Давайте рассмотрим основные типы MIMO в сетях стандарта WiFi .
Сейчас мы опустим детализацию количества передатчиков и приемников. Важно понять принцип.

Первый тип : Разнесение при Получении сигнала на WiFi устройстве

Если в точке приема есть не менее двух связанных приемников с разнесенными антеннами,
то вполне реально провести анализ всех копий на каждом приемнике для выбора лучших сигналов.
Далее с этими сигналами можно проводить различные манипуляции, но нас интересует, прежде всего,
возможность их комбинирования с помощью технологии MRC (Maximum Ratio Combined ). Технология MRC подробнее будет рассмотрена далее.

Второй тип : Разнесение при Отправке сигнала на WiFi устройстве

Если в точке отправки есть не менее двух связанных передатчиков WiFi с разнесенными антеннами, то появляется возможность отправки группы идентичных сигналов для увеличения количества копий информации, повышения надежности на передаче и снижения необходимости перепосылки данных в радиоканале, в случае их потерь.

Третий тип : Пространственное мультиплексирование сигналов на устройстве стандарта WiFi
(объединение сигналов)

Если в точке отправки и в точке приема есть не менее двух связанных передатчиков WiFi с разнесенными антеннами, то появляется возможность отправки набора разной информации поверх разных сигналов с целью создания возможности виртуального объединения таких информационных потоков в один канал передачи данных, общая пропускная способность которого стремится к сумме отдельных потоков, из которых он состоит. Это называется Пространственным мультиплексированием. Но здесь крайне важно обеспечить возможность качественного разделения всех исходных сигналов, что требует большой величины SNR - соотношения сигнал/шум.

Технология MRC (maximum ratio combined ) используется во многих современных Точках Доступа Wi - Fi корпоративного класса.
MRC направлен на подъем уровня сигнала в направлении от Wi - Fi клиента к Точке Доступа WiFi 802.11.
Алгоритм работы
MRC подразумевает сбор на нескольких антеннах и приемниках всех прямых и переотраженных при многолучевом распространении сигналов. Далее специальный процессор ( DSP ) отбирает лучший сигнал с каждого приемника и выполняет комбинирование. Фактически математическая обработка реализует виртуальный фазовый сдвиг для создания положительной интерференции со сложением сигналов. Таким образом результирующий суммарный сигнал значительно лучше по характеристикам, чем все исходные.

MRC позволяет обеспечивать значительно лучшие условия работы маломощных мобильных устройств в сети стандарта Wi - Fi .


В системах WiFi 802.11n достоинства многолучевого распространения используются для одновременной передачи нескольких радиосигналов. Каждый из этих сигналов, называемых «пространственными потоками », отправляется с отдельной антенны с помощью отдельного передатчика. Вследствие наличия некоторого расстояния между антеннами каждый сигнал следует к приемнику по немного отличающемуся пути. Этот эффект называется «пространственным разнесением ». Приемник также оборудован несколькими антеннами со своими отдельными радиомодулями, которые независимо декодируют поступающие сигналы, и каждый сигнал объединяется с сигналами от других приемных радиомодулей. В результате этого одновременно осуществляется прием нескольких потоков данных. Это обеспечивает значительно более высокую пропускную способность, чем в прежних системах стандарта WiFi 802.11, но и требует наличия клиента с поддержкой 802.11n.


Теперь немного углубимся в данную тему:
В устройствах стандарта WiFi с MIMO возможно разделение всего входящего информационного потока на несколько различных потоков данных с помощью пространственного мультиплексирования для последующей их отправки. Используется несколько передатчиков и антенн для отправки различных потоков в одном частотном канале. Можно визуализировать это таким образом, что некоторая текстовая фраза может передаваться так что первое слово отправляется через один передатчик, второе через другой передатчик и т.д.
Естественно, принимающая сторона должна поддерживать такой же функционал (MIMO) для полноценного выделения различных сигналов, их пересборки и объединения с помощью опять же пространственного мультиплексирования. Так мы получаем возможность восстановить исходный информационный поток. Представленная технология позволяет разделить большой поток данных на набор меньших потоков и передавать их отдельно один от другого. В целом это дает возможность более эффективно утилизировать радиосреду и конкретно частоты выделенные для Wi-Fi.

Технология стандарта WiFi 802.11n также определяет как MIMO может быть использована для улучшения уровня SNR на приемнике используя управление диаграммой направленности на передаче (transmit beamforming). С данной техникой возможно управлять процессом отправки сигналов с каждой антенны так, чтобы улучшились параметры принимаемого сигнала в приемнике. Другими словами в дополнение к отправке множественных потоков данных могут быть использованы множественные передатчики, чтобы достичь более высокого SNR в точке приема и, в результате, большей скорости передачи данных на клиенте.
Необходимо отметить следующие вещи:
1. Процедура управления диаграммой направленности (transmit beamforming), определенная в стандарте Wi-Fi 802.11n, требует совместной работы с приемником (фактически с клиентским устройством) для получения обратной связи о состоянии сигнала на приемнике. Здесь необходимо иметь поддержку этой функциональности на обеих сторонах канала - как на передатчике, так и на приемнике.
2. В силу сложности данной процедуры управление диаграммой направленности (transmit beamforming) не было поддержано в первом поколении чипов 802.11n как на стороне терминалов, так и на стороне Точек Доступа. В настоящее время большинство существующих чипов для клиентских устройств также Не поддерживают данный функционал.
3. Существуют решения для построения сетей Wi - Fi , которые позволяют полноценно управлять диаграммой направленности на Точках Доступа без необходимости получения обратной связи от клиентских устройств.


Для получения анонсов при выходе новых тематических статей или появлении новых материалов на сайте предлагаем .

Присоединяйтесь к нашей группе на