Ртутно-кварцевые лампы высокого давления. Что такое дуговая ртутная люминесцентная лампа (ДРЛ)? Светильники с лампой ДРЛ

К дуговым лампам сверхвысокого давления (ЛСВД) относят лампы, работающие при давлении от 10 × 10 5 Па и выше. При высоких давлениях газа или пара металла при сильном сближении электродов сокращаются прикатодные и прианодные области разряда. Разряд концентрируется в узкой веретенообразной области между электродами, причем его яркость, особенно вблизи катода, достигает очень больших значений.

Такой дуговой разряд представляет собой незаменимый источник света для приборов проекторного и прожекторного типов, а также ряда специальных областей применения.

Использование в лампах паров ртути или инертного газа придает им ряд особенностей. Получение паров ртути при соответствующем давлении, как это видно из сделанного рассмотрения высокого давления, в статье " ", достигается за счет дозировки ртути в колбе лампы. Разряд зажигается как ртутный низкого давления при температуре окружающей среды. Затем по мере разгорания и нагревания лампы давление возрастает. Рабочее давление определяется установившейся температурой колбы, при которой подводимая к лампе электрическая мощность становится равной мощности, рассеиваемой в окружающем пространстве излучением и теплоотдачей. Таким образом, первой особенностью ртутных ламп сверхвысокого давления является то, что они довольно легко зажигаются, но имеют сравнительно длительный период разгорания. При их погасании повторное зажигание может быть осуществлено, как правило, лишь после полного остывания. При наполнении ламп инертными газами разряд после зажигания практически мгновенно входит в установившийся режим. Зажигание разряда в газе при высоком давлении представляет определенные трудности и требует применения специальных зажигающих устройств. Однако после погасания лампа может быть зажжена вновь практически мгновенно.

Второй особенностью, отличающей ртутный разряд сверхвысокого давления с короткой дугой от соответствующих газовых, является его электрический режим. Вследствие большой разницы между градиентами потенциала в ртути и инертных газах при одинаковом давлении напряжение горения таких ламп существенно выше, чем с газовым наполнением, благодаря чему при равных мощностях ток последних значительно больше.

Третьим существенным различием является спектр излучения, который у ламп с газовым наполнением соответствует по спектральному составу дневному свету.

Отмеченные особенности привели к тому, что дуговые лампы часто используют для киносъемок и кинопроекции, в имитаторах солнечного излучения и других случаях, когда требуется правильная цветопередача.

Устройство ламп

Шаровая форма колбы ламп выбрана из условия обеспечения большой механической прочности при высоких давлениях и малых расстояниях между электродами (рисунок 1 и 2). Шаровая колба из кварцевого стекла имеет две диаметрально расположенные длинные цилиндрические ножки, в которых запаяны вводы, соединенные с электродами. Большая длина ножки необходима для удаления вывода от горячей колбы и предохранения его от окисления. В ртутных лампах некоторых типов имеется дополнительный электрод поджига в виде впаянной в колбу вольфрамовой проволоки.

Рисунок 1. Общий вид ртутно-кварцевых ламп сверхвысокого давления с короткой дугой различной мощности, Вт:
а - 50; б - 100; в - 250; г - 500; д - 1000

Рисунок 2. Общий вид ксеноновых шаровых ламп:
а - лампа постоянного тока мощностью 100 - 200 кВт; б - лампа переменного тока мощностью 1 кВт; в - лампа переменного тока мощностью 2 кВт; г - лампа постоянного тока мощностью 1 кВт

Конструкции электродов различны в зависимости от рода тока, который питает лампу. При работе на переменном токе, для которого предназначены ртутные лампы, оба электрода имеют одинаковую конструкцию (рисунок 3). Они отличаются от электродов трубчатых ламп той же мощности большей массивностью, обусловленной необходимостью снижения их температуры.

Рисунок 3. Электроды ртутных ламп переменного тока с короткой дугой:
а - для ламп мощностью до 1 кВт; б - для ламп мощностью до 10 кВт; в - сплошной электрод для мощных ламп; 1 - керн из торнированного вольфрама; 2 - покрывающая спираль из вольфрамовой проволоки; 3 - оксидная паста; 4 - газопоглотитель; 5 - основание из спеченного вольфрамового порошка с добавкой оксида тория; 6 - деталь из кованного вольфрама

При работе ламп на постоянном токе важное значение приобретает положение горения лампы, которое должно быть только вертикальным - анодом вверх для газовых ламп и предпочтительно анодом вниз - для ртутных ламп. Расположение анода внизу уменьшает устойчивость дуги, что важно, связано с противопотоком электронов, направленных вниз, и горячих газов, поднимающихся вверх. Верхнее положение анода вынуждает увеличивать его размеры, так как помимо его нагрева за счет большей мощности, рассеиваемой у анода, он дополнительно нагревается потоком горячих газов. У ртутных ламп анод располагают внизу в целях обеспечения более равномерного нагрева и соответственно сокращения времени разгорания.

Благодаря малому расстоянию между электродами ртутные шаровые лампы могут работать на переменном токе от сети напряжением 127 или 220 В. Рабочее давление паров ртути составляет в лампах мощностью 50 - 500 Вт соответственно (80 - 30) × 10 5 , а в лампах мощностью 1 - 3 кВт - (20 - 10) × 10 5 Па.

Лампы сверхвысокого давления с шаровой колбой чаще всего наполняют ксеноном из-за удобства его дозировки. Расстояние между электродами составляет у большинства ламп 3 - 6 мм. Давление ксенона в холодной лампе (1 - 5)× 10 5 Па для ламп мощностью от 50 Вт до 10 кВт. Такие давления делают лампы сверхвысокого давления взрывоопасными даже в нерабочем состоянии и требуют применения для их хранения специальных кожухов. Из-за сильной конвекции лампы могут работать только в вертикальном положении независимо от рода тока.

Излучение ламп

Высокие яркости ртутных шаровых ламп с короткой дугой получаются вследствие увеличения тока и стабилизации разряда у электродов, препятствующих расширению канала разряда. В зависимости от температуры рабочей части электродов и их конструкции можно получить различное распределение яркости. Когда температура электродов недостаточна для обеспечения тока дуги за счет термоэлектронной эмиссии, дуга стягивается у электродов в яркие светящиеся точки малых размеров и приобретает веретенообразную форму. Яркость вблизи электродов достигает 1000 Мкд/м² и более. Малые размеры этих областей приводят к тому, что их роль в общем потоке излучения ламп незначительна.

При стягивании разряда у электродов яркость растет с ростом давления и тока (мощности) и с уменьшением расстояния между электродами.

Если температура рабочей части электродов обеспечивает получение тока дуги за счет термоэлектронной эмиссии, то разряд как бы расползается по поверхности электродов. В этом случае яркость более равномерно распределяется вдоль разряда и по-прежнему возрастает с ростом тока и давления. Радиус канала разряда зависит от формы и конструкции рабочей части электродов и почти не зависит от расстояния между ними.

Световая отдача ламп возрастает с ростом их удельной мощности. При веретенообразной форме разряда световая отдача имеет максимум при определенном расстоянии между электродами.

Излучение ртутных шаровых ламп типа ДРШ имеет линейчатый спектр с сильно выраженным непрерывным фоном. Линии сильно расширены. Излучений с длинами волн короче 280 - 290 нм нет вообще, а благодаря фону доля красного излучения составляет 4 - 7 %.

Рисунок 4. Распределение яркости вдоль (1 ) и поперек (2 ) оси разряда ксеноновых ламп

Шнур разряда шаровых ксеноновых ламп постоянного тока при их работе в вертикальном положении анодом вверх имеет форму конуса, опирающегося своим острием на кончик катода и расширяющегося кверху. Около катода образуется маленькое катодное пятно очень высокой яркости. Распределение яркости в шнуре разряда остается одинаковым при изменении плотности тока разряда в весьма широких пределах, что дает возможность построить единые кривые распределения яркости вдоль и поперек разряда (рисунок 4). Яркость прямо пропорциональна мощности, приходящейся на единицу длины дугового разряда. Отношение светового потока и силы света в заданном направлении к длине дуги пропорционально отношению мощности к этой же длине.

Спектр излучения шаровых ксеноновых ламп сверхвысокого давления мало отличается от спектра излучения .

Мощные ксеноновые лампы имеют возрастающую вольт-амперную характеристику. Наклон характеристики растет с увеличением расстояния между электродами и давления. Анодно-катодное падение потенциала у ксеноновых ламп с короткой дугой составляет 9 - 10 В, причем на долю катода приходится 7 - 8 В.

Современные шаровые лампы сверхвысокого давления выпускают в различных конструктивных исполнениях, в том числе с разборными электродами и водяным охлаждением. Разработана конструкция специальной металлической разборной лампы-светильника типа ДКсРМ55000 и ряд других источников, применяемых в специальных установках.

Рассмотренные в предыдущей статье люминесцентные лампы - это лампы низкого давления. Разряд в них происходит при давлении паров ртути не более 0,1 мм ртутного столба или 10 паскалей (Па). Спектр излучения разряда при таких давлениях имеет линейчатый характер, причем, как уже было сказано, до 80 % мощности разряда приходится на две УФ линии: 257 и 185 нм, а на долю пяти линий видимой части спектра лишь около 2 %.

Если давление паров ртути повышается, то вначале все линии «расплываются» и превращаются в полосы, затем происходит пере-распределение энергии: излучение в УФ области ослабевает, а в видимой - увеличивается. При давлении паров ртути около 1000 мм ртутного столба доля видимого излучения возрастает настолько, что световая отдача разряда достигает 20-25 лм/Вт, то есть становится больше, чем у ламп накаливания общего назначения. Но при этом все видимое излучение сосредоточено в сине-зеленой части спектра, а желтый и красный свет отсутствуют полностью. Многим знаком свет медицинских УФ облучателей - довольно неприятного сине-зеленого цвета, сильно искажающим вид освещаемых предметов, в частности, человеческих лиц. В этих облучателях применяются как раз ртутные лампы высокого давления типа ДРТ (дуговая, ртутная, трубчатая).

Несмотря на относительное ослабление доли УФ излучения, оно все же остается в спектре разряда в довольно большом количестве (около 40 % подводимой к разряду мощности). Так же как и в люминесцентных лампах низкого давления, это излучение с помощью люминофора может быть превращено в видимое. Но если в обычных люминесцентных лампах температура стенок колбы лишь немногим выше температуры окружающего воздуха, то в лампах высокого давления размеры колб гораздо меньше, и температура на стенках достигает 500 - 600 оС. Найти люминофоры, эффективно работающие при таких температурах, до сих пор не удалось.

Проблему решили в начале 50-х годов прошлого века. Малогабаритную ртутную лампу высокого давления поместили внутрь другой, значительно большей по размеру колбы, а уже на внутреннюю поверхность этой колбы стали наносить люминофор, имеющий наибольшую эффективность при температуре 200 - 300 оС и излучающий преимущественно в красной области. Сейчас в качестве люминофора чаще всего применяют фосфат-ванадат иттрия, активированный европием. С 1952 года начался массовый выпуск таких ламп ведущими мировыми производителями - General Electric, Philips, Osram. Сегодня по объему выпуска ртутные лампы высокого давления с люминофором занимают третье место после ламп накаливания и люминесцентных ламп.

На рис. 1 показано устройство ртутной лампы.

Рис. 1. с люминофором

Разрядная трубка 1 («горелка») из кварца держателями 2 из достаточно толстой никелевой проволоки закреплена на ножке 3 (у мощных ламп горелка поддерживается еще и пружинящим держателем 4, упирающимся во внешнюю колбу). Ножка 3 герметично впаяна во внешнюю колбу 5, покрытую изнутри слоем люминофора 6. В ртутных лампах высокого давления используются самокалящиеся электроды 7 в виде спирали, навитой на вольфрамовый стержень (керн) и покрытой активирующим веществом. Кроме основных электродов 7, в лампах имеются поджигающие электроды 8, расположенные вблизи основных и электрически соединенные с противоположными электродами через ограничительные сопротивления 9. На внешней колбе с помощью высокотемпературной мастики крепится стандартный резьбовой цоколь 10. Между горелкой и цоколем крепится тепловой экран 11 (обычно из слюды). Внутренний объем горелки заполнен инертным газом аргоном с давлением от 10до 50 мм ртутного столба (в зависимости от мощности лампы) и ртутью.

В отличие от люминесцентных ламп, в которых ртуть всегда находится в жидком состоянии, в лампах высокого давления количество ртути строго дозировано, и при работе ламп ртуть в горелках находится только в газообразном состоянии при давлении паров 1000 - 1500 мм ртутного столба (1,5 - 2 атмосферы). Для получения таких высоких давлений паров ртути температура стенок горелки должна быть не менее 500 оС. Поэтому горелки ламп высокого давления делают только из кварца. Пространство между горелкой и внешней колбой заполняется газом (техническим аргоном).

Схема включения ртутных ламп высокого давления проще, чем люминесцентных ламп (рис. 2).

Рис. 2. Схема включения ртутных ламп высокого давления 

Благодаря наличию поджигающих электродов, расположенных очень близко к основным, между этими электродами разряд возникает при напряжениях ниже сетевого. Этот разряд очень слаб, так как ток его ограничен сопротивлениями 9, но он создает начальную ионизацию газа в горелке, за счет которой разряд переходит на основные электроды. Ток основного разряда ограничивается только дросселем, и величина его в первое время после включения в 2 - 3 раза больше, чем после полного разгорания лампы. Ток разряда разогревает основные электроды до температуры, обеспечивающей достаточную эмиссию электронов из них (1000 - 1200 оС). Из-за большого тока разряда начинают разогреваться стенки горелки, находящаяся на них ртуть постепенно полностью испаряется, и процессы в лампе стабилизируются. Процесс разгорания длится достаточно долго - от 7 до 10 минут.

Как и в схемах с люминесцентными лампами, дроссель создает сдвиг фаз между током и напряжением (cos р~ 0,5). Для компенсации этого сдвига параллельно цепочке из лампы и дросселя включается компенсирующий конденсатор.

Ртутные лампы высокого давления с люминофором выпускаются мощностью 80, 125, 250, 400, 700 и 1000 Вт; изредка встречаются лампы мощностью 50 и 2000 Вт. Лампы мощностью 50, 80 и 125 Вт выпускаются с цоколем Е27, более мощные - с цоколем Е40. Потери мощности в дросселях, как правило, составляют не больше 10%.

Световая отдача современных ламп - от 40 до 60 лм/Вт; срок службы - до 24000 часов. По этим параметрам ртутные лампы высокого давления значительно превосходят лампы накаливания, что и предопределило их очень широкое распространение.

Кроме высокой световой отдачи и большого срока службы, ртутные лампы высокого давления имеют и другие достоинства: относительная компактность; простота включения; широкий диапазон мощностей; очень слабая зависимость параметров от окружающей температуры.

Недостатки таких ламп:

1. Низкое качество цветопередачи (Ra= 45 - 50; у иностранных ламп Delux и Super Delux - не выше 55).
2. Большие пульсации светового потока (65 - 75 %).
3. Большое время разгорания (до 10 минут).
4. Невозможность повторного включения горячей лампы - если лампа случайно погасла, снова включить ее можно только после остывания горелки.
5. Высокая температура на внешней колбе (250 - 300 оС).

Ртутные лампы высокого давления широко применяются там, где не требуется качество цветопередачи, - в уличном освещении, на складах, на промышленных предприятиях (при наличии вращающихся деталей - с обязательным включением соседних светильников в разные фазы) и т.п.

Классификация, маркировка и обозначение ртутных ламп

Ртутные лампы высокого давления классифицируются по мощности.
В России лампы выпускаются под названием ДРЛ (дуговая, ртутная, люминесцентная), далее указывается мощность в ваттах.

За рубежом каждая фирма выпускает лампы под своим названием: Philips - HPL; Osram - HQL; General Electric - MBF; Sylvania - HSL и HSB; Radium - HRL. По международной системе обозначений ILCOS все эти лампы называются QE.

В таблице 1 даны усредненные параметры некоторых типов ртутных ламп высокого давления с люминофорами.

Для наименования всех видов таких источников света в отечественной светотехнике используется термин «разрядная лампа» (РЛ), включённый в состав Международного светотехнического словаря, утверждённого Международной комиссией по освещению . Этим термином следует пользоваться в технической литературе и документации.

В зависимости от давления наполнения, различают РЛ низкого давления (РЛНД), высокого давления (РЛВД) и сверхвысокого давления (РЛСВД).

К РЛНД относят ртутные лампы с величиной парциального давления паров ртути в установившемся режиме менее 100 Па . Для РЛВД эта величина составляет порядка 100 кПа, а для РЛСВД - 1 МПа и более.

Ртутные лампы низкого давления (РЛНД) Ртутные лампы высокого давления (РЛВД)

РЛВД подразделяются на лампы общего и специального назначения. Первые из них, к числу которых относятся, в первую очередь, широко распространённые лампы ДРЛ, активно применяются для наружного освещения , однако они постепенно вытесняются более эффективными натриевыми , а также металлогалогенными лампами. Лампы специального назначения имеют более узкий круг применения, используются они в промышленности, сельском хозяйстве, медицине.

Спектр излучения

Пары ртути излучают следующие спектральные линии, использующиеся в газоразрядных лампах :

Наиболее интенсивные линии - 184.9499, 253.6517, 435.8328 нм. Интенсивность остальных линий зависит от режима (параметров) разряда.

Виды

Ртутные лампы высокого давления типа ДРЛ

ДРЛ (Д уговая Р тутная Л юминесцентная) - принятое в отечественной светотехнике обозначение РЛВД, в которых для исправления цветности светового потока, направленного на улучшение цветопередачи, используется излучение люминофора , нанесённого на внутреннюю поверхность колбы. Для получения света в ДРЛ используется принцип постоянного горения разряда в атмосфере, насыщенной парами ртути.

Применяется для общего освещения цехов, улиц, промышленных предприятий и других объектов, не предъявляющих высоких требований к качеству цветопередачи и помещений без постоянного пребывания людей.

Устройство

Первые лампы ДРЛ изготовлялись двухэлектродными. Для зажигания таких ламп требовался источник высоковольтных импульсов. В качестве него применялось устройство ПУРЛ-220 (Пусковое Устройство Ртутных Ламп на напряжение 220 В). Электроника тех времён не позволяла создать достаточно надёжных зажигающих устройств , а в состав ПУРЛ входил газовый разрядник , имевший срок службы меньший, чем у самой лампы. Поэтому в 1970-х гг. промышленность постепенно прекратила выпуск двухэлектродных ламп. На смену им пришли четырёхэлектродные, не требующие внешних зажигающих устройств.

Для согласования электрических параметров лампы и источника электропитания практически все виды РЛ, имеющие падающую внешнюю вольт-амперную характеристику , нуждаются в использовании пускорегулирующего аппарата , в качестве которого в большинстве случаев используется дроссель , включённый последовательно с лампой.

Четырёхэлектродная лампа ДРЛ (смотреть рисунок справа) состоит из внешней стеклянной колбы 1, снабжённой резьбовым цоколем 2. На ножке лампы смонтирована установленная на геометрической оси внешней колбы кварцевая горелка (разрядная трубка, РТ) 3, наполненная аргоном с добавкой ртути. Четырёхэлектродные лампы имеют основные электроды 4 и расположенные рядом с ними вспомогательные (зажигающие) электроды 5. Каждый зажигающий электрод соединён с находящимся в противоположном конце РТ основным электродом через токоограничивающее сопротивление 6. Вспомогательные электроды облегчают зажигание лампы и делают её работу в период пуска более стабильной. Проводники в лампе изготавливаются из толстой никелевой проволоки.

В последнее время ряд зарубежных фирм изготавливает трёхэлектродные лампы ДРЛ, оснащённые только одним зажигающим электродом. Эта конструкция отличается только большей технологичностью в производстве, не имея никаких иных преимуществ перед четырёхэлектродными.

Принцип действия

Горелка (РТ) лампы изготавливается из тугоплавкого и химически стойкого прозрачного материала (кварцевого стекла или специальной керамики), и наполняется строго дозированными порциями инертных газов . Кроме того, в горелку вводится металлическая , которая в холодной лампе имеет вид компактного шарика, или оседает в виде налёта на стенках колбы и (или) электродах . Светящимся телом РЛВД является столб дугового электрического разряда .

Процесс зажигания лампы, оснащённой зажигающими электродами , выглядит следующим образом. При подаче на лампу питающего напряжения между близко расположенными основным и зажигающим электродом возникает тлеющий разряд , чему способствует малое расстояние между ними, которое существенно меньше расстояния между основными электродами , следовательно, ниже и напряжение пробоя этого промежутка. Возникновение в полости РТ достаточно большого числа носителей заряда (свободных электронов и положительных ионов) способствует пробою промежутка между основными электродами и зажиганию между ними тлеющего разряда, который практически мгновенно переходит в дуговой.

Стабилизация электрических и световых параметров лампы наступает через 10-15 минут после включения. В течение этого времени ток лампы существенно превосходит номинальный и ограничивается только сопротивлением пускорегулирующего аппарата . Продолжительность пускового режима сильно зависит от температуры окружающей среды - чем холоднее, тем дольше будет разгораться лампа.

Электрический разряд в горелке ртутной дуговой лампы создаёт видимое излучение голубого или фиолетового цвета, а также, мощное ультрафиолетовое излучение . Последнее возбуждает свечение люминофора , нанесённого на внутренней стенке внешней колбы лампы. Красноватое свечение люминофора, смешиваясь с бело-зеленоватым излучением горелки, даёт яркий свет, близкий к белому.

Изменение напряжения питающей сети в большую или меньшую сторону вызывает изменение светового потока: отклонение питающего напряжения на 10-15 % допустимо и сопровождается соответствующим изменением светового потока лампы на 25-30 %. При уменьшении напряжения питания менее 80 % номинального, лампа может не зажечься, а горящая - погаснуть.

При горении лампа сильно нагревается. Это требует использования в световых приборах с дуговыми ртутными лампами термостойких проводов, предъявляет серьёзные требования к качеству контактов патронов. Поскольку давление в горелке горячей лампы существенно возрастает, увеличивается и напряжение её пробоя. Величина напряжения питающей сети оказывается недостаточной для зажигания горячей лампы, поэтому перед повторным зажиганием лампа должна остыть. Этот эффект является существенным недостатком дуговых ртутных ламп высокого давления: даже весьма кратковременный перерыв электропитания гасит их, а для повторного зажигания требуется длительная пауза на остывание.

Традиционные области применения ламп ДРЛ

Освещение открытых территорий, производственных, сельскохозяйственных и складских помещений. Везде, где это связано с необходимостью большой экономии электроэнергии, эти лампы постепенно вытесняются НЛВД (освещение городов, больших строительных площадок, высоких производственных цехов и др.).

Довольно оригинальной конструкцией отличаются РЛВД Osram серии HWL (аналог ДРВ), имеющие в качестве встроенного балласта обычную нить накала, размещённую в вакуумированном баллоне, рядом с которой в том же баллоне помещена отдельно загерметизированная горелка. Нить накала стабилизирует напряжение питания из-за бареттерного эффекта, улучшает цветовые характеристики, но, очевидно, весьма заметно снижает как общий КПД, так и ресурс из-за износа этой нити. Такие РЛВД применяются и в качестве бытовых, так как имеют улучшенные спектральные характеристики и включаются в обычный светильник, особенно в больших помещениях (самый маломощный представитель этого класса создаёт световой поток в 3100 Лм).

Дуговые ртутные металлогалогенные лампы (ДРИ)

Лампы ДРИ (Д уговая Р тутная с И злучающими добавками) конструктивно схожа с ДРЛ, однако в её горелку дополнительно вводятся строго дозированные порции специальных добавок - галогенидов некоторых металлов (натрия, таллия, индия и др.), за счёт чего значительно увеличивается световая отдача (порядка 70 - 95 лм/Вт и выше) при достаточно хорошей цветности излучения. Лампы имеют колбы эллипсоидной и цилиндрической формы, внутри которой размещается кварцевая или керамическая горелка. Срок службы - до 8 - 10 тыс. ч.

В современных лампах ДРИ используются в основном керамические горелки, обладающие большей стойкостью к реакциям с их функциональным веществом, благодаря чему со временем горелки затемняются гораздо меньше кварцевых. Однако последние тоже не снимают с производства из-за их относительной дешевизны.

Ещё одно отличие современных ДРИ - шаровидная форма горелки, позволяющая снизить спад светоотдачи, стабилизировать ряд параметров и увеличить яркость «точечного» источника. Различают два основных исполнения данных ламп: с цоколями Е27, Е40 и софитное - с цоколями типа Rx7S и подобными им.

Для зажигания ламп ДРИ необходим пробой межэлектродного пространства импульсом высокого напряжения. В «традиционных» схемах включения данных паросветных ламп, помимо индуктивного балластного дросселя, используют импульсное зажигающее устройство - ИЗУ .

Изменяя состав примесей в лампах ДРИ, можно добиться «монохроматических» свечений различных цветов (фиолетового, зелёного и т. п.) Благодаря этому ДРИ широко используются для архитектурной подсветки. Лампы ДРИ с индексом «12» (с зеленоватым оттенком) используют на рыболовецких судах для привлечения планктона.

Дуговые ртутные металлогалогенные лампы с зеркальным слоем (ДРИЗ)

Лампы ДРИЗ (Д уговая Р тутная с И злучающими добавками и З еркальным слоем) представляет собой обычную лампу ДРИ, часть колбы которой изнутри частично покрыта зеркальным отражающим слоем, благодаря чему такая лампа создаёт направленный поток света. По сравнению с применением обычной лампы ДРИ и зеркального прожектора , уменьшаются потери за счёт уменьшения переотражений и прохождений света через колбу лампы. Так же получается высокая точность фокусировки горелки. Для того, чтобы после вворачивания лампы в патрон направление излучения её можно было изменить, лампы ДРИЗ снабжают специальным цоколем.

Ртутно-кварцевые шаровые лампы (ДРШ)

Лампы ДРШ (Д уговые Р тутные Ш аровые) представляют собой дуговые ртутные лампы сверхвысокого давления с естественным охлаждением. Имеют шарообразную форму и дают сильное ультрафиолетовое излучение.

Ртутно-кварцевые лампы высокого давления (ПРК, ДРТ)

Дуговые ртутные лампы высокого давления типа ДРТ (Д уговые Р тутные Т рубчатые) представляют собой цилиндрическую кварцевую колбу с впаянными по концам электродами. Колба наполняется дозированным количеством аргона , помимо того в неё вводится металлическая

Несмотря на появление альтернативных источников света, лампа ДРЛ по-прежнему остается одним из самых востребованных решений, используемых для освещения производственных помещений и улиц. В этом нет ничего удивительного, если учесть преимущества данного осветительного прибора:

Считалось, что с появлением натриевых альтернатив утратит свои позиции, однако этого не произошло. Хотя бы потому, что ее белый спектр света более естественен для человеческого глаза, чем оранжевый оттенок светового потока натриевых решений.

Что же такое лампа ДРЛ?

Аббревиатура «ДРЛ» расшифровывается очень просто - дуговая ртутная лампа. Иногда добавляют поясняющие термины «люминесцентная» и «высокого давления». Все они отражают одну из особенностей данного решения. В принципе, говоря «ДРЛ», можно особо не переживать, что может быть допущена ошибка в трактовке. Эта аббревиатура давно стала нарицательной, фактически, вторым названием. Кстати, иногда можно увидеть выражение «лампа ДРЛ 250». Здесь число 250 означает потребляемую электрическую мощность. Довольно удобно, так как можно подобрать модель под

существующую пусковую аппаратуру.

Принцип работы и устройство

Лампа ДРЛ не является чем-то принципиально новым. Принцип генерации невидимого глазом ультрафиолетового излучения в газовой среде при электрическом пробое известен давно и с успехом используется в люминесцентных трубчатых колбах (вспоминаем «экономки» в наших квартирах). Внутри лампы в среде инертного газа с добавлением ртути находится трубка из кварцевого стекла, выдерживающая высокие температуры. При подаче напряжения сначала возникает дуга между двумя близко расположенными электродами (рабочий и зажигательный). При этом начинается процесс ионизации, проводимость промежутка растет и при достижении определенного значения происходит переключение дуги на основной электрод, находящийся с противоположной стороны кварцевой трубки. Зажигательный контакт при этом из процесса выходит, так как подключен через сопротивление, а, значит, ток на нем ограничен.

Основное излучение дуги приходится на ультрафиолетовый диапазон, который преобразуется в видимый свет слоем люминофора, нанесенным на внутреннюю поверхность колбы.

Таким образом, отличие от классической в особом способе разжигания дуги. Дело в том, что для начала ионизации необходим первоначальный пробой газа. Раньше импульсные электронные устройства, способные создать достаточно для пробоя всего промежутка в кварцевой трубке, не обладали достаточной надежностью, поэтому разработчики в 1970 годах пошли на компромисс - разместили в конструкции дополнительные электроды, розжиг между которыми происходил при сетевом напряжении. Предвидя встречный вопрос о том, почему в лампах-трубках разряд, все-таки, создается с помощью дроссельной катушки, ответим - все дело в мощности. Потребление трубчатых решений не превышает 80 Ватт, а ДРЛ не бывает менее 125 Вт (достигая 400). Различие ощутимо.

Схема подключения лампы ДРЛ очень похожа на решение, используемое для розжига трубчатых люминесцентных осветительных приборов. Она включает в себя последовательно присоединенный дроссель (ограничение электрического тока), параллельно включенный конденсатор (устранение помех в сети) и предохранитель.

Газоразрядные лампы высокого давления

Лампы высокого давления, по сравнению с люминесцентными, имеют значительно меньшие габариты и большую единичную мощность. У ртутных ламп высокого давления при равной мощности с люминесцентными (например, 40, 80 Вт) длина почти в 10 раз меньше. Малые габариты и высокое давление в них обусловили температуру разрядной трубки - 700...750°С. Поэтому разрядную трубку ламп выполняют из кварцевого стекла или специальной керамики, имеющей высокую прозрачность в видимой области спектра. .

Одна из первых была разработана лампа высокого давления типа ДРТ. Обозначение лампы: Д - дуговая, Р - ртутная, Т - трубчатая; следующее затем число соответствует мощности лампы. Прежнее название лампы - ПРК (прямая ртутно-кварцевая). Лампа ДРТ предназначена для ультрафиолетового облучения молодняка животных, цыплят, яиц перед инкубацией, семян зерновых культур и т.д. Она применяется в комплекте облучательных установок различных типов.

Лампа ДРТ представляет собой прямую трубку из кварцевого стекла, по концам которой впаяны вольфрамовые электроды. В трубку введено небольшое

Рис.1.26. Схемы включения: а) - лампы ДРТ; б) - лампы ДРЛ; EL - лампа; L - дрос­сель, SB - кнопочный включатель; CI, C2, СЗ - конденсаторы; R - резистор

количество ртути и инертного газа - аргона. Для удобства крепления к арматуре лампа по краям снабжена хомутиками с держателями, которые соединены между собой металлической полоской, используемой для облегчения зажигания лампы. В электрическую сеть лампу ДРТ включают последовательно с дросселем L по резонансной схеме (рис.1.26a). В результате резонанса, образуемого при кратко временном включении конденсатора С2, напряжение на дросселе L и конденсаторе С2 возрастает примерно в 2 раза по сравнению с напряжением питания. Это обеспечивает в лампе дуговой разряд. Металлическая полоска, подключенная через конденсатор малой емкости С3, облегчает пробой лампы. Конденсатор C1 повышает коэффициент мощности схемы до 0,92...0,95.

Электрическая энергия, подводимая к лампе ДРТ, преобразуется в ней следующим образом: ультрафиолетовое излучение составляет 18%, инфракрасное излучение – 15%, видимый свет – 15%, потери равны 52%. Однако лампа ДРТ используется прежде всего как источник ультрафиолетового излучения. В таблице 1.9 приведены характеристики ламп ДРТ.

Таблица 1.9 - Дуговые ртутные лампы высокого давления ДРТ

Поток излучения ламп ДРТ зависит от температуры окружающего воздуха. При высокой температуре ухудшается прозрачность кварцевого стекла, что определяет снижение в особенности ультрафиолетового излучения и сроков годности лампы.

Дуговая ртутная лампа ДРЛ предназначена для наружного освещения, закрытых помещений и объектов, где не требуется высокого качества цветопередачи. Она может быть рекомендована для освещения животноводческих и других сельскохозяйственных помещений; со специальными облучателями она используется для облучения рассады в теплицах, так как имеет фотосинтезно активное излучение с длиной волны = 580...700 нм (оранжево-красная часть спектра излучения).

Баланс энергии у лампы ДРЛ: ультрафиолетовое излучение практически отсутствует, видимое излучение составляет 17%, инфракрасное излучение - 14%, тепловые потери – 69%. Цвет суммарного излучения близок к белому. Доля красного излучения составляет 6...15%. Процент содержания красного излучения указывается при маркировке ламп в скобках. Яркость ламп ДРЛ почти в 10 раз превышает яркость люминесцентных ламп низкого давления.

Конструкция лампы ДРЛ представлена на рис. 1.27. Кварцевая трубка (горелка) 3 размещена в колбе 1, внутренняя поверхность которой покрыта тонким слоем люминофора 2. Слой люминофора преобразует ультрафиолетовое излучение трубки в свет, пригодный для освещения. В кварцевую трубку впаяны два основных вольфрамовых электрода 4, покрытых активированным слоем и подсоединенных к цоколю 7, и два дополнительных (поджигающих) 5. В трубке находится небольшое количество ртути (40...60 мг). После откачки воздуха из внешней колбы 1 она заполняется аргоном под давлением 2,5...4,5 кПа.

Такая конструкция позволяет зажигать четырехэлектродную лампу от питающей сети 220 В без специального поджигающего устройства (рис.1.26б). Наличие дросселя и конденсатора в схеме позволяет уменьшить колебания светового потока и увеличить коэффициент мощности. При этом ПРА потребляет около 10% номинальной мощности лампы. При включении лампы в сеть последовательно с дросселем разряд первоначально возникает между смежными основным и дополнительным электродами. Вызванная этим ионизация разрядного промежутка приводит к возникновению разряда между основными электродами, после чего дополнительные электроды прекращают работать.

Наличие во внешней колбе 1 аргона под давлением позволяет на долгий срок сохранить люминофорное покрытие в рабочем состоянии. Нагрев внешней колбы при работе лампы - 220... 280°С. Оптимальная температура внешней среды для работы ламп - 25...40°С. Период разгорания лампы ДРЛ длится 5...10 мин. Характеристики ламп ДРЛ приведены в табл. 1.10.

Осветительные металлогалогенные лампы общего назначения типа ДРИ (дуговые ртутные с излучающими добавками) имеют в зависимости от состава добавок различный спектр излучения, обеспечивающий высокое качество цветопередачи и более высокий, чем у ламп ДРЛ, световой КПД. Конструктивно лампы отличаются от ламп ДРЛ формой внешней колбы, не имеющей люминофорного покрытия, и отсутствием в разрядной трубке дополнительных поджигающих электродов.


Поэтому в сеть их включают по схеме, содержащей специальные импульсные зажигающие устройства - ИЗУ, генерирующие высоковольтные импульсы напряжением 2...6 кВ.

Чтобы улучшить спектральный состав видимого излучения, в трубку ламп добавляют соединения галогенной группы: иодиды натрия, скандий, бромиды редкоземельных металлов. Характеристики ламп ДРИ даны в табл. 1.11.

В табл. 1.11 приведены также характеристики ламп ДРИЗ для освещения сухих, пыльных и влажных помещений и ламп ДРИШ для освещения объектов при цветных телевизионных съемках и передачах (Ш – обозначение широкого спектра).



Ртутно-кварцевые лампы высокого давления ДРЛФ созданы для облучения растений на основе ламп ДРЛ. Особенностью этих ламп является специальный состав люминофора, который обеспечивает спектр излучения, в наибольшей степени способствующий прохождению физиологических процессов в растениях. Это излучение находится в диапазоне длин волн от 350 до 750 нм с преобладанием оранжево-красных и сине-фиолетовых лучей.

По своей конструкции и по электрическим параметрам лампы ДРЛФ аналогичны лампам ДРЛ, однако они имеют колбу из стекла, выдерживающего в нагретом состоянии брызги холодной воды. В электрическую сеть лампы включаются аналогично лампам ДРЛ.

Обозначения ламп: Д - дуговая, Р - ртутная, Л - люминесцентная, Ф - с повышенной фитоотдачей. Наибольшее распространение получили лампы ДРЛФ-400 и ДРЛФ-1000 мощностью 400 и 1000 Вт с фитопотоком соответственно 12800 и 90000 мфт.

Таблица 1.10 - Ртутные лампы высокого давления ДРЛ

Тип лампы Мощность лампы, Вт Напряжение на лампе, В Световой поток, лм Световая отдача, лм/Вт Срок службы, ч
ДРЛ-50(15) 33,7
ДРЛ-80(15)
ДРЛ-125(6) 41,9
ДРЛ-125(15) 44,8
ДРЛ-250(6)-4
ДРЛ-250(14)-4
ДРЛ-400(10)-3 57,5
ДРЛ-400(12)-4
ДРЛ-700(6)-3
ДРЛ-700(12)-3 58,5
ДРЛ-1000(6)-2
ДРЛ-1000(12)-3 58,5
ДРЛ-2000(12)-2

Дуговая ртутно-вольфрамовая лампа ДРВ-750 предназначена для дополнительного облучения растений в теплицах. Основным ее преимуществом, по сравнению с лампами ДРЛФ, является отсутствие ПРА, в результате чего снижается металлоемкость облучающей установки, уменьшается нагрузка на крышу теплицы, улучшается маневренность подвижных систем облучения. Лампа выполнена в виде колбы, в которой смонтирована ртутная горелка совместно с нитью накаливания. Сама колба изготовлена из термостойкого стекла и рассчитана на попадание брызг холодной воды.

Таблица 1.11 - Дуговые ртутные металлогалогенные лампы для наружного и внутреннего освещения ДРИ

Тип лампы Мощность лампы, Вт Напряжение на лампе, В Световой поток, лм Световая отдача, лм/Вт Срок службы, ч
ДРИ-125
ДРИ-175 68,5
ДРИ-250
ДРИ-1000-5
ДРИ-400-5
ДРИ-700
ДРИЗ-250-2 54,8
ДРИЗ-400-3
ДРИШ-2500-2
ДРИШ-4000-2

Имеет зеркальный или диффузный отражатель. Нить накаливания является балластным сопротивлением и одновременно источником излучения, усиливающим красную часть спектральной характеристики лампы.

В результате лампа ДРВ-750 является источником смешанного излучения с преобладанием оранжево-красных и сине-фиолетовых лучей.

Модернизацией лампы ДРВ является ртутно-вольфрамовая лампа ДРВЛ. В ней также в пространстве между разрядной трубкой и внешней колбой установлена вольфрамовая спираль, включенная последовательно с разрядной трубкой и выполняющая роль балластного сопротивления. В указанном балласте теряется примерно половина мощности лампы. Это снижает в 1,5...2 раза эффективный КПД ртутно-вольфрамовых ламп по сравнению с лампами ДРЛ и ДРТ.

Дуговые ртутно-вольфрамовые эритемные лампы с диффузным отражателем типа ДРВЭД предназначены для комплексного воздействия излучением части спектра с длинами волн от 280 до 5000 нм. Внешняя колба этих ламп выполнена из специального увиолевого стекла, пропускающего ультрафиолетовое излучение. Срок службы ламп типа ДРВЭД определяется в основном сроком службы вольфрамовой спирали - 3000...5000 ч.

Дуговые ртутные люминесцентные лампы ДРФ-1000 и ДРФ-2000 с повышенной фитоотдачей предназначены для комплектования вегетационных осветительных установок, применяющихся для создания светового режима в климатических камерах и шкафах при селекции различных растений. Лампы имеют большой световой поток и высокую светоотдачу. По конструкции и характеристикам аналогичны лампам ДРЛ, но отличаются составом люминофора, имеют колбу из вольфрамового термостойкого стекла, выдерживающего брызги холодной воды. Из недостатков следует отметить большую массу ПРА и устройства компенсации коэффициента мощности.

В группе разрядных ламп высокого давления натриевые лампы типа ДНаТ (дуговые натриевые трубчатые) отличаются большим световым КПД и чуть более вытянутой по сравнению с лампой ДРЛ наружной колбой. Разрядная трубка правильной цилиндрической формы выполнена из полупрозрачной керамики (поликристаллического алюминия) или из прозрачного трубчатого монокристалла (лейкосапфира). Эти материалы устойчивы к длительному воздействию паров натрия при температуре до 1600°С. Общий коэффициент пропускания видимого излучения составляет 90...95%. Однако 70% излучения находится в зоне 560...610 нм желто-оранжевого цвета, что вызывает искажение цветопередачи. Поэтому: лампы ДНаТ в основном используют для наружного освещения. В электрическую сеть лампы ДНаТ включают по схеме, аналогичной схеме ламп ДРИ.

Характеристики натриевых ламп высокого давления ДНаТ приведены в табл. 1.12.

Дуговые ксеноновые трубчатые лампы (ДКсТ) в сельском хозяйстве используются сравнительно мало из-за сложности их эксплуатации. Лампы выполняют в одной кварцевой разрядной колбе (ДКсТ) и в двух колбах с водяным охлаждением (ДКсТВ).

В спектре ламп ДКсТ без водяного охлаждения имеется избыток ультрафиолетового излучения. Этот недостаток скорректирован в лампах типа ДКсТЛ, колбы которых выполнены из кварцевого стекла с легирующими (Л) присадками. В видимой области спектра излучение ксеноновых ламп приближается к солнечному. У ламп типа ДКсТВ доля видимого излучения составляет всего 10...12% их мощности. Указанные типы ламп выпускаются, как правило, большой единичной мощности - от 1000 до 12000 Вт со световой отдачей 24...40 лм/Вт. Срок службы составляет 500...1500 ч, что обусловлено значительной температурой поверхности разрядной трубки (750... 800°С).

Таблица 1.12 - Натриевые лампы высокого давления ДнаТ

Тип лампы Мощность лампы, Bт Напряжение на лампе, В Световой поток, лм Световая отдача, лм/Вт Срок службы
ДНаТ-70
ДНаТ-100
ДНаТ-150
ДНаТ-250-4 97,5
ДНаТ-250-7 97,5
ДНаТ-360
ДНаТ-400-4 102,5 117,5
ДНаТ-400-7 102,5

Особенностью большинства разрядных ламп высокого давления является режим разгорания, протекающий в течение 5...10 мин после зажигания лампы. У ртутных и натриевых ламп он более продолжительный, чем у ксеноновых. В процессе разгорания изменяются все параметры лампы. Например, ток в ртутных лампах превышает номинальное значение в 1,5...2 раза. По мере разогрева давление паров внутри лампы растет, что сопровождается снижением тока и увеличением потока излучения, с ростом давления повышается напряжение зажигания лампы. Поэтому повторное зажигание погасшей лампы возможно лишь после ее остывания, следовательно, после снижения напряжения зажигания. Колебания напряжения сети мало влияют на световую отдачу ламп, однако большие отклонения напряжения сказываются значительно. Лампы должны эксплуатироваться в том положении, которое определено заводом-изготовителем. При эксплуатации установок с разрядными лампами высокого давления следует принимать во внимание значительную пульсацию световых потоков и принимать меры к их снижению.

Контрольные вопросы

1. Что называется искусственным источником оптического излучения?

2. Какие основные виды источников оптического излучения вы знаете?

3. Что называется идеальным излучателем?

4. Назовите три класса тел накала.

5. Как происходит преобразование эл. энергии в оптические излучения?

6. Дайте определение закона Кирхгофа.

7. Дайте определение закона Стефана Больцмана.

8. Напишите закон Планка.

9. Дайте определение закону смещения Вина.

10. Назовите основные элементы конструкции лампы накаливания общего назначения?

11. Как устроена линейная галогенная лампа накаливания?

12. Назовите некоторые разновидности ламп накаливания.

13. Каковы основные характеристики ламп накаливания?

14. Как изменяются показатели ламп накаливания от подводимого напряжения?

15. Приведите простейшие схемы включения ламп накаливания.

16. Как классифицируются разрядные лампы?

17. Как происходит преобразование эл. энергии в видимое излучение в разрядных лампах?

18. Назначение балластного устройства?

19. Как происходит стабилизация дугового разряда?

20. Как влияет вид балластного устройства на работу гозоразрядных ламп?

21. Дайте общие сведения о газоразрядных лампах низкого и высокого давления.

22. Устройство и обозначения наиболее распространенных люминисцентных ламп.

23. Как определяется коэффициент пульсации светового потока?

24. Нарисуйте стартерную схему включения люминисцентной лампы.

25. Дайте понятия о бесстартерных схемах включения люминисцентных ламп.

26. Расскажите о назначении газоразрядных ламп высокого давления типа ДРТ, ДРЛ, ДРВ, ДНаТ.

Нарисуйте схему включения лампы ДРТ, ДРЛ, и т.д.