Различные языки программирования. Список языков программирования. Язык программирования и его виды

Существует множество способов измерения популярности того или иного языка программирования. Но мы считаем, что анализ спроса на специалистов является наиболее точным. Он четко демонстрирует разработчикам навыки, необходимые для улучшения их карьерных перспектив.

Мы проанализировали вакансии, опубликованные на сайте Indeed.com , чтобы определить семь наиболее востребованных в 2018 году языков программирования. Некоторые языки, такие как Swift и Ruby, не вошли в первую семерку, потому что пользуются более низким спросом у работодателей.

Востребованность Java в 2018 году снизилась примерно на 6 000 вакансий по сравнению с 2017. Но этот язык программирования по-прежнему популярен. Java более 20 лет используется миллионами разработчиков и миллиардами устройств по всему миру. Он может работать на любой аппаратной и операционной системе через виртуальную машину Java.

Все Android -приложения основаны на Java. 90 % компаний из списка Fortune 500 используют Java в качестве серверного языка программирования.

2. Python

Популярность Python выросла примерно на 5000 вакансий. Это язык программирования общего назначения, используемый для веб-разработки. Он также широко используется в научных вычислениях и интеллектуальном анализе данных. Постоянный спрос на разработчиков в области машинного обучения стимулирует спрос на Python.

3. JavaScript

JavaScript так же популярен сегодня, как и в 2017 году. Этот язык программирования используют более 80% разработчиков и 95% всех сайтов для построения динамических элементов на веб-страницах. Ряд интерфейсных JavaScript- фреймворков, таких как React и AngularJS, имеют огромный потенциал. IoT и мобильные устройства становятся все более популярными, поэтому мы сомневаемся, что в ближайшее время увидим спад спроса на JavaScript- программистов.

4. C++

Востребованность C ++ мало изменилась по сравнению с 2017 годом. Этот язык программирования используется для создания системного / прикладного программного обеспечения, разработки игр, драйверов, клиент-серверных приложений. Многие программисты считают C ++ более сложным, чем такие языки программирования, как Python или JavaScript. Но он по-прежнему используется во многих устаревших системах на крупных предприятиях.

5. C#

Популярность C# (произносится, как «C шарп») в этом году немного снизилась. C# — это объектно-ориентированный язык программирования, предназначенный для разработки на платформе Microsoft.NET.

C#, как и C++, используется в разработке видеоигр, поэтому начинающим программистам стоит осваивать сразу оба языка.

6. PHP

Этот серверный язык программирования поднялся на шестое место в нашем рейтинге (по сравнению с прошлым годом). Большинство разработчиков использует PHP для реализации функций, которые не поддерживает HTML. А также для взаимодействия с базами данных MySQL.

7. Perl

Спрос на Perl снизился примерно на 3000 вакансий, и он остался на седьмом месте в нашем рейтинге. Perl продолжает пользоваться популярностью у системных и сетевых администраторов.

Взгляд в будущее

Это языки программирования, которые пока не попали в наш рейтинг. Но в 2018 году они стали пользоваться большей популярностью. Следите за ними в будущем!

  • Swift : язык программирования для iOS и macOS, выпущенный корпорацией Apple в 2014 году, номер 14 в нашем рейтинге. Это связано с тем, что многие вакансии для разработчиков формулируют требования как «iOS», без указания конкретного языка. Swift неуклонно набирает популярность.
  • R : занял в нашем рейтинге 11 место. Но мы ожидаем, что через несколько лет этот язык программирования взлетит вверх. Он набирает популярность, как в международном рейтинге, так и в США . Рост спроса на R-разработчиков объясняется все более активным использованием языка в анализе данных.
  • Rust : Несмотря на то, что Rust занимает невысокое место в нашем рейтинге, согласно данным Google Trends он неуклонно развивается.

Другие технологии, о которых нужно знать

Перечисленные ниже технологии формально не являются языками программирования. Но они входят в список требований, которые предъявляют работодатели к разработчикам.

  • SQL : стандартный язык запросов, предназначенный для хранения и обработки информации в базах данных. Знания SQL пользуется высоким спросом у работодателей. Он упоминается в более чем 30 тысячах вакансий.
  • .NET : платформа Microsoft для разработки программ для настольных компьютеров, мобильных устройств и веб-приложений. Она используется такими языками программирования, как C#, Visual Basic и F#. А кроссплатформенная реализация технологии расширяет.NET для iOS, Linux и Android.
  • Node : среда с открытым исходным кодом, которая позволяет запускать JavaScript- код на стороне сервера. Это предоставляет возможность использовать один язык программирования для всего веб-приложения. Мы рекомендуем уделить некоторое время на изучение Node.js.
  • MEAN : Стек MEAN (MongoDB, ExpressJS, AngularJS и Node.js) занимает 18-е место в нашем рейтинге. Использование стека позволяет создавать на JavaScript полноценные приложения. Изучение MEAN предоставит базу для разработки на одном из самых популярных языков программирования в мире.

Перевод статьи «The 7 Most In-Demand Programming Languages of 2018» был подготовлен дружной командой проекта .

Хорошо Плохо

Каким бы совершенным ни был компьютер, без программного обеспечения он представляет собой просто груду металла и пластика. Именно программы определяют, что и как , в какой последовательности он выполняет те или иные операции. Первые языки программирования начали появляться в начале пятидесятых годов и использовались для преобразования простых арифметических выражений в машинный код. Машинный код – это система команд вычислительной машины, интерпретируемых непосредственно микропроцессором. Но человеку писать программу в машинных кодах очень неудобно. Для того чтобы облегчить труд программиста, и начали создаваться языки программирования .Языки программирования делятся на языки высокого уровня и низкого. Чем выше уровень языка, тем легче на нем писать программисту. Такой язык более понятен человеку, так как позволяет с помощью простых смысловых конструкций задавать необходимую последовательность действий. После создания программы происходит ее компиляция – то есть автоматический в понятный процессору язык машинных кодов. Языки низкого уровня находятся гораздо ближе к языку машинных кодов, поэтому писать на них труднее. Но у них есть свое преимущество – написанные на таком языке программы получаются очень быстрыми и компактными. Наиболее популярным низкоуровневым языком является Assembler. Некоторые его преимущества настолько очевидны, что даже в сложных программах, написанных на высокоуровневых языках, часто применяют вставки на Ассемблере.Несмотря на существование большого количества языков программирования , получившие широкое распространение можно пересчитать по пальцам. Одним из самых распространенных является язык C++. Это очень удобный и достаточно простой для программиста язык, позволяющий создавать программы любого уровня сложности. Не так давно компания Microsoft разработала язык C# (читается как «си шарп»), обладающий рядом новых возможностей и предназначенный для написания программ под операционную систему Windows. Компания Microsoft выпустила и очень популярную среду программирования Microsoft Visual Studio, позволяющую программировать на С++, С# и некоторых других языках.Очень известным является язык программирования Delphi. Свое происхождение он ведет от некогда знаменитого Паскаля, однако благодаря усилиям компании Borland приобрел ряд новых качеств, став, по сути, новым языком. Писать на этом языке достаточно просто и удобно, а благодаря среде программирования Borland Delphi он получил очень широкое распространение.Без языков программирования было бы невозможным и существование интернета. Такие языки , как Perl и PHP позволяют создавать скрипты, определяющие выполнение на страницах сайта необходимых действий. Даже создание самой простой интернет-страницы невозможно без знания HTMLстандартного языка разметки документов. Вычислительные устройства сейчас находятся повсюду: в сотовых телефонах и банкоматах, в станках с числовым программным управлением и в телевизорах. Трудно найти сферу жизни, в которой они не были бы тем или иным образом задействованы. И все эти устройства работают благодаря программам, написанным с помощью тех или иных языков программирования .

Язык программирования - средство общения программиста с компьютером. Компьютер в данном случае - машина, понимающая лишь элементарные команды. На каком же языке разговор человека с компьютером сложнее всего?

В советском романе «Программист» рассказывается о ситуации, когда в техническом институте вычислительная машина. Приехало начальство и попросило продемонстрировать ее работу. Но она не понимала команды языка программирования. Тогда талантливый инженер начал диалог с машиной на ее языке - прямо в двоичном коде.

Многие программисты считают именно двоичный код самым сложным языком программирования - что является парадоксом, ведь бинарные числа языком не являются. Само понятие «язык программирования» подразумевает с языка компьютеров на язык человеческий. В двоичном же коде программисту приходится без упрощений дискутировать с машиной.

Несмотря на огромные трудности работы с двоичным кодом напрямую, именно двоичная логика позволяет экономней всего распоряжаться машинной памятью. Ее можно использовать для простых электрических устройств (микроволновые печи, чайники), а также в приборах, требующих особой скорости (точные часы, медицинское оборудование, спортивный инвентарь для судейства).

Ассемблер

Ассемблер - группа команд двоичного кода, сгруппированного по секциям. Этот язык используется при дизассемблировании программ. Бывает необходимо узнать код программы по ее исполняемым файлам. Для этого необходимо расшифровать исполняемый файл (работа во многом перекликается с криптографией). Этот процесс расшифровки исполняемых файлов называется дизассемблированием. На выходе программист получает группу команд ассемблера, даже если изначально программа была написана на другом языке. Работа с ассемблером (asm) напоминает программирование в двоичном коде, являясь испытанием даже для сильных программистов.

Популярный С++

Огромное количество программ и оболочек в мире написано на языках группы С. Сам язык С был создан в 1970 году для работы с процессорами. Этот язык отличался большой простотой.

В """" был разработан язык C++, наследовавший большинство возможностей предшественника, но добавивший дополнительный принцип - парадигму наследования. Несмотря на видимую простоту команд, именно этот язык является мощнейшим инструментом программирования. Огромное количество сторонних библиотек дает программисту большой простор для творческого процесса. Однако язык имеет сложную логическую структуру. Необходимо использовать объектно-ориентированный подход, который уменьшает число строк кода (из-за наследования), но усложняет логику. От программиста требуется умение фантазировать, что само по себе непросто.

Новые языки

В настоящее время широкой популярностью пользуются свободные «абстрактные» языки программирования: NOSQL, Erlang, Python. Освоить их непросто, однако специалисты редких языков пользуются большой популярностью. Как правило, новые языки создаются для решения специфических задач: работы с web-интерфейсами, создания приложений или управления серверными процессами. Особая трудность программирования на новейших языках заключена в их малой исследованности - имеется мало компонентов и библиотек, спецификаций и учебников.

Языки программирования

Язык программирования – формальная знаковая система, предназначенная для описания алгоритмов в форме, которая удобна для исполнителя (например, ЭВМ, т.е. компьютера).

Язык программирования определяет набор лексических, синтаксических и семантических правил, используемых при составлении программы. Он позволяет программисту точно определить то, на какие события будет реагировать компьютер, как будут храниться и передаваться данные, а также какие именно действия следует выполнять над этими данными при различных обстоятельствах.

Со времени создания первых программируемых машин человечество придумало уже более 2500 языков программирования. Каждый год их число пополняется новыми.

Некоторыми языками умеет пользоваться только небольшое число их собственных разработчиков, другие становятся известны миллионам людей. Профессиональные программисты иногда применяют в своей работе более десятка разнообразных языков программирования.

Каждый язык программирования может быть представлен в виде набора формальных спецификаций, определяющих его синтаксис и семантику – систему правил истолкования отдельных языковых конструкций.

Эти спецификации обычно включают в себя описание:

    типов и структур данных;

    операционную семантику (алгоритм вычисления конструкций языка);

    семантические конструкции языка;

    библиотеки примитивов (например, команды ввода-вывода);

    философии, назначения и возможностей языка.

Для многих широко распространённых языков программирования созданы международные комитеты по стандартизации, которые выполняют регулярное обновление и публикацию спецификаций и формальных определений соответствующего языка. В рамках таких комитетов продолжается разработка и модернизация языков программирования и решаются вопросы о расширении или поддержке уже существующих и новых языковых конструкций.

Языки программирования принято делить на низкоуровневые и высокоуровневые . Такое разделение происходит взависимости от степени детализации команд – чем меньше детализация, тем выше уровень языка.

Языки программирования низкого уровня

Низкоуровневый язык программирования – язык программирования, близкий к программированию непосредственно в машинных кодах. Низкоуровневые языки, как правило, используют особенности конкретного семейства процессоров.

Низкоуровневым языком является язык ассемблера (от английского assembler - сборщик) - названия транслятора (компилятора) c языка ассемблера. Язык ассемблера, часто для краткости неверно называют "ассемблером".

Команды языка ассемблера один в один соответствуют командам процессора и фактически, представляют собой удобную символьную форму записи команд и аргументов.

Обычно программы или участки кода пишутся на низкоуровневом языке ассемблера в случаях, когда разработчику критически важно оптимизировать такие параметры, как быстродействие (например, при создании драйверов устройств) и размер кода (загрузочные сектора, программное обеспечение различных устройств, вирусы, навесные защиты и т.д.).

Языки программирования высокого уровня

Высокоуровневый язык программирования – язык программирования, разработанный для быстроты и удобства использования программистом. Термин «высокоуровневый» здесь означает, что язык предназначен для решения абстрактных высокоуровневых задач и оперирует не инструкциями к оборудованию, а логическими понятиями и абстракцией данный. Это позволяет быстрее программировать сложные задачи и обеспечивает относительную независимость от оборудования. Использование разнообразных трансляторов и интерпретаторов обеспечивает связь программ, написанных при помощи языков высокого уровня, с различными операционными системами и различным аппаратным оборудованием, в то время как их исходный текст остаётся, в большей части, неизменным.

Высокоуровневый язык не даёт возможности создания точных инструкций оборудованию. Таким образом, программы, написанные на языках высокого уровня, проще для понимания программистом, но гораздо менее эффективны, чем их аналоги, написанные при помощи низкоуровневых языков. В частности, поэтому в большинство профессиональных высокоуровневых языков программирования сегодня встроена поддержка того или иного языка низкого уровня – языка ассемблера.

Первым языком программирования высокого уровня считается компьютерный язык Plankalkül , разработанный немецким инженером Конрадом Цузе ещё в период 1942–1946 гг. Однако, широкое применение высокоуровневых языков началось с возникновением Фортрана и созданием компилятора для этого языка (1957).

Наиболее распространёнными языками высокого уровня в настоящее время являются С++, Visual Basic, Delphi, Java, Python, Ruby, Perl, PHP.

Большинство современных компиляторов позволяют комбинировать в одной программе, код написанный на разных языках программирования. Это позволяет быстро писать сложные программы, используя высокоуровневый язык, не теряя быстродействия в критических ко времени задачах, используя для них части написанные на языке ассемблера. Комбинирование достигается несколькими приемами:

    Вставка фрагментов на языке ассемблера в текст программы (специальными директивами языка) или написание процедур на языке ассемблера. Способ хороший для несложных преобразований данных, но полноценного ассемблерного кода - с данными и подпрограммами, включая подпрограммы с множеством входов и выходов, не поддерживаемых высокоуровневыми языками, с помощью него сделать нельзя.

    Модульная компиляция. Большинство современных компиляторов работают в два этапа. На первом этапе каждый файл программы компилируется в объектный модуль. А на втором объектные модули линкуются (связываются) в готовую программу. Прелесть модульной компиляции состоит в том что каждый объектный модуль будущей программы может быть полноценно написан на своем языке программирования и скомпилирован своим компилятором.

Среда визуального программирования Delphi

Бурное развитие вычислительной техники, потребность в эффективных средствах разработки программного обеспечения и языках программирования привели к появлению систем программирования, ориентированных на так называемую "быструю разработку" - RAD-систем (Rapid Application Development).

Среди таких систем быстрой разработки приложений можно выделить Borland Delphi , Borland C Builder и Microsoft Visual Basic. В их основе лежит технология визуального проектирования и событийного программирования, суть которой заключается в том, что среда разработки берет на себя большую часть рутинной работы, оставляя программисту работу по конструированию диалоговых окон и функций обработки событий.

Delphi – это среда быстрой разработки, в которой в качестве языка программирования используется язык объектно-ориентированный язык Object Pascal .

Object Pascal - результат развития языка Turbo Pascal, который, в свою очередь, развился из языка Pascal. Pascal, впервые предложенный швейцарским ученым Н. Виртом еще в 1970г., является полностью процедурным языком, Turbo Pascal начиная с версии 5.5 добавил в Pascal объектно-ориентированные свойства, а Object Pascal - объектно-ориентированный язык программирования с уникальным свойством доступа к метаданным классов (то есть к описанию классов и их членов) в компилируемом коде, также называемом интроспекцией.

Когда вы пытаетесь выяснить, какой язык программирования начать изучать, вы, вероятно, столкнетесь с терминами «высокий уровень» и «низкий уровень». Люди постоянно говорят о языках программирования высокого и низкого уровня. Но что именно это означает? И что значит научиться писать код? Начнем с определений каждого.


Языки программирования «Высокого» и «Низкого уровня»

В этой статье я расскажу о языках «высокого» и «низкого уровня». Но особых критериев для определения этого нет. Просто имейте в виду, что это во многом зависит от вашей перспективы. Если вы программист C, Java может показаться довольно высокоуровневым. Если вы привыкли к Ruby, Java может показаться языком низкого уровня.

Машинный код и языки низкого уровня

Независимо от того, считается ли язык высокоуровневым или низкоуровневым (или где-то посередине), речь идет об абстракции. Машинный код не имеет абстракции - он содержит отдельные инструкции, передаваемые на компьютер. И поскольку машины имеют дело только с числами, они представлены в двоичном виде (хотя они иногда записываются в десятичной или шестнадцатеричной нотации).

Вот пример машинного кода:

В машинном коде операции должны быть указаны точно. Например, если часть информации должна быть извлечена из памяти, машинный код должен будет сообщить компьютеру, где в памяти его найти.

Писать непосредственно в машинный код возможно, но очень сложно.

Низкоуровневые языки программирования добавляют немного абстракции к машинным кодам. Эта абстракция скрывает конкретные инструкции машинного кода за декларациями, которые более читабельны для человека. Языки ассемблера являются языками самого низкого уровня рядом с машинным кодом.

В машинный код вы можете написать что-то вроде «10110000 01100001», но язык ассемблера может упростить это как «MOV AL, 61h». Между тем, что написано на языке ассемблера, и инструкциями, переданными машине, по-прежнему существует почти одно-однозначное соответствие.

Перейдя на более популярные языки программирования, вы придете к чему-то вроде C. Хотя этот язык не такого низкого уровня, как язык ассемблера, все еще существует сильное соответствие между тем, что написано на C и машинным кодом. Большинство операций, написанных на C, могут быть заполнены небольшим количеством инструкций машинного кода.

Языки программирования высокого уровня

Как и языки более низкого уровня, более высокие уровни охватывают широкий спектр абстракций. Некоторые языки, такие как Java (многие относят его к языкам программирования среднего уровня), все же дают вам большой контроль над тем, как компьютер управляет памятью и данными.

Другие, такие как Ruby и Python, очень абстрактны. Они дают вам меньше доступа к функциям нижнего уровня, но синтаксис гораздо легче читать и писать. Вы можете группировать вещи в классах, которые наследуют характеристики, поэтому вам нужно только объявить их один раз.

Переменные, объекты, подпрограммы и циклы являются важными частями языков высокого уровня. Эти и другие концепции помогут вам рассказать машине о множестве вещей с короткими, краткими заявлениями.

Если язык ассемблера имеет почти единообразное соответствие между его командами и командами машинного кода, язык более высокого уровня может отправлять десятки команд с помощью одной строки кода.

Важно отметить, что «языки программирования высокого уровня» могут включать в себя все, что более абстрактно, чем язык ассемблера.

Какой язык изучать: низкого или высокого уровня?

Это, безусловно, общий вопрос среди новых и начинающих программистов. Какие языки программирования лучше изучать: высокого или низкого уровня? Как и в случае со многими вопросами программирования, вопрос о языках программирования высокого и низкого уровня не так прост.

Оба типа языков имеют важные преимущества. Низкоуровневые языки, так как они требуют небольшой интерпретации компьютером, обычно работают очень быстро. И они дают программистам большой контроль над хранением, памятью и извлечением данных.

Однако языки высокого уровня интуитивно понятны и позволяют программистам писать код намного эффективнее. Эти языки также считаются «более безопасными», так как есть больше гарантий, которые препятствуют кодеру издавать плохо написанные команды, которые могут нанести ущерб. Но они не дают программистам такого же контроля над процессами низкого уровня.

Помня об этом, вот список популярных языков по шкале от низкого до высокого:

  • JavaScript
  • Python

Конечно, это отчасти субъективно. И включает только крошечную часть доступных языков.

Но это должно дать вам некоторое представление о том, на каком уровне находятся интересующие вас языки.

Что Вы хотите делать?

При принятии решения о том, какой язык вы будете изучать, ваш первый вопрос должен быть следующим: что вы хотите запрограммировать?

Если вы хотите программировать операционные системы, ядра или что-то, что необходимо для работы на максимальной скорости, язык более низкого уровня может быть хорошим выбором. Большая часть Windows, OS X и Linux написана на языках C и C-производных языках, таких как C ++ и Objective-C.

Многие современные приложения пишутся на языках более высокого уровня или даже на предметно-ориентированных языках. Python и Ruby особенно популярны для веб-приложений, хотя HTML5 становится все более мощным. Языки, такие как Swift, C #, JavaScript и SQL, имеют свои сильные и слабые стороны.

Недавно читал тему на форуме по программированию и наткнулся на интересное предложение: изучите сразу оба уровня. Вы получите более глубокое понимание типов абстракций, которые делают язык более высокого уровня более эффективным.

Конечно, изучение двух языков одновременно непросто, так что вы можете немного растянуть их изучение. И выбор двух языков, которые наиболее похожи, может быть полезным.

Опять же, мы вернемся к тому, о чем я говорил раньше: выберите язык, основанный на том, что вы хотите сделать. Проведите некоторое исследование, чтобы узнать, какие языки люди используют в своей области. Затем используйте эту информацию, чтобы выбрать язык высокого и низкого уровня, и начните изучать их.

Вы скоро увидите параллели, и вы получите гораздо более глубокое понимание того, как работает программирование.

Сосредоточьтесь на цели, а не на средстве

Существует множество критериев, которые вы можете использовать для выбора языка программирования. Одним из критериев является высокий и низкий уровень. Но почти в каждом случае критерии, которые вы должны использовать, - это то, что вы хотите запрограммировать.

Вашему проекту может быть полезен язык низкого уровня. Или это может быть намного более эффективно на высоком уровне. Вы должны сами выбрать правильный инструмент для работы. Сосредоточьтесь на своей цели, и каждый раз выбирайте правильный язык.

У вас есть опыт работы с языками высокого и низкого уровня? Вы предпочитаете одни другим? Поделитесь своими мыслями в комментариях ниже!

Какие бывают языки программирования? Что за концепции в них заложены? Как они развивались? В данной статье рассмотрим виды языков программирования основываясь на так называемых уровнях - от машинных кодов (низкий уровень, приближённый к компьютерному "железу") до таких языков, как Java или С# (высокий уровень). Чем меньше преобразований пройдёт текстовый листинг программы по пути превращения в набор нулей и единичек – тем ниже уровень. Далее мы рассмотрим:
  1. Языки низкого уровня (машинные коды и ассемблер)
  2. Средний уровень (C, Фортран ….)
  3. Высокий уровень (C++, Java, Python, Ruby, JavaScript ...)
Уровень также характеризует насколько подробно нужно детализировать листинг будущей программы для воплощения реализации. Насколько этот процесс прост для человека. Не стоит считать уровень языка однозначным показателем его возможностей. Язык программирования – это инструмент, который эффективен в одной области и менее полезен в других. И столяр, и плотник работают с деревом. У первого основной инструмент – набор стамесок, у второго – топор. Однако резной шкаф изящнее сделает столяр, а дом быстрее поставит плотник. Хотя каждый и способен выполнить работу другого, но сделает это гораздо менее эффективно. Различные данные в компьютере представлены в виде наборов нулей и единиц. Управляющие команды для её обработки – те же данные, содержащие внутри себя инструкции, которые определяют местоположение необходимой информации и способ модификации.

Машинные языки (Самый низкий уровень)

Нам придётся совершить краткий визит из Software области в Hardware. Рассмотрим в упрощенном виде. Процессор – основной «мозг» компьютера. Материнская плата, на которой он установлен, содержит контроллеры, служащие для взаимодействия с прочими устройствами через шины (каналы данных для связи).

Некоторые работают с большой скоростью (красные стрелки): процессор черпает из памяти команды и манипулирует данными, видеокарта – особенно в 3D играх, потребляет огромные объёмы текстур, фигур, координат пикселей и прочих объектов для построения изображения на экране монитора. Другим (в силу ограничения скорости обмена информацией) столь высокие показатели и не нужны. Разнообразные внутренние и внешние устройства подключены на схеме зелёными стрелками.

Внутренний мир процессора

Все команды процессора поступают из памяти на выполнение в двоичном виде. Формат, количество, подмножество инструкций зависят от его архитектуры. Большинство из них несовместимо друг с другом и следуют разным идеологиям. А также вид команды сильно зависит от режима (8/16/32… разрядность) и источника данных (память, регистр, стек…), с которыми работает процессор. Одно и то же действие может быть представлено различными инструкциями. Процессор имеет команды сложения двух операндов (ADD X,Y) и прибавления единицы к указанному (INC X). Добавление тройки к операнду можно выполнить как ADD X,3 или троекратно вызвав INC X. И, в отношении разных процессоров, нельзя предсказать какой из этих способов будет оптимальным по скорости или объёму занимаемой памяти. Для удобства двоичную информацию записывают в 16-ричном виде. Рассмотрим часть привычной программы (язык C, синтаксис которого сходный с Java) int func () { int i = getData ("7" ) ; return ++ i; . . . } Код, реализующий те же действия в виде последовательности инструкций для процессора: ... 48 83 ec 08 bf bc 05 20 00 31 c0 e8 e8 fe ff ff 48 83 c4 08 83 c0 01 ... Вот так, собственно и выглядит низкоуровневый язык программирования для процессора intel. Фрагмент, вызывающий метод с аргументом и возвращающий увеличенный на единицу результат. Это и есть машинный язык (код), который передается непосредственно сразу, без преобразований, на исполнение процессору. Плюсы:
  • Мы полностью хозяева положения, имеем самые широкие возможности использования процессора и аппаратуры компьютера.
  • Для нас доступны все варианты организации и оптимизации кода.
Минусы:
  • Необходимо обладать обширными знаниями по функционированию процессоров и учитывать большое количество аппаратных факторов при выполнении кода.
  • Создание программ чуть более сложных чем приведенный пример приводит к резким увеличениям затрат времени по написанию кода и его отладку.
  • Платформозависимость: программа, созданная для одного процессора, как правило, не будет функционировать на других. Возможно, и для данного процессора, в остальных режимах его работы, потребуется редактирование кода.
Машинные коды широко использовались на заре появления компьютеров, других способов программирования в эпоху пионеров ЭВМ не было. В данное время ими изредка пользуются инженера в области микроэлектроники при разработке или низкоуровневом тестировании процессоров.

Язык ассемблера (низкий уровень)

В отличие от компьютера мы с вами лучше воспринимаем информацию в текстовом/смысловом, а не цифровом виде. Вы с легкостью назовете полсотни имён контактов в вашем смартфоне, но вряд ли сможете наизусть написать соответствующие им номера телефонов. Аналогично и с программированием. На лестнице типов мы поднимемся выше, сделав три основных шага:
  • Сопоставим группам цифровых инструкций процессора, выполняющих соответствующие действия, одну символьную команду.
  • Выделим аргументы инструкций процессора отдельно.
  • Введем возможность именовать области памяти, переменные, местоположение отдельных команд.
Сравним фрагменты прошлой программы в машинных кодах (по центру) и на языке ассемблера (справа): 2004 b0 48 83 ec 08 sub $0x8 , % rsp 2004 b4 bf bc 05 20 00 mov $0x2005bc , % edi 2004 b9 31 c0 xor % eax, % eax 2004 bb e8 e8 fe ff ff callq getData 2004 c0 48 83 c4 08 add $0x8 , % rsp 2004 c4 83 c0 01 add $0x1 , % eax Как видим, процесс написания программы упростился: нет необходимости пользоваться справочниками формирования цифровых значений команд, рассчитывать длины переходов, распределение данных в памяти по её ячейкам и иные особенности процессора. Мы описываем нужное действие из набора символьных команд и необходимых для логики из выполнения аргументов, а далее программа-транслятор переводит текстовый файл на понятный процессору набор нулей и единиц. Плюсы:
  • Процесс написания и модификации кода упростился.
  • Сохранился контроль ко всем ресурсам аппаратуры.
  • Относительно легче переносить программу на другие платформы, но требуется их модификация в зависимости от аппаратной совместимости.
Минусы:
  • Ассемблер относится к низкоуровневым языкам программирования. Создание даже небольших участков кода затруднено. К тому же также необходимо учитывать специфику работы аппаратуры.
  • Платформозависимость.
Самый популярный демонстрационный Java пример: public static void main (String args) { System. out. println ("Hello World!" ) ; } будет выглядеть (NASM синтаксис, с использованием Windows API и kernel32.lib) следующим образом: global _main extern _GetStdHandle@4 extern _WriteFile@20 extern _ExitProcess@4 section . text _main: ; DWORD bytes; mov ebp, esp sub esp, 4 ; hStdOut = GetstdHandle ( STD_OUTPUT_HANDLE) push - 11 call _GetStdHandle@4 mov ebx, eax ; WriteFile ( hstdOut, message, length (message) , & bytes, 0 ) ; push 0 lea eax, [ ebp- 4 ] push eax push (message_end - message) push message push ebx call _WriteFile@20 ; ExitProcess (0 ) push 0 call _ExitProcess@4 ; never here hlt message: db "Hello, World" , 10 message_end: Как и машинные коды, ассемблер чаще используется инженерами и системными программистами. На нём пишут аппаратно-зависимые части ядра операционных систем, критические по времени или особенностям реализации драйвера различных периферийных устройств. Но в последнее время к нему прибегают всё реже и реже, так как его применение сильно сужает переносимость программ на другие платформы. Иногда используют процесс дизассемблирования – создают ассемблерный листинг программы из цифровых кодов для разбора логики выполнения небольших фрагментов. В редких случаях, если первоначальный высокоуровневый код недоступен: анализ вирусов для борьбы с ними или потере исходного текста. Язык ассемблера причисляют к первому/второму поколению (мы не будем рассматривать отдельно псевдокоды до возникновения ассемблера и их отличие от символьных команд). Хотелось бы выделить использование ассемблера в Demo Scene (демо-сцена): сплав искусства, математики и низкоуровневого кодирования, воплощающие художественные замыслы своих создателей в виде программ, генерирующих видеоклипы при ограничениях в ресурсах. Часто общий размер файла программы и данных не должен превышать 256 байт (также популярен и формат в 4/64 килобайта). Вот пример 4 Кб программы:

Языки группы C/Фортран (средний/высокий уровень)

С развитием возможностей вычислительной техники объём функциональности и сроки реализации кода на ассемблере уже не устраивали. Затраты для написания, тестирования и сопровождения программ росли на порядок быстрее их возможностей. Необходимо было снизить требования от программиста в плане знаний функционирования аппаратуры, дать ему инструмент, позволяющий писать на языках, приближенных к человеческой логике. Перейти к новому уровню типов языков программирования. Предоставить возможность разбивать на разнообразные модули с дальнейшим последовательным вызовом (парадигма процедурного программирования), предоставить различные типы данных с возможностью их конструирования и т. п. Дополнительно эти меры привнесли улучшенную переносимость кода на другие платформы, более комфортную организацию командной работы. Одним из первых языков, поддерживающий всё вышеперечисленное был разработанный в 50-е годы прошлого века Фортран . Возможность создавать в текстовом виде с описанием логики выполнения используя циклы, ветвления, подпрограммы и оперируя массивами и представляя данные в виде вещественных, целых и комплексных чисел приводила инженеров и учёных в восторг. За короткое время были созданы научные «фреймворки» и библиотеки. Всё это и стало следствием того, что Фортран и поныне имеет актуальность, пусть и в узкой научной среде, и развивается, так как багаж наработок очень велик, одна только библиотека IMSL активно развивается с 1970 (!) года, много ли вспомните подобных актуальных software-старожилов? Другая ветка развития языков этого уровня – C . Если Фортран стал инструментом учёных, то C создавался в помощь программистам, создающим прикладное ПО: операционные системы, драйвера и т. д. Язык позволяет вручную управлять распределением памяти, даёт прямой доступ к аппаратным ресурсам. C-программистам приходится контролировать низкоуровневые сущности, поэтому многие придерживаются мнения, что язык C – усовершенствованный ассемблер и его часто называют языком «среднего» уровня. Привнеся в ассемблер типизацию данных, элементы процедурного и модульного программирования язык C и сегодня является одним из основных для системного программирования, чему также способствует и бурное развитие микроэлектроники в последнее время. Всевозможные гаджеты, контроллеры, сетевые и прочие устройства нуждаются в драйверах, реализации протоколов для совместной работы и прочем относительно низкоуровневом ПО для реализации взаимодействия с аппаратурой. Все вышеперечисленное способствует востребованности языка и в настоящее время. Объектно-ориентированные и функциональные принципы получили дальнейшее развитие в виде C++, C#, Java, взяв многое от синтаксиса C. Плюсы:
  • Упрощение процесса создания кода: введение типов, разбивка на модули, сокращение листинга программ.
  • Прозрачная логика заложенного алгоритма вследствие ухода от машинных кодов к более понятным для человека командам в семантически описательном стиле.
  • Переносимость. Стало достаточно перекомпилировать текст программы для выполнения на другой платформе (возможно, с небольшой модификацией).
  • Скорость откомпилированных программ.
Минусы:

Развитие языков высокого уровня

Высокоуровневые языки программирования, в плане создания ПО, стали всё по большей части удаляться от машинных кодов и реализовывать различные, помимо процедурного, парадигм программирования. К ним относят также и реализацию объектно-ориентированных принципов. C++, Java, Python, JavaScript, Ruby… – спектр языков данного типа наиболее популярен и востребован сегодня. Они предоставляют больше возможностей для реализации разнообразного ПО и нельзя однозначно определить «специализацию» каждого из них. Но популярность применения в соответствующих областях обусловлена библиотеками/фреймворками для работы с ними, например: JavaScript – Frontend. Язык был разработан для взаимодействия клиентского веб-браузера с пользователем и удалённым сервером. Наиболее популярные библиотеки: Angular, React и VUE. В данное время относительно активно употребляется и на web и т. п. серверах (backend), особенно популярен Node.js. Ruby – Backend. Применяется для создания скриптов (служебных сервисных файлов) и на web серверах. Основной фреймворк - Ruby On Rails. Python – научная и инженерная сфера (помимо веб-области). Является альтернативой стандартным вычислительным и математическим пакетам (Mathematica, Octave, MatLab…), но имеет привычную семантику языка и большое число библиотек. Имеет много поклонников в области систем машинного обучения, статистики и искусственного интеллекта. Из часто используемых библиотек необходимо упомянуть django, numpy, pandas, tensorflow. С++ – Универсал, эволюционное развитие языка C. Предоставляет возможности функционального и объектно-ориентированного программирования и не потеряв при этом способность низкоуровневого взаимодействия с аппаратным обеспечением. За счёт чего реализуется производительность и гибкость при создании ПО, но и цена соответствует: высокий порог вхождения за счёт сложной спецификации языка, необходимости самостоятельного контроля за ресурсами при выполнении программы. Многие однопользовательское и системное ПО написано с его применением: модули операционных систем (Windows, Symbian…), игры, редакторы (Adobe Photoshop, Autodesk Maya…), базы данных (MSSQL, Oracle…), проигрыватели (WinAmp…) и т. д. Следует отметить, что современное ПО является сложным продуктом, в разработке которого используется сразу несколько языков программирования и расставлять степень участия каждого из них в общий результат бывает весьма затруднительно.

Дальнейший прогресс

В последнее время набирает популярность и иной вид программирования - функциональное (дальнейшее развитие уровня языка) . Здесь уже другой вид абстракции для вычислений – функции, которые берут в качестве аргументов набор функций и возвращают другую. Роль переменных играют те же функции (привычные нам переменные – просто константные выражения, аналогичные final перед объявлением типа в Java). Собственно функция замкнута в своей области видимости, результат её работы зависит только от переданных аргументов. Отсюда вытекают два замечательных свойства:
  • Для тестирования нам необходимы только аргументы функций (результат работы не зависит от внешних переменных и т. п.).
  • Программа в функциональном стиле чудесным образом готова к параллельной работе: последовательные вызовы функций можно пускать в соседних потоках (так как на них не действуют внешние факторы) и им не нужны блокировки (то есть, проблемы синхронизации отсутствуют). Хороший стимул уделить время этой теме, учитывая повальное распространение многоядерных процессоров.
Однако и порог вхождения выше, чем для ООП: для эффективного кода необходимо строить программу, описывая в виде функций алгоритм выполнения. Но также для чистого функционального стиля неплохо бы знать азы логики и теории категорий. Наиболее популярные – Haskell, Scala, F#. Но не бойтесь, в Java (как и в других современных языках третьего поколения) появились элементы функционального программирования и их возможно комбинировать вместе с ООП. Более подробно вы познакомитесь со всеми этими подробностями на онлайн-стажировке JavaRush. Область логического программирования (следующий уровень языков) пока не нашла широкого практического применения в силу малой востребованности. Построение программ требует знание основ дискретной математики, логики предикатов, средств ограничений и других разделов математической логики. Наиболее популярный активный язык – Prolog.

Заключение

В настоящее время самые распространённые – языки ООП. Java, с момента возникновения, всегда находится в топе, обычно в тройке, востребованных языков. Помимо ООП, содержит элементы функционального программирования, и вы можете комбинировать разные стили составления ваших программ. Спектр применения Java весьма широк – это бизнес задачи, реализация веб-серверов (backend), основной язык создания Android-приложений, кроссплатформенные среды программирования и рабочих мест (IDE/АРМ) и моделирования и многое другое. Особенно сильны позиции Java в Enterprise секторе – области корпоративного программного обеспечения, которая требует качественный и долгоживущий код, реализацию самых сложных бизнес-логик.