Протокол управления ррр связью прерван. VPN – Ошибки при подключении

Лекция 10. HDLC и PPP – протоколы управления каналом

Для создания надежного механизма передачи данных между двумя станциями необходимо определить протокол, который позволит принимать и передавать различные данные по каналам связи. Протоколы представляют собой просто набор условий (правил), которые регламентируют формат и процедуры обмена информацией между двумя или несколькими независимыми устройствами или процессами. Протокол имеет три важнейших элемента: синтаксис, семантику и синхронизацию. Синтаксис протокола определяет поля; например, может быть 16-байтовое поле для адресов, 32-байтовое поле для контрольных сумм и 512 байт на пакет. Семантика протокола придает этим полям значение: например, если адресное поле состоит из всех адресов, это «широковещательный» пакет. Синхронизация – количество битов в секунду – это скорость передачи данных. Она важна не только на самых низких уровнях протокола, но и на высших.

Протокол канального уровня обеспечивает следующие функции:

Управление передачей данных через физический канал организованный на первом уровне;

Проверка информационного канала;

Формирование кадра, т. е. окаймление передаваемых данных служеб- ными символами данного уровня;

Контроль данных;

Обеспечение прозрачности информационного канала;

Управление каналом передачи данных.

Данный протокол занимает второй уровень в многоуровневой организации управления сетью.

Обзор протокола HDLC. HDLC (High-Level Data Link Control) – протокол высокоуровнего управления каналом передачи данных, канального уровня (бит-ориентированный) модели ISO и является базовым для построения других протоколов канального уровня (SDLC, LAP, LAPB, LAPD, LAPX и LLC).

Основные принципы работы протокола HDLC: режим логического соединения, контроль искаженных и потерянных кадров с помощью метода скользящего окна, управление потоком кадров с помощью команд RNR (приемник не готов) и RR (приемник готов).

Существует три типа станций HDLC.

Первичная станция (ведущая) управляет звеном передачи данных (каналом). Несет ответственность за организацию потоков передаваемых данных и восстановление работоспособности звена передачи данных. Эта станция передает кадры команд вторичным станциям, подключенным к каналу. В свою очередь она получает кадры ответа от этих станций. Если канал является многоточечным, главная станция отвечает за поддержку отдельного сеанса связи с каждой станцией, подключенной к каналу.

Вторичная станция (ведомая) работает как зависимая по отношению к первичной станции (ведущей). Она реагирует на команды, получаемые от первичной станции, в виде ответов. Поддерживает только один сеанс, а именно только с первичной станцией. Вторичная станция не отвечает за управление каналом.

Комбинированная станция сочетает в себе одновременно функции первичной и вторичной станции. Передает как команды, так и ответы и получает команды и ответы от другой комбинированной станции, с которой поддерживает сеанс.

Три логических состояния, в которых могут находиться станции в процессе взаимодействия друг с другом.

Состояние логического разъединения (LDS). В этом состоянии станция не может вести передачу или принимать информацию. Если вторичная станция находится в нормальном режиме разъединения (NDM), она может принять кадр только после получения явного разрешения на это от первичной станции. Если станция находится в асинхронном режиме разъединения (ADM), вторичная станция может инициировать передачу без получения на это явного разрешения, но кадр должен быть единственным кадром, который указывает статус первичной станции. Условиями перехода в состояние LDS могут быть начальное или повторное (после кратковременного отключения) включение источника питания; ручное управление установлением в исходное состояние логических цепей различных устройств станции и определяется на основе принятых системных соглашений.

Состояние инициализации (IS). Это состояние используется для передачи управления на удаленную вторичную /комбинированную станцию, ее коррекции в случае необходимости, а также для обмена параметрами между удаленными станциями в звене передачи данных, используемыми в состоянии передачи информации.

Состояние передачи информации (ITS). Вторичной, первичной и комбинированным станциям разрешается вести передачу и принимать информацию пользователя. В этом состоянии станция может находиться в режимах NRM, ARM и ABM, которые описаны ниже.

HDLC обеспечивает следующие три режима передачи:

– режим нормальной ответной реакции (NRM). При этом вторичные узлы не могут иметь связи с первичным узлом до тех пор, пока первичный узел не даст разрешения;

– режим асинхронной ответной реакции (ARM). Этот режим передачи позволяет вторичным узлам инициировать связь с первичным узлом без получения разрешения;

– асинхронный сбалансированный режим (ABM). В режиме АВМ появляется «комбинированный» узел, который, в зависимости от ситуации, может действовать как первичный или как вторичный узел.

На канальном уровне используется термин кадр для обозначения независимого объекта данных, передаваемого от одной станции к другой. Кадр в протоколе HDLC имеет структуру, представленную на рисунке 10.1.

N(S) – порядковый номер передаваемого кадра, N(R) – порядковый номер принимаемого кадра, P/F – бит опроса / окончания

Рисунок 10.1 – Формат кадра и управляющего поля HDLC

Бит-ориентированный протокол предусматривает передачу информацию в виде потока битов, не разделяемых на байты. Поэтому для разделения кадров используются специальные последовательности – флаги.

Все кадры должны начинаться и заканчиваться полями флага «01111110». Станции, подключенные к каналу, постоянно контролируют двоичную последовательность флага. Флаги могут постоянно передаваться по каналу между кадрами HDLC. Для индексации исключительной ситуации в канале могут быть посланы семь подряд идущих единиц. Пятнадцать или большее число единиц поддерживают канал в состоянии покоя. Если принимающая станция обнаружит последовательность битов, не являющихся флагом, она тем самым уведомляется о начале кадра, об исключительной (с аварийным завершением) ситуации или ситуации покоя канала. При обнаружении следующей флаговой последовательности станция будет знать, что поступил полный кадр.



Адресное поле определяет первичную или вторичную станции, участвующие в передаче конкретного кадра. Каждой станции присваивается уникальный адрес. В несбалансированной системе адресные поля в командах и ответах содержат адрес вторичной станции. В сбалансированных конфигурациях командный кадр содержит адрес получателя, а кадр ответа содержит адрес передающей станции.

Управляющее поле задает тип команды или ответа, а так же порядковые номера, используемые для отчетности о прохождении данных в канале между первичной и вторичной станциями. Формат и содержание управляющего поля (рис. 1) определяют кадры трех типов: информационные (I), супервизорные (S) и ненумерованные (U).

Информационный формат (I – формат) используется для передачи данных конечных пользователей между двумя станциями.

Супервизорный формат (S – формат) выполняет управляющие функции: подтверждение (квитирование) кадров, запрос на повторную передачу кадров и запрос на временную задержку передачи кадров. Фактическое использование супервизорного кадра зависит от режима работы станции (режим нормального ответа, асинхронный сбалансированный режим, асинхронный режим ответа).

Ненумерованный формат (U – формат) также используется для целей управления: инициализации или разъединения, тестирования, сброса и идентификации станции и т.д. Конкретный тип команды и ответа зависит от класса процедуры HDLC.

Информационное поле содержит действительные данные пользователя. Информационное поле имеется только в кадре информационного формата. Его нет в кадре супервизорного или ненумерованного формата. [Примечание: кадры «UI – ненумерованная информация» и «FRMR – Неприем кадра» ненумерованного формата имеют информационное поле].

Поле CRC (контрольная последовательность кадра) используется для обнаружения ошибок передачи между двумя станциями. Передающая станция осуществляет вычисления над потоком данных пользователя, и результат этого вычисления включается в кадр в качестве поля CRC. В свою очередь, принимающая станция производит аналогичные вычисления и сравнивает полученный результат с полем CRC. Если имеет место совпадение, велика вероятность того, что передача произошла без ошибок. В случае несовпадения, возможно, имела место ошибка передачи, и принимающая станция посылает отрицательное подтверждение, означающее, что необходимо повторить передачу кадра. Вычисление CRC называется циклическим контролем по избыточности и использует некоторый производящий полином в соответствии с рекомендацией МККТТ V.41. Этот метод позволяет обнаруживать всевозможные кортежи ошибок длиной не более 16 разрядов, вызываемые одиночной ошибкой, а также 99,9984% всевозможных более длинных кортежей ошибок.

Сегодня протокол HDLC на выделенных каналах вытеснил протокол «точка – точка», Point-to-Point Protocol, PPP.

Дело в том, что одна из основных функций протокола HDLC – это восстановление искаженных и утерянных кадров. Действительно, применение протокола HDLC обеспечивает снижение вероятности искажения бита (BER) с 10 -3 , что характерно для территориальных аналоговых каналов, до 10 -9.

Однако сегодня популярны цифровые каналы, которые и без внешних процедур восстановления кадров обладают высоким качеством (величина BER составляет10 -8 – 10 -9). Для работы по такому каналу восстановительные функции протокола HDLC не нужны. При передаче по аналоговым выделенным каналам современные модемы сами применяют протоколы семейства HDLC. Поэтому использование HDLC на уровне маршрутизатора или моста становится неоправданным.

Протокол PPP. Протокол PPP стал фактическим стандартом для глобальных линий связи при соединении удаленных клиентов с серверами и для образования соединений между маршрутизаторами в корпоративной сети. При разработке протокола PPP за основу был взят формат кадров HDLC и дополнен собственными полями. Поля протокола PPP вложены в поле данных кадра HDLC. Позже были разработаны стандарты, использующие вложение кадра PPP в кадры Frame relay и других протоколов глобальных сетей.

Основное отличие РРР от других протоколов канального уровня состоит в том, что он добивается согласованной работы различных устройств с помощью переговорной процедуры, во время которой передаются различные параметры, такие как качество линии, протокол аутентификации и инкапсулируемые протоколы сетевого уровня. Переговорная процедура происходит во время установления соединения.

Протокол РРР основан на четырех принципах: переговорное принятие параметров соединения, многопротокольная поддержка, расширяемость протокола, независимость от глобальных служб.

Переговорное принятие параметров соединения. В корпоративной сети конечные системы часто отличаются размерами буферов для временного хранения пакетов, ограничениями на размер пакета, списком поддерживаемых протоколов сетевого уровня. Физическая линия, связывающая конечные устройства, может варьироваться от низкоскоростной аналоговой линии до высокоскоростной цифровой линии с различными уровнями качества обслуживания. Чтобы справиться со всеми возможными ситуациями, в протоколе РРР имеется набор стандартных установок, действующих по умолчанию и учитывающих все стандартные конфигурации. При установлении соединения два взаимодействующих устройства для нахождения взаимо- понимания пытаются сначала использовать эти установки. Каждый конечный узел описывает свои возможности и требования. Затем на основании этой информации принимаются параметры соединения, устраивающие обе стороны, в которые входят форматы инкапсуляции данных, размеры пакетов, качество линии и процедура аутентификации.

Протокол, в соответствии с которым принимаются параметры соединения, называется протоколом управления связью (LCP). Протокол, который позволяет конечным узлам договориться о том, какие сетевые протоколы будут передаваться в установленном соединении, называется протоколом управления сетевым уровнем (NCP). Внутри одного РРР-соедине- ния могут передаваться потоки данных различных сетевых протоколов.

Одним из важных параметров РРР-соединения является режим аутентификации. Для целей аутентификации РРР предлагает по умолчанию протокол РАР, передающий пароль по линии связи в открытом виде, или протокол CHAP, не передающий пароль по линии связи и поэтому обеспечивающий большую безопасность сети. Пользователям также разрешается добавлять и новые алгоритмы аутентификации. Дисциплина выбора алгоритмов компрессии заголовка и данных аналогична.

Многопротокольная поддержка – способность протокола РРР поддержи- вать несколько протоколов сетевого уровня – обусловила распространение РРР как стандарта де-факто. РРР работает со многими протоколами сетевого уровня, включая IP, Novell IPX, AppleTalk, DECnet, XNS, Banyan VINES и OSI, а также протоколами канального уровня локальной сети. Больше всего параметров устанавливается для протокола IP – IP-адрес узла, IP-адрес серверов DNS, использование компрессии заголовка IP-пакета и т. д.

Расширяемость протокола. Под расширяемостью понимается как возможность включения новых протоколов в стек РРР, так и возможность использования собственных протоколов пользователей вместо рекомендуемых в РРР по умолчанию. Это позволяет наилучшим образом настроить РРР для каждой конкретной ситуации.

Независимость от глобальных служб. Начальная версия РРР работала только с кадрами HDLC. Теперь в стек РРР добавлены спецификации, позволяющие использовать РРР в любой технологии глобальных сетей, например ISDN, Frame relay, Х.25, Sonet и HDLC.

Возникает вопрос – каким образом два устройства, ведущих переговоры по протоколу РРР, узнают о тех параметрах, которые они предлагают своему партнеру? Обычно у реализации протокола РРР есть некоторый набор параметров по умолчанию, которые и используются в переговорах. Тем не менее, каждое устройство (и программа, реализующая протокол РРР в операционной системе компьютера) позволяет администратору изменить параметры по умолчанию, а также задать параметры, которые не входят в стандартный набор. Например, IP-адрес для удаленного узла отсутствует в параметрах по умолчанию, но администратор может задать его для сервера удаленного доступа, после чего сервер будет предлагать его удаленному узлу.

Хотя протокол РРР и работает с кадром HDLC, но в нем отсутствуют процедуры контроля кадров и управления потоком протокола HDLC. Поэтому в РРР используется только один тип кадра HDLC – ненумерованный информационный. В поле управления такого кадра всегда содержится величина 03. Для исправления очень редких ошибок, возникающих в канале, необходимы протоколы верхних уровней – TCP, SPX, NetBUEl, NCP и т. п.

Одной из возможностей протокола РРР является использование нескольких физических линий для образования одного логического канала, так называемый транкинг каналов (общий логический канал может состоять из каналов разной физической природы. Например, один канал может быть образован в телефонной сети, а другой может являться виртуальным коммутируемым каналов сети frame relay). Эту возможность реализует дополнительный протокол, который носит название MLPPP (Multi Link РРР). Многие производители поддерживают такое свойство в своих маршрутизаторах и серверах удаленного доступа фирменным способом. Использование стандартного способа всегда лучше, так как он гарантирует совместимость оборудования разных производителей.

Основная литература: 2

Дополнительная литература: 7

Контрольные вопросы:

1. Для чего нужны протоколы управления каналом?

2. Какие функции обеспечивает протокол канального уровня?

3. Каковы основные принципы работы протокола HDLC?

4. Каковы основные принципы работы протокола РРР?

5. В чем отличие протоколов HDLC и РРР?

LCP обеспечивает метод организации, выбора конфигурации, поддержания и окончания работы канала с непосредственным соединением. Процесс LCP проходит через 4 четко различаемые фазы:

    Организация канала и согласование его конфигурации. Прежде чем может быть произведен обмен каких-либо дейтаграмм сетевого уровня (например, IP), LCP сначала должен открыть связь и согласовать параметры конфигурации. Эта фаза завершается после того, как пакет подтверждения конфигурации будет отправлен и принят.

    Определение качества канала связи. LCP обеспечивает факультативную фазу определения качества канала, которая следует за фазой организации канала и согласования его конфигурации. В этой фазе проверяется канал, чтобы определить, является ли качество канала достаточным для вызова протоколов сетевого уровня. Эта фаза является полностью факультативной. LСP может задержать передачу информации протоколов сетевого уровня до завершения этой фазы.

    Согласование конфигурации протоколов сетевого уровня. После того, как LСP завершит фазу определения качества канала связи, конфигурация сетевых протоколов может быть по отдельности выбрана соответствующими NCP, и они могут быть в любой момент вызваны и освобождены для последующего использования. Если LCP закрывает данный канал, он информирует об этом протоколы сетевого уровня, чтобы они могли принять соответствующие меры.

    Прекращение действия канала. LCP может в любой момент закрыть канал. Это обычно делается по запросу пользователя (человека), но может произойти и из-за какого-нибудь физического события, такого, как потеря носителя или истечение периода бездействия таймера.

Существует три класса пакетов LCP:

    Пакеты для организации канала связи. Используются для организации и выбора конфигурации канала.

    Пакеты для завершения действия канала. Используются для завершения действия канала связи.

    Пакеты для поддержания работоспособности канала. Используются для поддержания и отладки канала.

Эти пакеты используются для достижения работоспособности каждой из фаз LCP.

Isdn Библиографическая справка

Название сети Integrated Services Digital Network (ISDN) (Цифровая сеть с интегрированными услугами) относится к набору цифровых услуг, которые становятся доступными для конечных пользователей. ISDN предполагает оцифровывание телефонной сети для того, чтобы голос, информация, текст, графические изображения, музыка, видеосигналы и другие материальные источники могли быть переданы конечному пользователю по имеющимся телефонным проводам и получены им из одного терминала конечного пользователя. Сторонники ISDN рисуют картину сети мирового масштаба, во многом похожую на сегодняшнюю телефонную сеть, за тем исключением, что в ней используется передача цирфрового сигнала и появляются новые разнообразные услуги.

ISDN является попыткой стандартизировать абонентские услуги, интерфейсы пользователь/сеть и сетевые и межсетевые возможности. Стандартизация абонентских услуг является попыткой гарантировать уровень совместимости в международном масштабе. Стандартизация интерфейса пользователь/сеть стимулирует разработку и сбыт на рынке этих интерфейсов изготовителями, являющимися третьей участвующей стороной. Стандартизация сетевых и межсетевых возможностей помогает в достижении цели возможного объединения в мировом масштабе путем обеспечения легкости связи сетей ISDN друг с другом.

Применения ISDN включают быстродействующие системы обработки изображений (такие, как факсимиле Group 1V), дополнительные телефонные линии в домах для обслуживания индустрии дистанционного доступа, высокоскоростную передачу файлов и проведение видео конференций. Передача голоса несомненно станет популярной прикладной программой для ISDN.

Многие коммерческие сети связи начинают предлагать ISDN по ценам ниже тарифных. В Северной Америке коммерческие сети связи с коммутатором локальных сетей (Local-exchange carrier) (LEC) начинают обеспечивать услуги ISDN в качестве альтернативы соединениям Т1, которые в настоящее время выполняюут большую часть услуг "глобальной телефонной службы"(WATS) (wide-area telephone service) .

PPP (Point-to-Point-Protocol) – протокол второго уровня модели OSI, использующийся на WAN линках. PPP – открытый протокол, что позволяет его использовать при необходимости соединения устройств Cisco с устройствами других производителей (в отличие от HDLC, в отношении спецификации которого у циски своё мнение).

Сразу стоит сделать важное замечание: протокол PPP – многофункциональный и широко распространённый, в то же время, в рамках курса CCNA рассматривается только один способ его применения: подключение двух маршрутизаторов друг к другу через serial кабель. На самом деле, сфера применения протокола не ограничивается этими случаями. PPP может работать через нуль-модемный кабель, телефонную линию, в сотовой связи. Другие популярные способы использования протокола PPP – инкапсуляция его в другие протоколы второго уровня. Поясню: сам PPP находится на втором уровне модели OSI и обеспечивает прямое соединение между двумя устройствами, но если его инкапсулировать в другой протокол второго уровня – Ethernet (PPP over Ethernet – PPPoE), то ethernet будет заниматься доставкой фреймов с мак адреса отправителя на мак адрес получателя, после получатель будет декапсулировать из Ethernet-а PPP фрейм и дальше для завёрнутых в PPP протоколов (IPv4, IPX, …) будет создаваться полная «иллюзия» того, что соединение точка-точка. Сам же PPP в этом случае будет заниматься такими вещами как аутентификация и сжатие траффика. Существуют другие способы использования PPP, например PPP over ATM – PPPoA, Microsoft Windows использует для создания VPN протокол PPTP, который так же является надстройкой над PPP. Но это всё лирическое отступление, чтобы было понятно, зачем вообще изучать PPP. В курсе «CCNA Accessing the WAN» PPP – это протокол для соединения двух маршрутизаторов через serial кабель.

Что умеет PPP в сравнении с HDLC?

  1. Управление качеством линии (PPP отключает линк, если количество ошибок превысит заданное значение).
  2. Аутентификация с помощью PAP или CHAP.
  3. Multilink – технология напоминающая Etherchannel в Ethernet-е: несколько разных линков объединяются в один логический, со скоростью, равной сумме входящих в него линков.
  4. PPP Callback – технология, использующаяся для повышения безопасности: клиент устанавливает соединение с сервером, сервер разрывает соединение и устанавливает со своей стороны новое – к клиенту.

На самом деле, при передачи данных с маршрутизатора на маршрутизатор, PPP инкапсулируется в HDLC, который выполняет «транспортные» функции для PPP фреймов. Подробнее про HDLC можно почитать в статье «Протокол HDLC – пример настройки и описание». PPP – обладает уровневой структурой, когда фрейм PPP приходит из сети он поднимается по внутренним подуровням PPP снизу вверх:

  1. Первый подуровень HDLC – получает фрейм, проверяет адрес получателя, контрольную сумму и передаёт полезнуюинформацию дальше.
  2. Подуровень LCP (Link Control Protocol), как видно из названия, занимается управлением соединением, отправляет и получает разные служебные флаги, следит за состоянием соединения (подключено/выключено), следит за качеством линии, следит за согласованностью параметров конфигурации между точками.
  3. Подуровень NCP (Network Control Protocol) состоит из большого количества модулей, каждый из которых занимается связью с каким-то конкретным протоколом третьего уровня (IPv4, IPv6, IPX, AppleTalk, …). Благодаря этому, в рамках одного установленного PPP соединения с одним логином и паролем, можно передавать траффик разных протоколов сетевого уровня.

Установка связи между двумя маршрутизаторами по протоколу PPP происходит по уровням снизу вверх, разрыв связи – сверху вниз.

То есть устанавливается связь в таком порядке: LCP,NCP, полезные данные третьего уровня. А разрывается: конец передачи полезных данных, NCP, LCP. Как видно, HDLC не устанавливает и не разрывает соединения, так как в PPP используются HDLC фреймы без подтверждения доставки.

Структура PPP фрейма имеет следующий вид:

  1. FLAG – признак начала фрейма, специальная последовательность нулей и единиц («01111110»), которая говорит получателю, что далее будет следовать тело фрэйма.
  2. ADDRESS – адрес получателя, в протоколе PPP всегда используется широковещательный «11111111».
  3. CONTROL – поле содержит значение «00000011»
  4. PROTOCOL – поле, содержащее номер протокола третьего уровня, пакет которого «завёрнут» в данный фрейм.
  5. DATA – поле с полезными данными вышестоящих протоколов.
  6. FCS – контрольная сумма, которая считается при отправке фрейма и сравнивается с полученным пересчётом, который делается при получении фрейма. В результате, если суммы не совпадают, кадр считается «битым» и отбрасывается.
  7. FLAG – признак окончания фрейма, содержит то же значение что и признак начала фрейма.

Настройка PPP на оборудовании cisco, как уже было сказано, в курсе CCNA не сложная. Выполняется она на интерфесе:

  1. Выбираем алгоритм сжатия командой compress
  2. Устанавливаем качество линии, которое будет считаться приемлемым (при количестве ошибок, больше заданного связь будет разрываться). Для этого служит команда ppp quality .
  3. Выбираем способ аутентификации PAP или CHAP (подробнее об этом можно узнать из статьи «В чём разница между PAP и CHAP ». Способ аутентификации задаётся командной ppp authentication .
  4. Необходимо настроить пользователя под которым наш маршрутизатор будет подключаться к другому. Здесь команды разнятся для CHAP и PAP. Сам поьзователь добавляется командой username <имя> password <пароль>, причём делать это надо не на интерфейсе, а в режиме глобальной конфигурации, но в случае использования PAP, надо ещё использовать на интерфейсе команду ppp pap sent-username <имя> password <пароль>.

Использование PAP в реальных конфигурациях не желательно, поэтому мы ограничимся примером настройки CHAP. Итак, предположим, что топология следующая, необходимо настроить PPP с аутентификацией CHAP. Настройка на первом маршрутизаторе:

Router#configure terminal Enter configuration commands, one per line. End with CNTL/Z. Router(config)#hostname R1 R1(config)#username R2 password 123456789 R1(config)#interface serial 0/3/0 R1(config-if)#en R1(config-if)#encapsulation ppp R1(config-if)#ppp authentication chap R1(config-if)#ip address 192.168.0.1 255.255.255.0 R1(config-if)#no shutdown %LINK-5-CHANGED: Interface Serial0/3/0, changed state to down

Настройка на втором маршрутизаторе:

Router#configure terminal Enter configuration commands, one per line. End with CNTL/Z. Router(config)#hostname R2 R2(config)#username R1 password 123456789 R2(config)#interface serial0/3/0 R2(config-if)#encapsulation ppp R2(config-if)#ppp authentication chap R2(config-if)#ip address 192.168.0.2 255.255.255.0 R2(config-if)#no shutdown %LINK-5-CHANGED: Interface Serial0/3/0, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0/3/0, changed state to up

Обратите внимание, что пользователь, которого мы заводим на маршрутизаторе R1 имеет имя R2, а на R2 – R1. Это необходимо, так как когда один роутер подключается к другому, он указывает своё имя, соответственно, другой должен знать это имя (видеть его в своём списке локальных пользователей). Ещё одна немаловажная деталь: пароли к пользователям R1 и R2 обязательно должны совпадать.

Для проверки можем выполнить команду:

R2#sh ip inter brief Interface IP-Address OK? Method Status Protocol … Serial0/3/0 192.168.0.2 YES manual up up …

Если status будет «up», а протокол – «down», то это, как правило означает, что какие-то проблемы с PPP – не та аутентификация, не совпали пароли, качество линии ниже того, что мы заказывали и т.п. В этом случае придётся проверять конфиги и запускать debug ppp, чего я не пожелаю и врагу.

Сбои VPN-соединения, которое подразумевает использование в качестве маршрутизатора модемов всевозможных операторов связи, встретить можно достаточно часто. Одной из самых распространенных является ошибка 734. Многие пользователи, пытаясь устранить возникшую проблему, иногда даже не знают, с какой стороны подойти к разрешению ситуации. А ведь по большому счету устраняется она достаточно просто, для чего можно применить несколько методов, предлагаемых в материале ниже.

Что означает появление ошибки VPN 734?

Прежде чем предпринимать какие-либо действия по исправлению возникшей ситуации, давайте кратко остановимся на том, по каким причинам возникает такой сбой. В сообщении об ошибке подключения 734 четко указано, что по какой-то причине был прерван протокол управления связью (в нашем случае речь идет о PPPoE). Почему так случилось? Как считается, связано это только с тем, что провайдер, обеспечивающий подключение к своему VPN-серверу в интернете, не использует шифрование передаваемых и принимаемых данных, в то время как на компьютере пользователя такие настройки установлены. Именно поэтому при подключении и возникают конфликты.

Только этой причиной появление ошибки 734 не ограничивается. Достаточно часто ее можно встретить при использовании специального программного обеспечения Cisco VPN Client. Только в этом случае сообщается, что произошел сбой и приложение будет закрыто. Чтобы восстановить параметры соединения, можно воспользоваться несколькими простыми советами, которые и предлагаются для рассмотрения.

Как исправить ошибку PPPoE 734 простейшим способами?

Итак, если сбой возник, так сказать, из ниоткуда (до его появления все работало), вполне возможно, причиной могли послужить кратковременные не особо критичные сбои самой операционной системы.

В этом случае можно попытаться просто восстановить систему, выбрав при откате точку, предшествующую появлению ошибки. Если это не помогает и ошибка 734 появляется снова, очень может быть, что в систему проник какой-то вирус, блокирующий соединение.

Самым простым выходом станет полная проверка компьютера на предмет наличия угроз при помощи какого-то портативного сканера или дисковых программ вроде Rescue Disk, с которых можно загрузиться еще до старта самой операционной системы.

Но иногда с ошибками системы все может быть в порядке, а вирусов на компьютере тоже нет. Что делать в такой ситуации?

Тут придется через «Панель управления» зайти в раздел управления сетями и общим доступом, затем использовать пункт изменения опций сетевого адаптера, после чего через пункт свойств переместиться на вкладку параметров и нажать кнопку «Параметры PPP…». После появления окна с настройками с тремя пунктами отметьте самый первый (включение расширений LCD), сохраните выставленные значения параметров и попробуйте выполнить подключение заново.

Дополнительные действия по настройке безопасности

Однако бывает и так, что вышепредложенный вариант действий по исправлению ошибки 734 результата не дает. В этом случае можно предложить еще один дополнительный вариант настроек.

Находясь в том же основном окне, которое было показано выше, перейдите на вкладку безопасности, а затем в выпадающем списке шифрования данных выберите значение «Необязательное» (с подключением даже без шифрования). Опять же сохраните настройки и выполните подключение к VPN-серверу заново.

Варианты исправления ошибок Cisco VPN Client

Теперь несколько слов о проблемах, связанных с программным VPN-клиентом Cisco. Для устранения таких проблем сначала можете воспользоваться восстановлением системы и проверкой на вирусы. Однако если это результата не даст, многими специалистами рекомендуется выполнить проверку или восстановление реестра, для чего можно воспользоваться утилитами вроде WinTruster. Также нелишним будет почистить компьютер от «мусора» (всевозможных временных файлов), используя для этого любой оптимизатор или чистильщик наподобие CCleaner или ASC. Наконец, если проблема устранена не будет, полностью удалите клиент с компьютера, а затем установите его повторно. Для удаления используйте не средства системы, а программы-деинсталляторы (например, iObit Uninstaller). Если и после всех вышеописанных действий ошибки, связанные с клиентом, появляются снова, обновите сетевые драйверы, применяя автоматизированные программы (Driver Booster), которые для таких операций подходят лучше всего.

Что делать, если ничего не помогло?

Наконец, не стоит забывать и о том, что возникновение сбоев, связанных с VPN-подключением, не всегда может зависеть исключительно от настроек пользовательских компьютерных терминалов или ноутбуков. Со стороны провайдера их появление тоже исключать нельзя. Обратитесь в службу поддержки провайдера или оператора связи. Вполне возможно, вашу проблему специалисты и решат (на крайний случай, может быть, хотя бы подскажут, что можно предпринять для устранения сбоев). Если же сбой является кратковременным и связан исключительно с техническими работами, вам вообще ничего предпринимать будет не нужно, а по окончании обслуживания соединение и так заработает снова.

Здесь находится краткое описание ошибок, возникающих при попытке подключится по VPN, а также методы их решения. Эту статью я нашел в интернете, но также дополнил от себя, т.к. некоторые варианты решения откровенно устарели, либо были не верны.

Ошибка 678 - Удаленный компьютер не отвечает

Такая ошибка возникает, когда отсутствует связь между вашим компьютером и сервером доступа. Скорее всего причиной этой ошибки являются: неисправности на активном оборудовании, у клиента отключена сетевая карта, подключение заблокировано антивирусной программой или файрволом.

Ошибка 691 - Доступ запрещен, поскольку такие имя пользователя или пароль недопустимы в этом домене

Чаще всего эта ошибка возникает у пользователей, если они действительно не правильно набирают Имя пользователя и Пароль, либо под Вашим логином уже произведено подключение к сети.
В случае, если все выше перечисленное - не про Вас, тогда попробуйте выполнить следующий набор команд:

1. Выберите в меню Пуск - Выполнить, введите и выполните команду
cmd
2. Выполните команду: netsh interface ip reset
3. Выполните команду: netsh winsock reset
4. Перезагрузите компьютер.

Ошибка 721 - Удалённый компьютер не отвечает

При подключении к VPN соединение доходит до пункта "Проверка имени и пароля", зависает на некоторое время и выдает ошибку 721: "Удаленный компьютер не отвечает".

1. Для начала стоит проверить правильный ли VPN-сервер прописан в VPN-подключении.

Для этого зайдите в Пуск - Панель управления - Сетевые подключения. Нажмите на ярлыке Вашего VPN-подключения правой кнопкой и выберите пункт Свойства. Вкладка Общие - в строке Имя компьютера или IP-адрес назначения должен быть указан адрес VPN-сервера.

2. В большинстве случаев ошибка 721 возникает из-за того, что на Вашем компьютере установлен firewall (сетевой экран).

Эта программа при неправильной настройке может блокировать сетевой трафик. Чтобы быть уверенным на 100% отключите все сетевые экраны (Outpost Firewall, Zone Alarm, Kaspersky Internet Security...) в том числе и Брэндмауэр Windows (Пуск - Панель управления - Брэндмауэр Windows). Попробуйте подключится. Если ошибка исчезла, попробуйте правильно настроить Ваш firewall.

3. Если ошибка 721 продолжает появляться - попробуйте L2TP туннель.

Для этого зайдите Пуск - Панель управления - Сетевые подключения. Нажмите на ярлыке Вашего VPN-подключения правой кнопкой и выберите пункт Свойства. Вкладка Сеть, поменяйте тип VPN - вместо Автоматический или PTPP VPN ставьте L2TP IPSEC VPN. Нажмите ОК и попробуйте подключиться.

4. Часто случается такое, что при установке новой версии Windows неправильно устанавливается встроенный Брэндмауэр, в следствии чего невозможно зайти в его настройки и устранить неполадку.

Для переустановки брандмауэра нужно вызвать API функцию "Setup API InstallHinfSection". Для этого выполните следующие действия:

Выберите в меню Пуск - Выполнить, введите и выполните команду
cmd
Введите следующую команду в командной строке и нажмите клавишу Enter:
Rundll32 setupapi,InstallHinfSection Ndi-Steelhead 132 %windir%\inf\netrass.inf
Перезагрузите Windows.
Выберите в меню Пуск пункт Выполнить, введите и выполните команду
cmd
В командной строке введите следующую команду и нажмите клавишу Enter:
Netsh firewall reset
В меню Пуск выберите пункт Выполнить, введите и выполните команду
firewall.cpl
Заходите в Пуск - Панель управления - Брэндмауэр Windows и выключите его.
Если после всех этих операций ошибка 721 все равно продолжает появляться - остается только переустановить Windows, иначе решить эту проблему невозможно.

Ошибка 734 - Протокол управления PPP-связью был прерван

Эта ошибка может возникнуть в том случае, если протоколы безопасности на сервере, к которому устанавливается подключение, несовместимы с локальными параметрами безопасности. Решение проблемы: В папке Сетевые подключения щелкните используемое подключении правой кнопкой мыши. Выберите команду Свойства и откройте вкладку Безопасность. В списке При проверке используется выберите Небезопасный пароль.

Ошибка 769 - Указанное назначение недостижимо

Причиной возникновения данной ошибки является то, что сетевая карта на вашем компьютере отключена.

Ошибка 800: Не удалось установить подключение

Причиной может быть использование маршрутизатора с устаревшим микропрограммным обеспечением. К примеру, вы можете столкнуться с этой проблемой, используя маршрутизатор Cisco с микропрограммным обеспечением, созданным до 2001 года.
Чтобы убедиться, что причина заключается именно в этом, посмотрите трассировку сети. Оборудование Cisco объявляет нулевой размер окна в установлении связи TCP через порт 1723.

Также проблема может быть в неверно настроенном сетевом подключении. Например, у Вас неправильно настроен сервер vpn-сервер или параметры безопасности.

В некоторых случаях, ошибка может возникать по причине отсутствия ответа от сервера авторизации.