Простая схема радиоприемника: описание. Старые радиоприемники. Александр попов и его изобретение радио

Изобретению радио человечество обязано великому русскому ученому Александру Степановичу Попову.

Биография Попова А. С. — великого изобретателя радио

А. С. Попов, человек, которому выпало счастье открыть новую эру в развитии науки и техники -эпоху радиоэлектроники, родился 100 лет назад, 16 марта 1859 года, в небольшом уральском поселке Турьинские Рудники. Среднее образование он получил в Пермской духовной семинарии. Окончив семинарию, А. С. Попов поступил в Петербургский университет на физико-математический факультет и увлекся электротехникой. По окончании университета со степенью кандидата Александр Степанович был оставлен при факультете для подготовки «к профессорскому званию».

Год спустя А. С. Попов был приглашен на преподавательскую работу в кронштадтский Минный офицерский класс. Там он проработал 18 лет, с 1883 по 1901 год.

В этом передовом электротехническом заведении достигли наивысшего расцвета педагогические способности Попова и его блестящий талант физика-экспериментатора.

Все свое свободное время Александр Степанович отдавал науке - следил за новинками, ставил опыты, выступал с публичными лекциями.

Александр Попов и радио

7 мая 1895 года. Петербург. Русское физико-химическое общество. А. С. Попов, уже хорошо известный в ученой среде, выступает с докладом «Об отношении металлических порошков к электрическим колебаниям».

Подчеркнуто скромное название. Негромкий, лишенный внешней аффектации голос. Скупые жесты. А под конец одна лишь фраза:

«В заключение могу выразить надежду, что мой прибор, при дальнейшем усовершенствовании его, может быть применен к передаче сигналов на расстояние при помощи быстрых электрических колебаний…»

Всего одна фраза. И, пожалуй, никто из присутствовавших не осознал ее значимости. Не понял, что это - рождение новой эпохи, предтеча грандиозных научных свершений.

Из истории радио

С давних пор люди мечтали о таком средстве, которое позволяло бы им поддерживать между собой связь на любом расстоянии.

Историки рассказывают, что еще во времена римского императора Юлия Цезаря, жившего до нашей эры, существовало некое подобие телеграфа — первая веха в истории радио . Депеши передавались с помощью факелов, по условной азбуке. Например, взмах факелом вверх означал: «приближается враг», движение факела вправо: «все спокойно» и т. д. Сигналы передавались по цепочке от одного поста к другому.

А как быть в плохую погоду, в туман? В этом случае «телеграф» Цезаря, как и более поздние системы оптического телеграфа, оказывался бессилен.

Шли годы. Создавались изумительные произведения искусства, воздвигались дворцы, делались открытия. Человек пытливо изучал окружающий мир, познавал законы природы. А мечта о чудесном средстве связи еще много столетий оставалась всего лишь прекрасной мечтой.

Но вот ученые открыли электричество — и это вторая веха в истории радио. Сразу же возникла мысль: нельзя ли использовать его в качестве своеобразного «почтальона», разносящего депеши с молниеносной быстротой? Оказалось - можно. По проводам научились передавать условные электрические сигналы, а затем и живую человеческую речь. Города не по дням, а по часам стали покрываться густей сетью телефонных линий; вдоль дорог потянулись вереницы телеграфных столбов — третья веха истории радио.

И все-таки телеграф и телефон не удовлетворяли многим требованиям человека. Они сносно служили в городах, обеспечивали связь между населенными пунктами, и все. Вырваться на широкий простор не удавалось - мешали провода, эти проволочные путы, связывавшие новое средство связи по рукам и ногам. Моряки, землепроходцы, воздухоплаватели оставались в прежнем положении- они, как и раньше, были отрезаны от окружающего мира, предоставлены самим себе,

В конце девятнадцатого века, когда электротехника достигла уже довольно высокого уровня, ученые начали все чаще задумываться: а нельзя ли освободить телеграф и телефон от их пут, обойтись вовсе без проводов? Многие выдающиеся физики того времени пытались решить эту головоломку и отступали. Да возможна ли вообще беспроволочная связь?

Изобретение Поповым радио

В 1889 году А. С. Попов присутствовал на очередном заседании Русского физико-химического общества во время опытов с электромагнитными волнами - быстрыми электрическими колебаниями, распространяющимися в пространстве со скоростью света (около 300 000 километров в секунду). Существование таких волн теоретически предсказал английский ученый Максвелл, а немецкий физик Герц обнаружил их опытным путем. Однако эти крупные ученые считали, что электромагнитные волны не имеют практического значения.

Зал заседания был затемнен. На кафедре, в тусклом свете керосиновой лампы, поблескивали два жестких рефлектора. Внутри одного из них, на близком расстоянии друг от друга, виднелись два металлических шарика, от которых шли провода к источнику электричества. Это был вибратор — прибор, «вырабатывающий» электромагнитные волны. Внутри другого рефлектора также находились два металлических шарика. Их соединяла проволочная дуга. Этот прибор - резонатор - предназначался для улавливания электромагнитных волн.

Опыт начался в полной темноте. Между шариками вибратора, соединенными с источником электричества, вспыхнула крошечная голубоватая искорка. В тот же момент между шариками резонатора появилась ответная искра. Она была настолько слаба, что присутствовавшим приходилось по очереди рассматривать ее через увеличительное стекло.

Искорка в резонаторе порождалась электромагнитными волнами. И Александр Степанович Попов задумал использовать их для беспроволочной связи.

Прошло шесть лет. Шесть лет настойчивых поисков, упорного каждодневного труда. Но зато слова «беспроволочная связь», наконец, обрели реальный смысл, из бесплотной мечты превратились в законченную техническую идею.

Вот почему 7 мая 1895 года , когда эта идея сделалась достоянием человечества, считают днем рождения радио .

А спустя еще один год - 24 марта 1896 года - А. С. Попов продемонстрировал перед учеными первую в мире беспроволочную телеграфную связь. В физическом кабинете Петербургского университета был установлен приемник, а на расстоянии 250 метров от него, в здании университетской химической лаборатории, находился передатчик, которым управлял П. Н. Рыбкин, ассистент Попова.

Вот что рассказывал впоследствии один из очевидцев этого исторического события - профессор О. Д. Хвольсон:

«Передача происходила таким образом, что буквы передавались по азбуке Морзе, притом знаки были ясно слышны. У доски стоял председатель физического общества профессор Ф. Ф. Петрушевский, имея в руках бумагу с ключом азбуки Морзе и кусок мела. После каждого передаваемого знака он смотрел на бумагу и затем записывал на доске соответствующую букву. Постепенно на доске получились слова: «Генрих Герц». Трудно описать восторг многочисленных присутствовавших и овации А. С. Попову…»

Уже в следующем, 1897 году дальность действия беспроволочного телеграфа превысила 5 километров. Жизнеспособность нового средства связи была доказана. Великое русское изобретение Поповым радио начало свое триумфальное шествие по миру. Но в условиях царской России А. С. Попов не имел достаточной поддержки; не хватало средств, приходилось кустарничать. А заграницей ловкие дельцы вроде Маркони спешили воспользоваться плодами великого открытия. Строились заводы, возникали фирмы, дело ставилось на широкую коммерческую ногу.

Впоследствии русский физик В. В. Лермантов с горечью писал: «У нас прививается только то, что приходит из-за границы, хотя бы оно и было изобретено в России,- вот почему имя А. С. Попова стало известно после работ Маркони, и он получил честь считаться не просто первым изобретателем беспроволочного телеграфа, а первым изобретателем телеграфа Маркони».

Да, царское правительство не оценило по достоинству А. С. Попова, не отстояло его приоритет. Однако русские ученые, передовая часть русской интеллигенции, отдали должное колоссальной научной заслуге изобретателя радио.

В 1901 году Александр Степанович стал профессором Электротехнического института, ему было присвоено почетное звание инженер-электрика. А 28 сентября 1905 года он был единогласно избран директором института.

На этом посту А. С. Попов показал себя прогрессивным и свободолюбивым человеком, патриотом своего отечества.

Последние дни А. С. Попова

…Отгремела резолюция 1905 года. Наступило время махровой реакции. И в эти черные для России дни Александр Степанович поднял голос протеста против самодержавного произвола. В октябре 1905 года он подписывает решение совета, в котором говорится:

«По мнению профессоров и преподавателей института, свобода собраний составляет насущную потребность и неотъемлемое право всего населения…

Всякое насильственное вторжение властей в жизнь института не может дать успокоение, а только ухудшит положение дела. Успокоение учебных заведений может быть достигнуто только путем крупных политических преобразований, способных удовлетворить общественное мнение всей страны.

Такими преобразованиями, по мнению нижеподписавшихся, являются: немедленные и безусловные гарантии свободы собраний, свободы слова и неприкосновенности личности, немедленный созыв Учредительного собрания, отмена смертной казни…».

Последующие дни Александра Степановича были полны трагических переживаний. От него требовали объяснений, ему угрожали, но он не отступил ни на шаг. После одного, особенно бурного, разговора с градоначальником А. С. Попов почувствовал себя плохо и, проболев два дня, скончался от кровоизлияния в мозг.

Это произошло 13 января 1906 года (31 декабря 1905 года по старому стилю) в 5 часов дня. И это последняя дата в биографии Попова — великого изобретателя радио.

Великий русский ученый покоится на Волковом кладбище в Ленинграде.

24 января 1906 года, открывая экстренное заседание физического отделения Русского физико-химического общества, председателем которого незадолго перед этим был избран А. С. Попов, его заместитель сказал:

«Александр Степанович Попов, который должен был теперь, с января, занять здесь место нашего председателя,- новая жертва современных невыносимо тяжелых условий жизни в России».

…Прошло более века. Ежегодно 7 мая мы празднуем День радио . Именем великого изобретателя названы улицы городов; оно присвоено многим учебным заведениям. Но, пожалуй, самый лучший памятник Александру Степановичу Попову - грандиозное развитие, которое получило его изобретение. На самом деле, современная жизнь немыслима без изобретения радио Поповым .

В России одним из первых занялся изучением электромагнитных волн преподаватель офицерских курсов в Кронштадте Александр Степанович Попов. Начав с воспроизведения опытов Герца, он затем использовал более надежный и чувствительный способ регистрации электромагнитных волн.

7 мая 1895 г. на заседании Русского физико-химического общества в Петербурге А. С. Попов продемонстрировал действие своего прибора, явившегося, по сути дела, первым в мире радиоприемником. . Ныне он ежегодно отмечается в нашей стране.



Как же происходило изобретение радио Поповым?

В качестве детали, непосредственно “чувствующей” электромагнитные волны, А.С. Попов применил когерер (от лат. - “когеренция” - “сцепление”). Этот прибор представляет собой стеклянную трубку с двумя электродами. В трубке помещены мелкие металлические опилки.

Действие прибора основано на влиянии электрических разрядов на металлические порошки. В обычных условиях когерер обладает большим сопротивлением, так как опилки имеют плохой контакт друг с другом. Пришедшая электромагнитная волна создает в когерере переменный ток высокой частоты. Между опилками проскакивают мельчайшие искорки, которые спекают опилки. В результате сопротивление когерера резко падает (в опытах А.С. Попова со 100000 до 1000 - 500 Ом, то есть в 100-200 раз). Снова вернуть прибору большое сопротивление можно, если встряхнуть его. Чтобы обеспечить автоматичность приема, необходимо для осуществления беспроволочной связи, А.С. Попов использовал звонковое устройство для встряхивания когерера после приема сигнала.

Срабатывало реле, включался звонок, а когерер получал “легкую встряску”, сцепление между металлическими опилками ослабевало, и они были готовы принять следующий сигнал.

Чтобы повысить чувствительность аппарата, А.С. Попов один из выводов когерера заземлил, а другой присоединил к высоко поднятому куску проволоки, создав первую приемную антенну для беспроволочной связи. Заземление превращает проводящую поверхность земли в часть открытого колебательного контура, что увеличивает дальность приема.


Хотя современные радиоприемники очень мало напоминают приемник А.С. Попова, основные принципы их действия те же, что и в его приборе. Современный приемник также имеет антенну, в которой приходящая волна вызывает очень слабые электромагнитные колебания. Как и в приемнике А. С. Попова, энергия этих колебаний не используется непосредственно для приема. Слабые сигналы лишь управляют источниками энергии, питающими последующие цепи. Сейчас такое управление осуществляется с помощью полупроводниковых приборов.

Труд Попова

А.С. Попов продолжал настойчиво совершенствовать приемную аппаратуру. Он ставил своей непосредственной задачей построить прибор для передачи сигналов на большие расстояния.

Вначале радиосвязь была установлена на расстоянии 250 м. Неустанно работая над своим изобретением, Попов вскоре добился дальности связи более 600 м. Затем на маневрах Черноморского флота в 1899г. ученый установил радиосвязь на расстоянии свыше 20 км, а в 1901 г. дальность радиосвязи была уже 150км. Важную роль в этом сыграла новая конструкция передатчика. Искровой промежуток был размещен в колебательном контуре, индуктивно связанном с передающей антенной и настроенном с ней в резонанс. Существенно изменились и способы регистрации сигнала. Параллельно звонку был включен телеграфный аппарат, позволивший вести автоматическую запись сигналов. В 1899 г. была обнаружена возможность приема сигналов с помощью телефона. В начале 1900 г. радиосвязь была успешно использована во время спасательных работ в Финляндском заливе. При участии А. С. Попова началось внедрение радиосвязи на флоте и в армии России.


Продолжая опыты и совершенствуя приборы, А.С. Попов медленно, но уверенно увеличивал дальность действия радиосвязи. Через 5 лет после постройки первого приемника начала действовать регулярная линия беспроволочной связи на расстоянии 40 км. благодаря радиограмме, переданной по этой линии зимой 1900г. , ледокол “Ермак” снял со льдины рыбаков, которых шторм унес в море. Радио, начавшее свою практическую историю спасением людей, стало новым прогрессивным видом связи XX в.

За границей усовершенствование подобных приборов проводилось фирмой, организованной итальянским инженером Г. Маркони. Опыты, поставленные в широком масштабе, позволили осуществить радиотелеграфную передачу через Атлантический океан.

Устройство приёмника

Его не удовлетворял метод Герца, в котором индикатором колебаний была маленькая искра, рассматриваемая в лупу, он искал новый, практичный и чувствительный детектор колебаний. Так им был сконструирован специальный механический радиометр, воздушный термометр, но все эти индикаторы мало удовлетворяли Попова. Несомненно, что в это время он думал о практическом приложении воли Герца, Поэтому он с особой остротой воспринимал всё новое в области детектирования электрических колебаний.

В 1890 г. появилось сообщение французского физика Эдуарда Бранли о наблюдённом им воздействии электрического разряда на проводимость металлических порошков (железа, алюминия, сурьмы, кадмия, цинка, висмута и т. д.). Бранли писал: Если сделать контур, состоящий из элемента Даниэля, чувствительного гальванометра, металлического проводника и эбонитовой пластинки с нанесённой медью или трубочки с опилками, то большей частью проходит лишь ничтожный ток. Однако сопротивление резко уменьшается, что видно по сильному отклонению гальванометра, если вблизи контура произвести один или несколько разрядов. //М. А. Шателен, Русские электротехники, стр. 291.//

В 1894г. Бранли описал более подробно это явление в статье. Однако ни в первом, ни во втором сообщении не подчёркивается и даже не указывается роль электрических колебательных процессов в изменении проводимости, и вопрос о применении этого явления в качестве индикатора колебаний даже не ставится.

В качестве индикатора колебаний трубка с опилками была применена О. Лоджем в 1894 г. и названа им. , - писал Лодж. Сообщение Лоджа произвело на Попова огромное впечатление. Его сотрудник П. Н. Рыбкин писал по этому поводу: Я до сих пор помню, с каким волнением показывал А. С. мне номер журнала, в котором была помещена статья Лоджа, где он описывал свои знаменитые опыты по применению открытия Бранли к устройству когерера для обнаруживания при помощи его электрических колебаний .

Легко попять и волнение и дальнейшие творческие искания Попова: наметился путь решения большой задачи. К весне 1895 г. первый в мире приёмник электрических колебаний был создан. 25 апреля (7 мая) 1895 г. на 151-м (201-м) заседании Физического отделения Русского физико-химического общества А. С. Попов сделал доклад. Содержание доклада, дополненное протоколами испытаний по регистрации атмосферных разрядов, произведённых Г. А. Лобачевским с прибором Попова в Лесном институте летом 1895 г., составило предмет статьи Попова, представленный в декабре 1895 г. в журнале Русского физико-химического общества и появившийся в первом номере этого журнала за 1896 г. Приёмник Попова описан им в этой статье следующим образом:

Трубка с опилками подвешена горизонтально между зажимами М и N на лёгкой часовой пружине, которая для большей эластичности согнута со стороны одного зажима зигзагом. Над трубкой расположен звонок так, чтобы при своём действии он мог давать лёгкие удары молоточком посередине трубки, защищённой от разбивания резиновым кольцом. Удобнее всего трубку и звонок укрепить на общей вертикальной дощечке. Реле может быть помещено как угодно.

Действует прибор следующим образом. Ток батареи 4-5 в постоянно циркулирует от зажима Р к платиновой пластинке А, далее через порошок, содержащийся в трубке, к другой пластинке В и по обмотке электромагнита реле обратно к батарее. Сила этого тока недостаточна для притягивания якоря реле, но если трубка AВ подвергается действию электрического колебания, то сопротивление мгновенно уменьшится и ток увеличится настолько, что якорь реле притянется. В этот момент цепь, идущая от батареи к звонку, прерванная в точке С, замкнётся и звонок начнёт действовать, но тотчас же сотрясённая трубка опять уменьшит её проводимость, и реле разомкнёт цепь звонка. \\ , АН СССР, 1945, стр. 60.\\

Из опытов, приведённых Поповым для испытания чувствительности приёмника, особенно важны два первых:
1) Прибор отвечает на разряды электрофора через большую аудиторию, если параллельно направлению разряда провести от точки А или В проволоку длиной около 1 метра, для увеличения энергии, достигающей опилок.
2) В соединении с вертикальной проволокой длиной в 2,5 метра прибор отвечал на открытом воздухе колебаниям, произведённым большим герцевым вибратором (квадратные листы 40 сантиметров в стороне) с искрой в масле, на расстоянии 30 сажен
.

Из выделенных нами мест статьи Попова ясно видно, что в 1895 г. он принимал радиоволны на расстоянии 60 м на приёмную антенну своего приемника. В той же статье Попов так характеризует область применения его прибора: Прибор, обладающий такой чувствительностью, может служить для различных лекционных опытов с электрическими колебаниями и, будучи закрыт металлическим футляром, с удобством может быть приспособлен к опытам с электрическими лучами...
Другое применение прибора, которое может дать более интересные результаты, будет его способность отмечать электрические колебания, происходящие в проводнике, связанном с точкой А или В (на схеме), в том случае, когда этот проводник подвергается действию электромагнитных пертурбаций, происходящих в атмосфере. Для этого достаточно прибор, защищённый от всяких других действий, связать с воздушным проводом, проложенным вдали от телеграфов и телефонов, или же со стержнем громоотвода
. Перед нами ясная картина экранированного приемника, регистрирующего электромагнитные сигналы, поступающие в приёмную антенну. И вполне закономерным является заключительный вывод автора: Б заключение могу выразить надежду, что мой прибор, при дальнейшем усовершенствовании его, может быть применён к передаче сигналов на расстояния при помощи быстрых электрических колебаний, как только будет найден источник таких колебаний, обладающий достаточной энергией .

Таким образом, А. С. Попов не только ясно представляет возможность радиотелеграфии, но и указывает путь, которым может быть решена эта задача: получение мощных передатчиков сигналов. 12 (24) марта 1896 г. А. С. Попов продемонстрировал первую в мире радиопередачу и приём осмысленного текста из одного здания в другое на расстояние около 250 м. Из химической аудитории Петербургского университета в физическую, где происходило заседание Физического отделения физико-химического общества, была передана радиограмма: . Акад. В. Ф. Миткевич так вспоминает об этом историческом дне: Памятное, заседание происходило днём в воскресенье в большой аудитории старой физической лаборатории во дворе Петербургского университета. В этой скромной рядовой аудитории была установлена радиоприёмная станция с аппаратом Морзе.

На расстоянии 250 м в новом здании химической лаборатории университета находилась отправительная станция, питавшаяся катушкой Румкорфа. Около нее дежурил ближайший помощник А. С. Попова - П. Н. Рыбкин.

Среди присутствующих на заседании были представители Морского ведомства и виднейшие русские физики-электрики того времени: О. Д. Хвольсон, И. И. Боргман, А. И. Садовский, В. К. Лебединский, М. А. Шателен, А. Л. Гершун, Г. А. Любославский, Ы. Н. Георгиевский, Н. А. Смирнов, В. В. Скобельцын, Н. А. Булгаков, Н. Г. Егоров и Ф. Ф. Петрушевский. Перед заседанием все собравшиеся ознакомились с устройством радиоприёмной станции, а затем, усевшись на студенческих скамьях, с волнением приготовились к опыту передачи телеграммы без проводов.

Заседание открыл старейший физик Ф. Ф. Петрушевский, предоставив слово А. С. Попову. После 30-40-минутного доклада изобретатель послал кого-то из присутствовавшей молодёжи на отправительную станцию к П. Н. Рыбкину с указанием начать радиопередачу.

Атмосфера в физической лаборатории стала напряжённой. Все собравшиеся сознавали, что присутствуют при демонстрации изобретения, будущее которого уже тогда представлялось величайшим. Волнение участников заседания увеличилось еще тем, что текст первой в мире телеграммы был известен только Попову и Рыбкину. Сохраняя внешнее спокойствие, изобретатель с улыбкой наблюдал за тем, с каким напряжённым вниманием все присутствующие следили за медленно появляющимися на ленте приёмника Морзе буквами, которые Петрушевский повторял мелом на большой аудиторной доске.

Процесс передачи более детально описывает О. Д. Хвольсон. Передача происходила таким образом, что буквы передавались по алфавиту Морзе и притом знаки были ясно слышны. У доски стоял председатель Физического общества проф. Ф. Ф. Петрушевский, имея в руках бумагу с ключом к алфавиту Морзе и кусок мела. После каждого передаваемого знака он смотрел в бумагу и затем записывал на доске соответствующую букву. Постепенно на доске получились слова Heinrich Hertz и притом латинскими буквами. Трудно описать восторг многочисленных присутствующих и овации А. С. Попову, когда эти два слова были написаны .Так начало свою жизнь одно из величайших изобретений человеческого гения. Великий изобретатель увековечил в первой радиограмме того, кто первым в мире наблюдал электромагнитные волны. А. С. Попов был первым человеком, заставившим эти волны служить человеку.

Попов находился на службе Морского военного ведомства и имел инструкции не разглашать своего открытия. Поэтому запись об историческом дне согласно его указанию была сделана в протоколах общества в такой форме: (ЖРФХО, 1896, т. XXVIII, стр. 124).

Литературные источники:
А.И.Берг. М.И.Радовский, "Изобретатель радио А. С. Попов", Госэкергоиздат, 1950, стр. 70
История физики. Кудрявцев П.С. - М:. Учпедгиз. 1956. с.234-235.

1. Александр Степанович Попов – создатель первого в мире радиоприёмника и радиопередатчика.
Дата 7 мая 1895 года должна быть отмечена как имеющая особое значение в истории радиосвязи и современной культуры. В этот день Александр Степанович Попов прочитал на заседании Русского физико-химического общества доклад «Об отношении металлических порошков к электрическим колебаниям» и продемонстрировал передачу знаков азбуки Морзе без помощи проводов. В качестве передатчика была применена катушка Румкорфа (рис. 1) с присоединённым к ней вибратором Герца (рис. 2), а в качестве приёмника - созданная А. С. Поповым схема, состоявшая из антенны, когерера, реле и приспособления для восстановления чувствительности когерера: рис. 3 – схема и внешний вид радиоприёмника. Свой доклад А. С. Попов закончил словами: «В заключение я могу выразить надежду, что мой прибор при дальнейшем усовершенствовании его может быть применён к передаче сигналов на расстояние при помощи быстрых электрических колебаний, как только будет найден источник таких колебаний, обладающий достаточной энергией». Таким образом, А. С. Попов первым указал на возможность применения волн Герца для связи и подтвердил эту возможность чрезвычайно убедительными опытами.
Весной и осенью этого же года он продолжал свои опыты в помещении Минного класса и в прилегающем саду. Передача сигналов производилась уже на расстоянии нескольких десятков метров. Приёмник был несколько усовершенствован по сравнению с первоначальным образцом и имел все существенные детали, вошедшие в состав приёмников беспроволочного телеграфа, применявшихся затем в продолжение ряда последующих лет. Этот приёмник в конце 1895 г. был передан метеорологической станции Петербургского лесного института, где под названием «грозоотметчика» служил для регистрации грозовых разрядов на расстояниях до 30 километров (рис. 4).
24 марта 1896 г. А. С. Попов снова выступил с докладом в Русском физико-химическом обществе, наглядно демонстрируя возможность телеграфирования без проводов.
Приёмный и передающий аппараты были расположены в разных помещениях на расстоянии 250 метров. А. С. Попов передал первую в мире радиограмму, состоявшую из двух слов – «Генрих Герц». Текст этой радиограммы очень показателен; он характеризует самого изобретателя радио. А. С. Попов ясно понимал, что его исследования вызовут переворот в области связи без проводов. Однако поразительно скромный и преданный науке, он готов был, прежде всего, воздать должное своим предшественникам.

Все опыты с электромагнитными волнами А. С. Попов должен был производить, не имея на это никаких специальных ассигнований. Необходимые приборы изготовлялись собственноручно им самим или его помощниками.
В течение последующих полутора лет он сделал весьма важное усовершенствование передающей части беспроволочного телеграфа: к вибратору Герца он с одной стороны присоединил антенну, а другую его половину заземлил, благодаря чему дальность передачи заметно возросла. К этому времени итальянец Маркони, начавший первоначально заниматься опытами Герца в Болонье у профессора Риги, применив передаточное устройство и антенну Попова, осуществил связь на расстоянии в несколько сотен метров, а затем и в несколько километров. Когда слухи об этом проникли в печать, Морское ведомство ассигновало на опыты Попова... триста рублей.
Ограниченность средств, возможность производить опыты только летом, так как остальное время было занято преподаванием, недоверие и непонимание важности нового средства связи в высших кругах - всё это тормозило работу А. С. Попова.
Только через три года, в 1898 г., удалось построить две полные приёмно-передающие станции, с которыми (между учебным судном «Европа» и крейсером «Африка») была установлена беспроволочная связь до 8 километров. Опыты этого года подтвердили возможность связи в любых метеорологических условиях и, в частности, в тумане, когда обычная световая сигнализация не могла быть применена. В 1899 г. инженер Дюкрете, владелец небольшого завода в России, получил заказ от Морского министерства на три станции, которые и были готовы к осени этого же года.

Морское ведомство уже достаточно хорошо поняло важность беспроволочной связи. Построенные станции были установлены на броненосцах черноморской эскадры «Георгий Победоносец» и «Три Святителя».
Однако, несмотря на то, что А. С. Попов за свои работы получил в это время премию Русского технического общества, несмотря на все безусловные успехи беспроволочного телеграфа, несмотря на энергию Дюкрете, – масштабы работ А. С. Попова, ограниченные ничтожно малыми средствами, были очень незначительными.
Всё же 1899 год отмечен двумя существенными достижениями А. С. Попова: во-первых, им был разработан приёмник с телефоном (прообраз современного детекторного приёмника – рис. 5), позволивший увеличить дальность работы; во-вторых, было установлено беспроводное сообщение между островом Гогланд и городом Котка, необходимость в котором появилась в связи с работами по снятию с камней потерпевшего аварию броненосца «Генерал-адмирал Апраксин» (рис. 6). Дальность передачи в этом случае была более 40 километров. Тогда же радиотелеграф впервые послужил к спасению человеческих жизней: с Гогланда было получено сообщение о бедственном положении группы рыбаков, унесённых на льдине. Ледокол «Ермак» по радио получил приказ отправиться в море, вскоре обнаружил и спас всех людей.
На Западе в это время организовалось несколько мощных промышленных предприятий, производивших радиоаппаратуру. Если ещё в 1899 г. вернувшийся из-за границы и посетивший там ряд немецких и французских радиостанций Александр Степанович мог сказать, что «мы не очень отстали от других», то уже через пару лет всем было ясно, что отставание нарастало катастрофически. Несмотря на все усилия А. С. Попова, министерская рутина, казённое отношение к делу, боязнь ответственности, наконец, недружелюбное отношение к изобретениям и изобретателям не давали возможности ни развить работы в кронштадтских мастерских Морского министерства, ни увеличить заказы заводу Дюкрете.
В результате, в 1905 г., когда, в связи с начавшейся русско-японской войной, потребовалось большое количество радиостанций, оказалось, что единственным способом получить их быстро и в достаточном числе - это... заказать их какой-либо иностранной фирме.
В начале 900-х годов в деятельности Александра Степановича происходит поворот. В 1900 г. Петербургский электротехнический институт присуждает ему звание почётного инженера-электрика, в следующем году Русское техническое общество избирает его своим почётным членом.
В этом же году он принимает приглашение на кафедру физики в Электротехническом институте, который в это время был реорганизован и переведён в новые специально построенные здания на Аптекарском острове. Новому профессору физики предстояла большая работа по организации курса и лабораторий. А. С. Попов уделял этому много времени и внимания, тем более, что, по его мнению, преподавание физики в электротехническом высшем учебном заведении должно было значительно отличаться от преподавания её в университете. А. С Попов составил подробную программу работ и начал её проводить в жизнь.
Деятельность его как профессора Электротехнического института не позволила ему отдавать работе по практическому применению беспроволочного телеграфа столько времени, как ранее. Летний период 1902 г. был последним, когда он имел возможность лично принимать участие в опытах на судах.
Александр Степанович, получивший к этому времени известность как изобретатель и профессор, сохранил все прежние черты своего характера: скромность, внимание к чужим мнениям, готовность идти навстречу каждому и посильно помогать требующим помощи. И в своей технической работе, и в преподавательской деятельности он всегда с вниманием выслушивал мнения, высказываемые помощниками и сотоварищами, и принимал к сведению их полезные советы. Но и в сравнительно спокойной обстановке Электротехнического института ему приходилось тратить много сил, чтобы организовать кафедру физики так, как он считал это целесообразным. Институт находился в ведении наиболее косного из министерств – Министерства внутренних дел, и всякое живое начинание встречало там, в лучшем случае, пассивное сопротивление. И в этот период, когда А. С. Попов получил уже всеобщее признание, когда его «карьера», как тогда выражались, была сделана, – он имел кафедру в столице, был окружён доброжелательными сотрудниками и сотоварищами, – душевного спокойствия он не имел: он видел, как его любимое детище – беспроволочный телеграф – не совершенствуется так, как ему хотелось бы. По мере возможности он продолжает свои работы по беспроволочному телеграфированию (и телефонированию) в лаборатории Электротехнического института; он изучает электрические колебания с помощью трубки Брауна, исследует волномеры, редактирует издание работ по радиосвязи и т. д.
Наступил 1905 год. Под давлением пробудившихся общественных сил правительство должно было пойти на предоставление некоторых политических свобод, в частности, была введена и автономия высшей школы. Первым выбранным почти единогласно директором Электротехнического института был Александр Степанович Попов.
Заботы, связанные с выполнением ответственных обязанностей директора, расшатали и без того не слишком крепкое здоровье Александра Степановича. После одного очень бурного объяснения в министерстве, вернувшись домой, он почувствовал себя внезапно очень плохо. Врачи констатировали у него кровоизлияние в мозг, и 13 января 1906 года Александр Степанович Попов умер , не приходя в сознание.

2. Как работает простейший радиоприёмник
В первом номере в журнала Русского физико-химического общества за 1896 г. приёмник Попова (отдельно – рис. 7) описан следующим образом:

Трубка с опилками подвешена горизонтально между зажимами М и N на лёгкой часовой пружине, которая для большей эластичности согнута со стороны одного зажима зигзагом. Над трубкой расположен звонок так, чтобы при своём действии он мог давать лёгкие удары молоточком посередине трубки, защищённой от разбивания резиновым кольцом. Удобнее всего трубку и звонок укрепить на общей вертикальной дощечке. Реле может быть помещено как угодно.
Действует прибор следующим образом. Ток батареи 4-5 Вольт постоянно циркулирует от зажима Р к платиновой пластинке А, далее через порошок, содержащийся в трубке, к другой пластинке В и по обмотке электромагнита реле обратно к батарее. Сила этого тока недостаточна для притягивания якоря реле, но если трубка AВ подвергается действию электрического колебания, то сопротивление мгновенно уменьшится и ток увеличится настолько, что якорь реле притянется. В этот момент цепь, идущая от батареи к звонку, прерванная в точке С, замкнётся и звонок начнёт действовать, но тотчас же сотрясённая трубка опять уменьшит её проводимость, и реле разомкнёт цепь звонка. («Изобретение радио Л. С. Поповым», АН СССР, 1945, стр. 60.)

«Электрическое колебание», действию которого подвергается трубка АВ – когерер – и есть электромагнитная волна (сокр. – ЭМВ). Как ЭМВ вообще «попадает» в приёмник? Для это служит АНТЕННА – длинный медный провод, один конец которого прикрепляется к столбу, ветке дерева, к воздушному змею даже, а другой – к зажиму «М». Кроме того, приёмник должен иметь достаточно хорошее заземление: к зажиму «N» подключается ещё дин провод, надёжно соединённый с металлическим предметом, зарытым в землю. Только в этом случае в антенне возникнет индукционный ток, достаточный для того, чтобы произошло «спекание» опилок в когерере, и его сопротивление резко уменьшилось.
В статье «Полупроводниковый диод» я рассказывал о том, как один из сотрудников лаборатории Попова, случайно обнаружил, что если вместо электромагнитного реле подключить головные телефоны, то в них в них будут хорошо слышны телеграфные сигналы передатчика. В дальнейшем когерер был заменён кристаллическим детектором, изобретение которого по праву также принадлежит А.С. Попову.
Создание мощных радиостанций породило целую волну массового радиолюбительства. Собственно, само слово «радиолюбитель» возникло в начале ХХ века. Люди самостоятельно изготавливали кристаллические детекторы, искали на них активную точку
(рис. 8) и «строили» детекторные радиоприёмники.

Собственно, ДЕТЕКТОРНЫЙ радиоприёмник мы, обычно, и имеем в виду, когда говорим «простейший». В те далёкие времена именно радио было единственным источником информации для самых удалённых уголков нашей громадной страны.

Сейчас существует большое количество схем детекторных приёмников. Но, говоря ДЕТЕКТОРНЫЙ, не следует забывать: это такой приёмник, который не нуждается в источниках питания (батареях и аккумуляторах), он работает за счёт энергии принимаемых электромагнитных волн.

3. «Современные» детекторные приёмники
Начну с «классической» схемы №1 , которая была повторена радиолюбителями несчётное число раз и описана в школьной физике .
WA1 – антенна, внизу – заземление, L1 и С1 – входной колебательный контур, VD1 – полупроводниковый диод, С2 – конденсатор, BF1 – головные телефоны.

На рис. 10 показаны типы радиодеталей и их номиналы.
Конденсатор С1 может быть подстроечным.

При повторении такого радиоприемника не надо забывать, что (как и раньше) большое значение имеют качественные антенна и заземление. От этого напрямую зависит полученный результат.

Описание работы.

Под воздействием электромагнитных волн, излучаемых передатчиками, в антенне радиоприемника возникают вынужденные модулированные колебания (рис. 11).
Один из элементов входного контура, в данном случае С1, делается переменной емкости для настройки в резонанс с какой-либо станцией. В контуре также возникнут модулированные высокочастотные колебания (рис. 11), но значительно большей амплитуды при настройке в резонанс.
Этот высокочастотный модулированный сигнал не способен непосредственно вызвать колебания мембраны телефона со звуковой частотой. Он только возбудит высокочастотные колебания, не воспринимаемые нашим ухом. При большой частоте мембрана вследствие инертности не будет успевать смещаться сколько-нибудь значительно за малое время, равное периоду высокочастотных колебаний. Поэтому этот модулированный сигнал подается на
детектор – полупроводниковый диод V1, обладающий односторонней проводимостью . После прохождения детектора получаются детектированные колебания, представляющие собой сумму выпрямленных колебаний высокой и низкой частот (рис. 12).

Для окончательного отделения звуковой частоты от высокой параллельно с телефоном включают блокировочный конденсатор C2. Его ёмкость подбирается так, чтобы емкостное сопротивление для низких частот было гораздо больше, чем индуктивное сопротивление телефона В1. А телефон представляет большое индуктивное сопротивление для высокой частоты. Тогда токи высокой частоты пойдут через конденсатор, а низкой – через
телефон. В результате мембрана телефона будет колебаться со звуковой частотой (рис. 13), и мы услышим звук.

Многократное изготовление детекторных радиоприёмников по этой и подобной ей схемам показало отличную повторяемость. Я лично собрал свой первый детекторный радиоприёмник именно по этой схеме из деталей радиоконструктора (рис. 14) в ноябре 1968 года.

В заключение хочу заметить, что обилие информации по теме в Интернете есть ни что иное, как перепечатывание и многократное повторение того, что я давно уже встречал в журнале «Радио» и другой популярной радиолюбительской литературе. Найти что-то действительно новое и оригинальное напросторах сети мне не удалось.

Катушка Румкорфа - это устройство для получения импульсов высокого напряжения. Состоит из цилиндрической части, с центральным железным стержнем внутри, на которую намотана первичная обмотка из толстой проволоки. Поверх первичной обмотки наматывается несколько тысяч витков вторичной обмотки из очень тонкой проволоки. Первичная обмотка подсоединена к батарее химических элементов и конденсатору. В эту же цепь вводится прерыватель (зуммер) и коммутатор. Назначение прерывателя состоит в быстром попеременном замыкании и размыкании цепи. Результатом этого является то, что при каждом замыкании и размыкании в первичной цепи во вторичной обмотке появляются сильные мгновенные токи: при прерывании - прямого (одинакового направления с током первичной обмотки) и при замыкании обратного.

Для получения электромагнитных волн (ЭМВ) Генрих Герц использовал простейшее устройство, называемое вибратором Герца . Это устройство представляет собой открытый колебательный контур .

К медным стержням вблизи маленьких шариков были прикреплены обмотки катушки Румкорфа. При импульсах постоянного тока, вследствие действия прерывателя, в гальванической цепи вторичной обмотки катушки между шариками проскакивали искры и в окружающую среду излучались электромагнитные волны. Перемещением больших сфер вдоль стержней регулировались индуктивность и емкость цепи, определяющие частоты колебаний (и соответственно длины волн). Считается, что данный опыт Герца доказал существование электромагнитных волн (ЭМВ) .

Даже Крош с Барашем из Страны Смешариков умудрились сделать радиоприёмник по такой схеме. Но создатели мультфильма допустили одну существенную ошибку , из-за которой их приёмник НИКОГДА не будет принимать сигналы радиостанций!

Практически ничего не изменится, если сделать катушку L1 с изменяемой индуктивностью . На заре радио, когда переменные конденсаторы были дороги и дефицитны, большинство детекторных приёмников настраивались именно с помощью индуктивности – вариометрами.

См. мою статью «Полупроводниковый диод »

Емкостное сопротивление конденсатора - обратно пропорционально частоте переменного тока.

Основной элемент наушников (головных телефонов) – катушка с большим количеством витков тонкого провода. Поэтому головной телефон обладает индуктивным сопротивлением , которое прямо пропорционально частоте переменного тока.

Добротность Q – это характеристика колебательной системы, определяющая полосу резонанса и показывающая, во сколько раз запасы энергии в системе больше, чем потери энергии за один период колебаний.
Добротность обратно пропорциональна скорости затухания собственных колебаний в системе. То есть, чем выше добротность колебательной системы, тем меньше потери энергии за каждый период и тем медленнее затухают колебания.
Для параллельного колебательного контура, в котором индуктивность, емкость и сопротивление включены параллельно:

Избирательность приемника – это способность приемника выбирать отдельную станцию (частоту), не принимая при этом сигналов от примыкающих к ней станций.

Намотка «внавал » наматывается плотно, виток на виток, чтобы получилась объёмная секция.

«ДЭМ-4М » – капсуль динамический телефонный для аппаратуры связи. Обратимый в микрофон.

Номинальный диапазон частот: 300-3000Гц

Модуль электрического сопротивления: 600 Ом

Средняя чувствительность: 28Па/В

Габаритные размеры: Æ55x30мм

Масса: 160г

Россия. "Октава".

Включение диодов по типу «моста» широко используется в выпрямителях блоков питания. См. мою статью «Полупроводниковый диод».

Мостовой усилитель – это класс усилителей, называемых мостовыми, в которых незаземленная нагрузка подключается к выходам усилителя с противофазными выходными сигналами.

Комплементарная пара – это пара транзисторов, сходных по абсолютным значениям параметров, но имеющих разные типы проводимостей. В биполярной технике – это транзисторы р-n-p и n-p-n. А в полевой – транзисторы с р- и n-каналом (см. мою статью «ТРАНЗИСТОР»).

Лицендрат – это многожильный провод, каждая жила которого Æ0,05-0,07мм, покрыта изолирующим лаком.

Долгое время радиоприёмники возглавляли список самых значимых изобретений человечества. Первые такие устройства сейчас реконструированы и изменены под современный лад, однако в схеме их сборки мало что поменялось - та же антенна, то же заземление и колебательный контур для отсеивания ненужного сигнала. Бесспорно, схемы сильно усложнились со времён создателя радио - Попова. Его последователями были разработаны транзисторы и микросхемы для воспроизведения более качественного и энергозатратного сигнала.

Почему лучше начинать с простых схем?

Если вам понятна простая то можете быть уверены, что большая часть пути достижения успеха в сфере сборки и эксплуатации уже осилена. В этой статье мы разберём несколько схем таких приборов, историю их возникновения и основные характеристики: частоту, диапазон и т. д.

Историческая справка

7 мая 1895 года считается днём рождения радиоприёмника. В этот день российский учёный А. С. Попов продемонстрировал свой аппарат на заседании Русского физико-химического общества.

В 1899 году была построена первая линия радиосвязи длиной 45 км между и городом Котка. Во время Первой мировой войны получили распространение приёмник прямого усиления и электронные лампы. Во время военных действий наличие радио оказалось стратегически необходимым.

В 1918 году одновременно во Франции, Германии и США учёными Л. Левви, Л. Шоттки и Э. Армстронгом был разработан метод супергетеродинного приёма, но из-за слабых электронных ламп широкое распространение этот принцип получил только в 1930-х годах.

Транзисторные устройства появились и развивались в 50-х и 60-х годах. Первый широко используемый радиоприёмник на четырёх транзисторах Regency TR-1 был создан немецким физиком Гербертом Матаре при поддержке промышленника Якоба Михаэля. Он поступил в продажу в США в 1954 году. Все старые радиоприёмники работали на транзисторах.

В 70-х начинается изучение и внедрение интегральных микросхем. Сейчас приёмники развиваются с помощью большой интеграции узлов и цифровой обработки сигналов.

Характеристики приборов

Как старые радиоприёмники, так и современные обладают определёнными характеристиками:

  1. Чувствительность - способность принимать слабые сигналы.
  2. Динамический диапазон - измеряется в Герцах.
  3. Помехоустойчивость.
  4. Селективность (избирательность) - способность подавлять посторонние сигналы.
  5. Уровень собственных шумов.
  6. Стабильность.

Эти характеристики не меняются в новых поколениях приёмников и определяют их работоспособность и удобство эксплуатации.

Принцип работы радиоприёмников

В самом общем виде радиоприёмники СССР работали по следующей схеме:

  1. Из-за колебаний электромагнитного поля в антенне появляется переменный ток.
  2. Колебания фильтруются (селективность) для отделения информации от помех, т. е. из сигнала выделяется его важная составляющая.
  3. Полученный сигнал преобразуется в звук (в случае радиоприёмников).

По схожему принципу появляется изображение на телевизоре, передаются цифровые данные, работает радиоуправляемая техника (детские вертолёты, машинки).

Первый приёмник был больше похож на стеклянную трубку с двумя электродами и опилками внутри. Работа осуществлялась по принципу действия зарядов на металлический порошок. Приёмник обладал огромным по современным меркам сопротивлением (до 1000 Ом) из-за того, что опилки плохо контактировали между собой, и часть заряда проскакивала в воздушное пространство, где рассеивалась. Со временем эти опилки были заменены колебательным контуром и транзисторами для сохранения и передачи энергии.

В зависимости от индивидуальной схемы приёмника сигнал в нём может проходить дополнительную фильтрацию по амплитуде и частоте, усиление, оцифровку для дальнейшей программной обработки и т. д. Простая схема радиоприёмника предусматривает единичную обработку сигнала.

Терминология

Колебательным контуром в простейшем виде называются катушка и конденсатор, замкнутые в цепь. С помощью них из всех поступающих сигналов можно выделить нужный за счёт собственной частоты колебаний контура. Радиоприемники СССР, как, впрочем, и современные устройства, основаны на этом сегменте. Как все это функционирует?

Как правило, питание радиоприёмников происходит за счёт батареек, количество которых варьируется от 1 до 9. Для транзисторных аппаратов широко используются батареи 7Д-0.1 и типа "Крона" напряжением до 9 В. Чем больше батареек требует простая схема радиоприёмника, тем дольше он будет работать.

По частоте принимаемых сигналов устройства делятся на следующие типы:

  1. Длинноволновые (ДВ) - от 150 до 450 кГц (легко рассеиваются в ионосфере). Значение имеют приземлённые волны, интенсивность которых уменьшается с расстоянием.
  2. Средневолновые (СВ) - от 500 до 1500 кГц (легко рассеиваются в ионосфере днём, но ночью отражаются). В светлое время суток радиус действия определяется приземлёнными волнами, ночью - отражёнными.
  3. Коротковолновые (КВ) - от 3 до 30 МГц (не приземляются, исключительно отражаются ионосферой, поэтому вокруг приёмника существует зона радиомолчания). При малой мощности передатчика короткие волны могут распространяться на большие расстояния.
  4. Ультракоротковолновые (УКВ) - от 30 до 300 МГц (имеют высокую приникающую способность, как правило, отражаются ионосферой и легко огибают препятствия).
  5. - от 300 МГц до 3 ГГц (используются в сотовой связи и Wi-Fi, действуют в пределах видимости, не огибают препятствия и распространяются прямолинейно).
  6. Крайневысокочастотные (КВЧ) - от 3 до 30 ГГц (используются для спутниковой связи, отражаются от препятствий и действуют в пределах прямой видимости).
  7. Гипервысокочастотные (ГВЧ) - от 30 ГГц до 300 ГГц (не огибают препятствий и отражаются как свет, используются крайне ограниченно).

При использовании КВ, СВ и ДВ радиовещание можно вести, находясь далеко от станции. УКВ-диапазон принимает сигналы более специфично, но если станция поддерживает только его, то слушать на других частотах не получится. В приёмник можно внедрить плейер для прослушивания музыки, проектор для отображения на удалённые поверхности, часы и будильник. Описание схемы радиоприёмника с подобными дополнениями усложнится.

Внедрение в радиоприёмники микросхемы позволило значительно увеличить радиус приёма и частоту сигналов. Их главное преимущество в сравнительно малом потреблении энергии и маленьком размере, что удобно для переноса. Микросхема содержит все необходимые параметры для понижения дискретизации сигнала и удобства чтения выходных данных. Цифровая обработка сигнала доминирует в современных устройствах. были предназначены только для передачи аудиосигнала, лишь в последние десятилетия устройство приёмников развилось и усложнилось.

Схемы простейших приёмников

Схема простейшего радиоприёмника для сборки дома была разработана ещё во времена СССР. Тогда, как и сейчас, устройства разделялись на детекторные, прямого усиления, прямого преобразования, супергетеродинного типа, рефлексные, регенеративные и сверхрегенеративные. Наиболее простыми в восприятии и сборке считаются детекторные приёмники, с которых, можно считать, началось развитие радио в начале 20-ог века. Наиболее сложными в построении стали устройства на микросхемах и нескольких транзисторах. Однако если вы разберетесь в одной схеме, другие уже не будут представлять проблемы.

Простой детекторный приёмник

Схема простейшего радиоприёмника содержит в себе две детали: германиевый диод (подойдут Д8 и Д9) и главный телефон с высоким сопротивлением (ТОН1 или ТОН2). Так как в цепи не присутствует колебательный контур, ловить сигналы определённой радиостанции, транслирующиеся в данной местности, он не сможет, но со своей основной задачей справиться.

Для работы понадобится хорошая антенна, которую можно закинуть на дерево, и провод заземления. Для верности его достаточно присоединить к массивному металлическому обломку (например, к ведру) и закопать на несколько сантиметров в землю.

Вариант с колебательным контуром

В прошлую схему для внедрения избирательности можно добавить катушку индуктивности и конденсатор, создав колебательный контур. Теперь при желании можно поймать сигнал конкретной радиостанции и даже усилить его.

Ламповый регенеративный коротковолновой приёмник

Ламповые радиоприёмники, схема которых довольно проста, изготавливаются для приёма сигналов любительских станций на небольших расстояниях - на диапазоны от УКВ (ультракоротковолнового) до ДВ (длинноволнового). На этой схеме работают пальчиковые батарейные лампы. Они лучше всего генерируют на УКВ. А сопротивление анодной нагрузки снимает низкая частота. Все детали приведены на схеме, самодельными можно считать только катушки и дроссель. Если вы хотите принимать телевизионный сигналы, то катушка L2 (EBF11) составляется из 7 витков диаметром 15 мм и провода на 1,5 мм. Для подойдет 5 витков.

Радиоприёмник прямого усиления на двух транзисторах

Схема содержит и двухкаскадный усилитель НЧ - это настраиваемый входной колебательный контур радиоприёмника. Первый каскад - детектор ВЧ модулированного сигнала. Катушка индуктивности намотана в 80 витков проводом ПЭВ-0,25 (от шестого витка идёт отвод снизу по схеме) на ферритовом стержне диаметром 10 мм и длиной 40.

Подобная простая схема радиоприёмника рассчитана на распознавание мощных сигналов от недалёких станций.

Сверхгенеративное устройство на FM-диапазоны

FM-приёмник, собранный по модели Е. Солодовникова, несложен в сборке, но обладает высокой чувствительностью (до 1 мкВ). Такие устройства используют для высокочастотных сигналов (более 1МГЦ) с амплитудной модуляцией. Благодаря сильной положительной обратной связи коэффициент возрастает до бесконечности, и схема переходит в режим генерации. По этой причине происходит самовозбуждение. Чтобы его избежать и использовать приёмник как высокочастотный усилитель, установите уровень коэффициента и, когда дойдет до этого значения, резко снизьте до минимума. Для постоянного мониторинга усиления можно использовать генератор пилообразных импульсов, а можно сделать проще.

На практике нередко в качестве генератора выступает сам усилитель. С помощью фильтров (R6C7), выделяющих сигналы низких частот, ограничивается проход ультразвуковых колебаний на вход последующего каскада УНЧ. Для FM-сигналов 100-108 МГц катушка L1 преобразуется в полувиток с сечением 30 мм и линейной частью 20 мм при диаметре провода 1 мм. А катушка L2 содержит 2-3 витка диаметром 15 мм и провод с сечением 0,7 мм внутри полувитка. Возможно усиление приёмника для сигналов от 87,5 МГц.

Устройство на микросхеме

КВ-радиоприёмник, схема которого была разработана в 70-е годы, сейчас считают прототипом Интернета. Коротковолновые сигналы (3-30 МГц) путешествуют на огромные расстояния. Нетрудно настроить приёмник для прослушивания трансляции в другой стране. За это прототип получил название мирового радио.

Простой КВ-приёмник

Более простая схема радиоприёмника лишена микросхемы. Перекрывает диапазон от 4 до 13 МГц по частоте и до 75 метров по длине. Питание - 9 В от батареи "Крона". В качестве антенны может служить монтажный провод. Приёмник работает на наушники от плейера. Высокочастотный трактат построен на транзисторах VT1 и VT2. За счёт конденсатора С3 возникает положительный обратный заряд, регулируемый резистором R5.

Современные радиоприёмники

Современные аппараты очень похожи на радиоприёмники СССР: они используют ту же антенну, на которой возникают слабые электромагнитные колебания. В антенне появляются высокочастотные колебания от разных радиостанций. Они не используются непосредственно для передачи сигнала, но осуществляют работу последующей цепи. Сейчас такой эффект достигается с помощью полупроводниковых приборов.

Широкое развитие приёмники получили в середине 20-го века и с тех пор непрерывно улучшаются, несмотря на замену их мобильными телефонами, планшетами и телевизорами.

Общее устройство радиоприёмников со времён Попова изменилось незначительно. Можно сказать, что схемы сильно усложнились, добавились микросхемы и транзисторы, стало возможным принимать не только аудиосигнал, но и встраивать проектор. Так приёмники эволюционировали в телевизоры. Сейчас при желании в аппарат можно встроить всё, что душе угодно.