Почему телефон не видит карту памяти SD или microSD — все решения. Компьютер не видит карту памяти sd, minisd, microsd

SD и microSD карты могут существенно расширить возможности проектов ардуино, работающих с большими объемами данных: регистраторов данных, метеостанций, систем умного дома. Платы arduino оснащены сравнительно небольшой внутренней памятью, всего до 4 килобайт, включая и флэш-память, и EEPROM. Этой памяти не хватит для записи больших объемов данных, тем более, если плата будет постоянно выключаться или выключаться. Подключение SD карты ардуино в качестве внешнего накопителя позволяет многократно увеличить место для хранения любой информации. Съемные накопители SD стоят дешево, легко подключаются и удобны в использовании. О правильном подключении SD карты к Arduino и пойдет речь в статье.

Работа с памятью SD в ардуино не представляет особых трудностей. Самым простым способом является подключение готового модуля и использование стандартной библиотеки. С этого варианта мы и начнем.

Использование готового модуля обладает различными преимуществами. Это довольно простое и удобное средство для работы с большим объемом данных. Он не требует особых навыков в подключении, все разъемы подписаны прямо на плате. За удобство приходится платить, но стоимость модуля относительно не велика, его легко можно найти по доступным ценам в российских и зарубежных интернет-магазинах.

Универсальный модуль представляет собой обыкновенную плату, на которой помещены слот для карты, резисторы и регулятор напряжений. Он обладает следующими техническими характеристиками:

  • Диапазон рабочих напряжений 4,5-5 В;
  • Поддержка SD карты до 2 Гб;
  • Ток 80 мА;
  • Файловая система FAT 16.

Модуль SD-карты реализует такие функции как хранение, чтение и запись информации на карту, которая требуется для нормального функционирования прибора на базе микроконтроллера.


Естественно, у недорогих модулей карт памяти есть и недостатки. Например, самые дешевые и распространенные модели поддерживают только карты до 4Гб и почти все модули позволяют хранить на SD карте файлы объемом до двух гигабайт – это ограничение используемой в большинстве моделей файловой системы FAT.

Еще одним недостатком карт памяти является относительно долгое время записи, однако существуют пути работы с ней, позволяющие увеличить ее скорость работы. Для этого используется механизм кэширования, когда данные сначала копятся в оперативной памяти, а потом сбрасываются за раз на карту памяти.

Платы Arduino для работы с SD

Для работы с SD card существует несколько различных плат:

  • Arduino Ethernet – эта плата оснащена специальным модулем для вывода данных. Для выхода CS используется контакт 4. Для правильной работы нужно применять команду SD.begin(4).
  • Adafruit Micro-SD – это отладочная плата, которая используется при работе с Micro-SD картами.
  • Sparkfun SD – закрепляется сверху Ардуино, для выхода CS использует 8 контакт. В новой версии платы есть соединение с 3.3 В и встроен шестиразрядный инвертор.

Подключение SD и microSD к ардуино

Существует два вида карт – microSD и SD. Они одинаковы по подключению, структуре и программе, различаются же только размером. Перед работой советуется отформатировать карту SD. Обычно новые карты уже отформатированы и готовы к работе, но если используется старая карта, то лучше провести форматирование в файловой системе Arduino. Для проведения процедуры на компьютере должна быть установлена библиотека SD, желательно FAT16. Для форматирования на Windows нужно щелкнуть на иконке карты и нажать “Format”.

Для подключения карты используется 6 контактов, взаимодействие производится по интерфейсу SPI. Она выглядит на плате как разъем на лицевой поверхности с шестью штырями. Чтобы подключить карту, нужны сам контроллер, модуль карты и 6 проводов. Помимо SPI существует режим SDIO, но он сложен в реализации и слабо совместим с Ардуино. SPI легко налаживается для работы со всеми микроконтроллерами, поэтому советуется использовать именно его.

Подключение цифровых выводов производится так: для платы Arduino Nano или Uno контакт MOSI подключается к D11, MISO к D12,SCK к D13, CS к 4, VCC на +5 В,.GND к GND. На плате имеются разъемы для подключения к 3,3 и 5 вольтам. Питание самой карты составляет 3,3 вольт, поэтому проще применять микроконтроллер с таким же питанием, в ином случае нужен преобразователей уровней напряжения. На самых распространенных платах ардуино такой выход есть.

При подключении SD карты нужно учитывать соответствие SPI контактов для разных тип плат Arduino:

Библиотека ардуино для работы с SD и microSD

Для удобства работы с внешними накопителями данных в среде Arduino IDE доступны уже готовые библиотеки. Ничего дополнительно скачивать или устанавливать в большинстве случаев не понадобится.

Для подключения библиотеки в скетче нужно использовать инструкцию include:

#include #include

Библиотека SPI нужна для правильной работы устройств, подключаемых по SPI.

Библиотечные функции нужно для считывания и записи данных на карту. Библиотека может поддерживать SD и SDHC карты.

Имена записываются в формате 8.3, то есть 8 знаков для названия, 3 для расширения. Путь к файлу записывается с помощью слэшей «/».

Встроенные примеры библиотеки SD

В Arduino IDE встроены готовые примеры для быстрого изучение функций бибилотеки:

  • Card Info – это извлечение информации, хранящейся в SD карте. С ее помощью можно узнать, в какую файловую систему отформатирована карта, наличие свободного места, какие данные записаны.
  • Yun Datalogger – позволяет записывать лог-данные с трех сенсоров на карту.
  • Datalogger – регистрирует и созраняет данные, полученные с датчика на карту.
  • Dump File – считывание данные с карты, передает их в серийный порт.
  • Files – создает и удаляет данные. Существует функция file.write(), которая помещает записанные данные в буфер. Перемещение информации на карту происходит при вызове функций flush() или close(), поэтому важно закрывать его после каждого открытия файла, иначе данные будут потеряны.
  • Read Write – записывает и считывает файлы с карты.

Функции библиотеки SD

Ардуино-библиотека SD содержит различные функции, с помощью которыми можно управлять данными. Функции класса SD:

  • begin() – функция инициализирует библиотеку, присваивает контакт для сигнала.
  • exists() – призвана проверить, имеется ли на карте необходимая информация.
  • mkdir() – позволяет создать нужную папку на карте памяти.
  • rmdir() – с помощью этой функции можно удалить папку. Важно, чтобы удаляемая папка была пустой.
  • open() – позволяет открыть файл, который нужен для записи или чтения. Если нужный файл отсутствует на карте, то он будет создан.
  • remove() – удаляет любой файл.

В ответ на все эти функции должно прийти одно из значений – true, в случае удачного завершения операции и false при неудаче.

Создание, редактирование и удаление файлов.

Для работы с файлами в ардуино существует класс File. В него входят функции, которые предназначены для записи и чтения информации с карты:

  • available() – проверяет наличие в файле байт, которые доступны для чтения. В ответ приходит количество места, которое доступно для чтения.
  • close() – закрывает файл, перед эти проверяет, сохранены ли данные на карту.
  • flush() – функция позволяет убедиться, что данные записаны на карту.
  • name() – возвращает указатель на имя.
  • peek() – считывает байты данных, при этом не перемещает указатель на следующий символ.
  • position() – находит текущее положение указателя в файле.
  • print() – выводит данные в отдельный файл.
  • println() – печатает данные в файл до места, где появляется символ перевода каретки и пустая строка.
  • seek() – меняет положение текущей позиции в файле.
  • size() – выводит информацию о размере данных.
  • read() – считывает информацию.
  • write() – производит запись в файл.
  • isDirectory() – с помощью этого метода происходит проверка, является ли файл директорией, то есть каталогом или папкой.
  • openNextFile() – выводит имя последующего файла.
  • rewindDirectory() – возвращает к первому файлу в директории.

Для корректной работы платы нужно проследить, чтобы был сконфигурирован SS выход.

Скетч примера работы с SD библиотекой ардуино

Ниже приведен скетч, демонстрирующий пример работы с модулем карты памяти.

/* Регистратор данных с использованием SD карт Пример сохранения данных с аналоговых портов на SD карте. Данные будут сохраняться в файле в виде набора строк с разделителем полей в виде символа "," Схема подключения: * Аналоговые сенсоры подключаются к аналоговым пинам * Модуль SD карты подключен в SPI по стандартной схеме: ** MOSI - пин 11 ** MISO - пин12 ** CLK - пин 13 ** CS - pin 4 */ #include #include const int PIN_CHIP_SELECT = 4; void setup() { Serial.begin(9600); Serial.print("Initializing SD card..."); // Этот пин обязательно должен быть определен как OUTPUT pinMode(10, OUTPUT); // Пытаемся проинициализировать модуль if (!SD.begin(PIN_CHIP_SELECT)) { Serial.println("Card failed, or not present"); // Если что-то пошло не так, завершаем работу: return; } Serial.println("card initialized."); } void loop() { // Строка с данными, которые мы поместим в файл: String logStringData = ""; // Считываем данные с портов и записываем в строку for (int i = 0; i < 5; i++) { int sensor = analogRead(i); logStringData += String(sensor); if (i < 4) { logStringData += ","; } } // Открываем файл, но помним, что одновременно можно работать только с одним файлом. // Если файла с таким именем не будет, ардуино создаст его. File dataFile = SD.open("datalog.csv", FILE_WRITE); // Если все хорошо, то записываем строку: if (dataFile) { dataFile.println(logStringData); dataFile.close(); // Публикуем в мониторе порта для отладки Serial.println(logStringData); } else { // Сообщаем об ошибке, если все плохо Serial.println("error opening datalog.csv"); } }

Создание файла и выбор названия для arduino SD card

Создание файла – одна из самых распространенных задач, возникающих при работе с SD картами в ардуино. Как мы убедились в предыдущем скетче, для создания файла достаточно просто открыт его. Если мы захотим проверить, есть ли такой файл, можно использовать функцию exists():

  • SD.exists(“datalog.csv”);

Функция возвращает TRUE, если файл существует.

Популярной практикой при создании проектов – регистраторов данных является разбивка больших файлов на более мелкие, которые удобнее обновлять и открывать на компьютере. Например, вместо одного очень большого файла datalog.csv на SD карте можно иметь несколько маленьких, добавляя к концу номер по порядку: datalog01.csv, datalog02.csv и т.д.
Вот пример скетча, который поможет вам выполнить эту работу:

Char filename = "datalog00.CSV"; // Первоначальное название for (uint8_t i = 0; i < 100; i++) { filename = i / 10 + "0"; filename = i % 10 + "0"; if (! SD.exists(filename)) { // Проверяем наличие logfile = SD.open(filename, FILE_WRITE); break; // Дальше продолжать смысла нет } }

Заключение

Как мы с вами убедились, подключить SD карту памяти к Ардуино и использовать ее в проекте не очень сложно. Для этого есть готовые библиотеки в Arduino IDE и самые разнообразные варианты модулей. Приобрести карту памяти можно в любом магазине электроники, они стоят недорого, при этом позволяют существенно расширить потенциал платы Ардуино. С использованием карт памяти можно собирать и сохранять для последующего анализа большие объемы данных. С помощью нашей статьи мы сможете наделить памятью свои исследовательские проекты, создать системы голосового оповещения для умного дома, создать простой wav-проигрыватель и многое другое.

Всем доброго дня! Сегодня мы поговорим о подключении карты памяти SD к микроконтроллеру STM32.

Казалось бы, памяти полно у контроллеров STM32F10x, зачем там еще дополнительная, но это впечатление обманчиво) Вот, например, надо нам на дисплей вывести пару-тройку разных изображений – формат 320*240 – то есть 76800 пикселей, каждому из которых соответствует целых 2 байта. Вот и получаем около 150 кБ на одну картинку. А это немало по меркам микроконтроллера, и не факт, что две разные картинки удастся запихать в его Flash память. Или надо нам хранить большие объемы информации, данные с какого-нибудь датчика, к примеру. Да еще так, чтобы эти данные были доступны и после отключения питания. Вот тут то нам и пригодится внешняя память. И отличным решением будет SD карта памяти или MMC. К слову в этой статье мы будем проводить опыты над картой micro SD .

Для начала пара слов о самой карте памяти, точнее о ее распиновке. Выглядит все это дело следующим образом:

Итак, что тут у нас? Ну сразу видно, что выводов у нее целых восемь штук. Назначение выводов следующее (слева направо):


Колонка SPI Mode нам намекает на то, что взаимодействует с микроконтроллером при помощи интерфейса SPI. НО! Мы пойдем по другому пути 😉 Все дело в том, что STM32 имеют на своем борту готовый периферийный модуль для работы именно с картами памяти, и называется он SDIO.

Вообще взаимодействие с картами памяти заключается в передаче им определенных команд. Некоторые команды требует наличия аргумента, некоторые нет. Команды можно найти в официальной документации на конкретную карту. Так вот встроенный модуль SDIO дает возможность значительно упростить процесс передачи команд, да и вообще процесс работы с внешними картами памяти. Например, вот регистр SDIO_CMD – туда мы просто напросто записываем код команды, которую хотим передать карте. Или вот статусный регистр SDIO_STA – там целых 24 флага на каждый чих, то есть для большого количества событий.

Кстати STM радует еще и добротной документацией на все это дело. Вот, к примеру, подробное описание инициализации для карты памяти SD (аналогично все описано для других типов карт):

Ну, собственно, пора перейти к практическому примерчику. Поковыряем-ка Standard Peripheral Library.

В файле stm32f10x_sdio.h по традиции находим структуры для всевозможной настройки – то есть для выбора источника тактового сигнала, частоты контроллера SDIO, настройки количества передаваемых байт. Там все так щедро откомментировано, что даже не хочется отдельно это повторять)) Просто смотрите:

typedef struct { uint32_t SDIO_ClockEdge; /* Specifies the clock transition on which the bit capture is made. This parameter can be a value of @ref SDIO_Clock_Edge */ uint32_t SDIO_ClockBypass; /* Specifies whether the SDIO Clock divider bypass is enabled or disabled. This parameter can be a value of @ref SDIO_Clock_Bypass */ uint32_t SDIO_ClockPowerSave; /* Specifies whether SDIO Clock output is enabled or disabled when the bus is idle. This parameter can be a value of @ref SDIO_Clock_Power_Save */ uint32_t SDIO_BusWide; /* Specifies the SDIO bus width. This parameter can be a value of @ref SDIO_Bus_Wide */ uint32_t SDIO_HardwareFlowControl; /* Specifies whether the SDIO hardware flow control is enabled or disabled. This parameter can be a value of @ref SDIO_Hardware_Flow_Control */ uint8_t SDIO_ClockDiv; /* Specifies the clock frequency of the SDIO controller. This parameter can be a value between 0x00 and 0xFF. */ } SDIO_InitTypeDef; typedef struct { uint32_t SDIO_Argument; /* Specifies the SDIO command argument which is sent to a card as part of a command message. If a command contains an argument, it must be loaded into this register before writing the command to the command register */ uint32_t SDIO_CmdIndex; /* Specifies the SDIO command index. It must be lower than 0x40. */ uint32_t SDIO_Response; /* Specifies the SDIO response type. This parameter can be a value of @ref SDIO_Response_Type */ uint32_t SDIO_Wait; /* Specifies whether SDIO wait-for-interrupt request is enabled or disabled. This parameter can be a value of @ref SDIO_Wait_Interrupt_State */ uint32_t SDIO_CPSM; /* Specifies whether SDIO Command path state machine (CPSM) is enabled or disabled. This parameter can be a value of @ref SDIO_CPSM_State */ } SDIO_CmdInitTypeDef; typedef struct { uint32_t SDIO_DataTimeOut; /* Specifies the data timeout period in card bus clock periods. */ uint32_t SDIO_DataLength; /* Specifies the number of data bytes to be transferred. */ uint32_t SDIO_DataBlockSize; /* Specifies the data block size for block transfer. This parameter can be a value of @ref SDIO_Data_Block_Size */ uint32_t SDIO_TransferDir; /* Specifies the data transfer direction, whether the transfer is a read or write. This parameter can be a value of @ref SDIO_Transfer_Direction */ uint32_t SDIO_TransferMode; /* Specifies whether data transfer is in stream or block mode. This parameter can be a value of @ref SDIO_Transfer_Type */ uint32_t SDIO_DPSM; /* Specifies whether SDIO Data path state machine (DPSM) is enabled or disabled. This parameter can be a value of @ref SDIO_DPSM_State */ } SDIO_DataInitTypeDef;

Отметим как в SPL реализована передача команд карте памяти. Для этих целей отведена отдельная структура SDIO_CmdInitTypeDef. В поле SDIO_CmdIndex вводим код команды, в поле SDIO_Argument – аргумент команды, также заполняем остальные поля. Осталось как то эти данные запихать в карту micro SD 😉 А для этого нам приготовили функцию:

SDIO_SendCommand (SDIO_CmdInitTypeDef *SDIO_CmdInitStruct)

В качестве аргумента передаем ей как раз таки созданную нами структуру. Для записи данных есть функция – SDIO_WriteData(uint32_t Data) . После вызова этой функции данные окажутся в специально предназначенном для этого регистре – SDIO_FIFO.

Вот так вот осуществляется работа с модулем SDIO в STM32F10x)

Теперь перейдем к практике наконец-то. Я снова буду работать с платой Mini STM32, поскольку добрые китайцы озадачились установкой на нее слота для карты памяти micro SD. Вот схема подключения разъема для карты к микроконтроллеру:

Для написания программы воспользуемся готовым примером для Keil’а – стащим оттуда два файла, в которых реализовано что-то вроде драйвера для работы с картами – это файлы sdcard.c и sdcard.h. Создаем новый проект, цепляем туда эти файлы, а кроме того, естественно, файлы CMSIS и SPL. Вот готовый проект, в который все уже добавлено – остается только написать код функции main())

В файле sdcard.c реализованы всевозможные функции для работы с картой памяти, нам теперь остается их только использовать 😉 Пишем код! Для примера запишем на micro SD 512 байт тестовых данных, а затем попробуем их считать:

// Цепляем нужные файлы #include "stm32f10x.h" #include "sdcard.h" /*******************************************************************/ // Массивы входных и выходных данных и переменная для хранения данных // о нашей карте uint8_t writeBuffer[ 512 ] ; uint8_t readBuffer[ 512 ] ; SD_CardInfo SDCardInfo; /*******************************************************************/ int main() { // Тестовые данные для записи for (uint16_t i = 0 ; i < 512 ; i++ ) { writeBuffer[ i] = i % 256 ; readBuffer[ i] = 0 ; } // Иницилизация карты SD_Init() ; // Получаем информацию о карте SD_GetCardInfo(& SDCardInfo) ; // Выбор карты и настройка режима работы SD_SelectDeselect((uint32_t ) (SDCardInfo.RCA << 16 ) ) ; SD_SetDeviceMode(SD_POLLING_MODE) ; // И вот наконец то запись и чтение SD_WriteBlock(0x00 , writeBuffer, 512 ) ; SD_ReadBlock(0x00 , readBuffer, 512 ) ; while (1 ) { } } /*******************************************************************/

Обратите внимание, что SD карта поддерживает запись блоками по 512 байт.

Если мы запустим программу под отладчиком, то увидим, что считанные данные соответствуют записанным =) Так что эксперимент можем считать удавшимся. На этом на сегодня заканчиваем, до скорых встреч!

Проблема нехватки памяти – одна из основоположных как для ПК, так и для мобильных устройств. При малом количестве свободной памяти система обычно начинает подтормаживать, подвисать, работает нестабильно и ненадёжно. Особенно актуально это для Андроид-устройств, многие из которых изначально обладают довольно небольшим объёмом основной памяти (т.н. «Internal Storage»). В такой ситуации у некоторых пользователей может возникнуть идея попробовать использовать внешнюю SD-карту в качестве основной памяти на их Андроид-устройстве. В данном материале я расскажу, как SD-карту сделать основной памятью на гаджетах Андроид, и какие способы нам в этом помогут.

Разбираем, как SD-карту сделать основной памятью на Андроид

Для осуществления данной задачи вам понадобится скоростная SD-карта (желательно, 10 класса или быстрее). Карты 6, а особенно 4 и 2 классов для таких целей не пригодны, ваша система вследствие их использования существенно замедлит свою работу, что вряд ли понравится кому-то из пользователей.

Также важно понимать, что срок действия такой SD-карты вследствие активной на неё нагрузки будет существенно меньше, нежели если бы нагрузка на карту проходила в стандартном режиме.


Способ №1. Изменяем содержимое файла Vold.fstab

Первый из описанных способов предполагает изменение содержимого файла системных настроек «Vold.fstab». После осуществления указанных изменений ОС Андроид будет считать вашу SD-карту внутренней памятью устройства, при этом учтите, что ряд установленных ранее приложений могут перестать работать.

Важно знать, что данный способ работает только на рутированных устройствах, на которых установлена ОС Андроид ниже (!) , нежели версия 4.4.2. В версиях ОС Андроид 4.4.2 и выше указанный файл, скорее всего, вы попросту не найдёте.

Также учтите, что ошибка в реализации данного способа (в частности, добавление в нужные строки лишних символов) может самым печальным образом сказаться на работоспособности вашего устройства. Потому тщательно взвесьте возможные риски, и если, всё-таки, приняли решение, тогда приступайте к его реализации.

Итак, для осуществления данного способа выполните следующее:

Например, это могут быть такие строки:

  • dev_mount sdcard/storage/sdcard0 emmc@xxxxxx
  • dev_mount sdcard2/storage/sdcard1 auto/xxxxxx

Для осуществления нужных изменений нам необходимо поменять путь в указанных строках местами, то есть, проще говоря, вместо 0 поставьте единичку в первой строке, а во второй вместо 1 поставьте 0.

После изменений эти строки будут иметь вид:

  • dev_mount sdcard/storage/sdcard1 emmc@xxxxxx
  • dev_mount sdcard2/storage/sdcard0 auto/xxxxx

Сохраните произведёнными вами изменения, а затем перезагрузите гаджет.

Ещё один вариант как сделать карту памяти основной на андроид:


Способ №2. Используем настройки ОС Андроид 6.0 и выше

Кроме первого способа, в котором я рассмотрел, как переключить память телефона на карту памяти, существует и другой способ, работающий только на настройках ОС Андроид 6.0 (Marshmallow) или выше, и позволяющий задействовать SD-карту как основную для сохранения файлов и работы с ними. Для его реализации рекомендую сделать копию данных с вашей SD-карты (если таковые на ней имеются), так как данная карта будет отформатирована системой.

В данном посте я продемонстрирую примитивный способ подключения SD карты к микроконтроллеру .

SD или может microSD?

Самый простой способ, это припаять SD карту к проводникам , а проводники к входам контролера. Но при данном подходе, мы лишаемся возможности извлекать SD-карту из проекта , например для проверки на кардридере компьютера.

Для того чтобы, не выпаивать каждый раз SD карту для проверки её на компьютере, я рекомендую использовать её младшего брата — microSD с переходником » microSD на SD» .

MicroSD ничем не отличается от обычной SD , различия только в размере. От нас требуется правильно соединить выходы микроконтроллера с переходником «microSD на SD». Данный пост применим как и для SD, так и для microSD.

Какой микроконтроллер?

В качестве микроконтроллер я буду использовать ATmega328P (или Arduino UNO ), но данный подход можно использовать для любого микроконтроллера поддерживающий протокол SPI .

Важно заметить, что данный контроллер (да и многие другие) построен на технологии CMOS. Это означает, что нулевой уровень (логический 0-ль) соответствует 0.1 В , а высокий логический уровень (логическая 1-ца) соответствует напряжению питания . Т.е. каким напряжением будет запитан микроконтроллер, то вы и получите на выходе при логической 1-цы. Если вы используете Arduino, то у вас нет возможности изменять напряжения питания контролера, это означает, что на выходе, в качестве логической единицы, у вас будет ~5 В . Что не соответствует уровню логической 1-цы SD карты, т.е. 2.7-3.6 В. Поэтому напрямую подключить SD (microSD) к разъемам микроконтроллера не получиться, придется делать небольшую развязку, в виде делителей напряжений .

Делители напряжения

Делитель напряжений будем собирать из резисторов , нам необходимо их подобрать таким образом, что бы мы могли, снять с делителя от 2.7 до 3.6 В . Это можно сделать, с помощью резисторов номиналом 1.8 кОм и 3.3 кОм . Можно использовать и другие комбинации, главное попасть в промежуток от 2.7 до 3.6 В на выходе.

В реальности делитель я сделал следующим образом, в разрез провода впаял резистор 1,8 КОм , к концу этого резистора припаял резистор для земли — 3.3 КОм . Надвинул на резисторы и оголенные участки — термоусадочную трубку.

Картинка вверху «без термоусадки «, внизу «с термоусадкой на резисторах и оголенных участках »


Что в итоге? Как подключать?

В итоге, SD карта к микроконтроллеру нужно подключить следующим образом:

P.S. выход DO подключать к делителю нет необходимости , т.к. на него мы ничего не подаем , а только получаем данные с SD карты.
P.S. в данной схеме, я не рекомендую извлекать и вставлять microSD в разъем во время работы микроконтроллера, делайте это только в обесточенном состояние.